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Abstract 

Mission planning is central to space mission operations and 
has benefited from advances in model-based planning 
software, but developing a planning model still remains a 
difficult task.  Mission planning constraints arise from many 
sources, including simulators and engineering specification 
documents.  Ensuring that these constraints are correctly 
represented in the planner’s model is a challenge.  As 
mission constraints evolve, planning domain modelers must 
add and update model constraints efficiently using the 
available source data, catching errors quickly, and 
correcting the model.  We describe the current state of the 
practice in designing model-based mission planning tools 
and the challenges facing model developers. We then  
propose an Interactive Model Development Environment 
(IMDE) to configure mission planning systems by 
integrating modeling and simulation environments to reduce 
model editing time, generate simulations automatically to 
evaluate plans, and identify modeling errors automatically 
by evaluating simulation output.  

Introduction 
Mission planning is central to space mission operations, 
and has benefited from advances in model-based planning 
software (Chien et al., 2005, Bresina et al., 2005, Knight et 
al., 2009, Reddy et al., 2010). Space mission planning has 
diverse information sources such as engineering 
specification documents (Barreiro et al., 2010), 
communication coverage, simulations of spacecraft 
subsystems (Ko et al., 2004; Yen et al., 2005), and 
trajectory and attitude specifications. A principal obstacle 
to fielding model-based planning systems for space 
missions is the complexity of their configuration, typically 
through domain modeling. Building a domain model 
requires identifying these information sources, 
understanding them, and often abstracting them.  
 Throughout the mission’s development, changes to the 
constraints require changes to the models used to generate 
plans.  Detecting and managing discrepancies between the 
constraints, plans generated from the model, and spacecraft 
behavior increases mission cost, schedule, and risk. A 
discrepancy may indicate an error in modeling that should 
be fixed prior to operations in order to avoid harm to the 
spacecraft and laborious re-testing at the subsystem and 
system levels. Such errors are difficult to avoid because 

models are often developed as disconnected abstractions of 
the system and are difficult to validate against spacecraft 
behavior and the sources of operational constraints.  For 
example spacecraft behavior is often captured in a 
simulation testbed, which is used to validate command 
sequences that correspond to a plan.  Today this process is 
performed by hand; the modeler must be familiar enough 
with the simulator output in order to characterize, for 
example, power usage, activity duration, and activity 
mutual exclusions. 
 Validating the planning system (not just a plan) is a 
central challenge to automating model development.  An 
automated planning system is (in part) a plan verification 
system because it checks constraints on system states that 
the plan’s activities affect.  However, validating the plan 
additionally requires validating that the constraints and 
effects in the model are consistent with the simulation 
testbed.  Validating the planning model, therefore, 
validates all plans that the planner generates or accepts as 
feasible. 
 Model checking software can automatically check a plan 
or model for foreseeable problems described in another 
formal language (e.g., Howey et al., 2004, Brat et al., 2008, 
Long et al., 2009, Raimondi et al., 2009, Cesta et al., 
2010).  From the point of view of system validation, model 
checking approaches only provide verification of 
plans/models in isolation. 
 In contrast, the challenge we pose is to automate the 
validation of the planning system application and the 
identification of modeling errors.  Instead of model 
checking rules, we propose to use the simulator for 
checking the planning model.  This approach avoids 
having to specify model checking rules and provides a 
direct path for finding problems that may be unforeseeable. 
 To understand better how the proposed automated model 
development and validation may be used, consider the 
validation of the CASPER automated planning system for 
onboard commanding of NASA’s Earth Observing 1 (EO-
1) spacecraft.  This validation process involved tabletop 
model reviews with EO-1 engineers and operators, safety 
reviews to elicit potential hazards, and automated tests 
stochastically generated as perturbations to nominal 
scenarios and executed on simulation platforms of varying 



fidelity where spacecraft, operations, and safety constraints 
were checked (Cichy et al., 2004).  The automation 
proposed here may not be able to eliminate any of these 
steps.  However, for an edit to the model, the simulator can 
be invoked to identify, avoid, and fix modeling errors.  
This continual testing could make the reviews simpler 
since plans have already been validated for a documented 
set of constraints by the simulators.  The reviews could 
then focus on what is modeled instead of how. 
 This paper first describes space mission and activity 
planning in the context of other mission operations system 
elements.  We use a sample activity description to show 
how an activity’s pieces are constructed in a declarative 
domain model from the various information sources, and 
describe the various challenges in ensuring this activity 
description is valid.  We then propose an Interactive Model 
Development Environment (IMDE) that simplifies the 
construction, validation, and maintenance of automated 
planning system models. The latter half of the paper 
describes the proposed IMDE from a functional and 
architectural perspective.  We then describe both current 
and near-term technologies that can be used to build such 
an IMDE, and conclude with a description of open research 
problems. 

The Mission Planning Process 

A mission’s planning systems reside in a context of 
mission planning processes.  In particular, constraints are 
central to mission planning systems, and many of these 
constraints come from the mission operations system.  

Mission Operations System 
The mission operations system (MOS) is the integrated 
system of people, procedures, hardware, and software that 
executes space missions (Carraway et al. 1999); recent 
examples are described in  (Garcia et al. 2009) and 
(Tompkins et al. 2010). The MOS has several planning 
functions. Mission planning decides how and when the 
spacecraft and subsystems will act.  Activity planning (or, 
sometimes, sequencing) is creating or enabling specific 
command sequences, either onboard the spacecraft or in a 
ground station.  Attitude determination and flight dynamics 
planning (which are typically distinct from mission and 
activity planning) determine where the spacecraft is and 
where it maneuvers.  Communications planning (another 
distinct discipline) determines who to communicate with 
and when (Clement and Johnston, 2005).  Communications 
planning critically depends on flight design and the 
availability of communications assets.  Mobile surface 
missions like the Mars Exploration Rovers include a 
planning system for surface operations (Ko et al., 2004; 
Yen et al., 2005).  Science targets, science instrument or 

payload constraints, and preferences for science payloads 
and instruments are typically input to mission and activity 
planning.  Flight dynamics, communications, surface 
operations, and science planning provide input to mission 
and activity planning but can also be constrained by it.  
 Before commanding the spacecraft, mission operators 
typically transform plans into sequences that simulators 
and other tools validate (Ko et al., 2004).  Finding 
discrepancies in this process affects cost, schedule, and 
risk. 

Challenges of Configuring the Mission Planning 
System 
Academic planning (modeling) languages and algorithms 
originally used Boolean state variables only.  Such 
variables are generally impractical for representing time, 
location, and other numerical states. Planning languages 
are more expressive now (Howey et al. 2004, Fox and 
Long, 2003) but their limitations still force inelegant 
workarounds that make system models complex.  Models 
strongly influence the performance of automated planning, 
so revising the model to improve performance can increase 
the complexity further.  This complexity can combine with 
human error and lack of information about the modeled 
system’s behavior to produce inconsistencies (with the 
model and the modeled system).  Finding the 
inconsistencies can require significant work, and fixing 
these inconsistencies can require significant changes. 
 Configuring the mission planning system involves 
identifying planning problems, methods to solve those 
problems, and ways to communicate sequences derived 
from the plan to the command and telemetry system (for 
uplink to the spacecraft or execution on the ground). We 
focus on the first of these issues: describing planning 
problems.  Model-based planning experts know that the 
“right way” is to build a declarative planning model.  
However, the sources of space mission constraints present 

Figure 1: How the Mission Planning System interacts with 
the Mission Operations System. 



challenges to model building.  Figure 1 illustrates how 
MOS components interact during the mission and how they 
influence the mission planning system’s design.  The 
remainder of this section details the sources of Mission 
Planning System constraints, describes how constraints 
change, and explores the difficulty of modeling an activity. 
Flight rules 
Flight rules and other operational constraint products 
document constraints and best practices for system 
operations to ensure mission safety and mission success 
(Barreiro et al., 2010).  Instrument teams, spacecraft 
manufacturers, and sometimes the mission operations team 
create these documents.  These rules provide essential 
planning system input, but are typically stored as human-
readable (office) documents.  Over time, missions have 
evolved a set format for these rules. A typical flight rule 
(below) shows features that are common in operational 
constraints: the rule is broken up into discrete parts, the 
action maps to fine-grained commands in multiple ways; 
the rule’s criticality indicates it could be waived; the action 
duration is explicit; and the mission phase dependency 
demonstrates rules that only apply in certain contexts. 
Instrument Rule 1 
Rule: To power down, close the cover (Inst-Close-A or 
Inst-Close-B), do not issue any further CMDs, wait at least 
35 seconds, and then issue the power down CMD (PDU-1-
Power-Down-Inst or PDU-2-Power-Down-Inst). 
Rationale: When not in use, the cover must be closed for 
protection from Sun. Instrument needs to be powered 
during the 35 seconds it takes to close cover.  
Criticality: Category B 
Mission Phase Dependency:  Pre-launch, Cruise, Orbit 
Commands Affected: Inst-Close-A, Inst-Close-B, PDU-
1-Power-Down-Inst or PDU-2-Power-Down-Inst 
Cognizant Individual: Instrument Operations Contact 
Notes: If the cover-close command is issued when the 
cover is closed, the cover remains closed, and the 
command is rejected. Once the closure procedure is started, 
it is not possible to interrupt it.  

Sequences 
Sequences are lists of fine-grained spacecraft commands.  
Operators command the spacecraft by executing sequences 
on the ground, by sending them to the spacecraft for 
immediate execution, or by storing them onboard the 
spacecraft to await a later event or command trigger. 
Simulation is used to determine sequences’ time and other 
resource constraints. The exact simulation used depends on 
the sequence’s origin.  For instance, instrument teams may 
simulate their instruments (Barrett et al., 2009; Tompkins 
et al. 2010).  A spacecraft manufacturer or mission 
operations team also may build a simulator (Yen et al., 
2005).  Often, simulations are used solely to check 
sequences against flight rules (Ko et al., 2004). 

Flight dynamics and communications 
Flight dynamics may simulate orbits and trajectories using 
a commercial product like Satellite Toolkit (Tompkins et 
al. 2010).  Orbits provide key information for mission 
planning systems.  Examples include day / night times, sun 
angles, and the relative locations of asteroids, comets, and 
communications assets. 
When constraints change 
Constraints can change greatly before a mission. Mission 
planning systems must accommodate these changes and be 
validated at low cost (Carraway et al. 1999).  For example, 
target changes, such as on LCROSS (Tompkins et al. 
2010), may require orbit changes, which can ripple further 
through the planning systems.  Changes in communication 
coverage can cascade in a similar manner.  While these 
changes may appear to be ‘mere’ changes in plans, if 
communication windows shrink, constraints governing 
communication coverage times may also need to change.   
 Changes to vehicle configuration (specific equipment, 
interconnection or equipment location, or equipment 
performance characterization) can also cause changes in 
mission planning constraints.  Examples include new flight 
rules, science instrument sequence changes, changes in 
maneuvers, dust on solar panels, frozen robotic arms or 
wheels, or new power or thermal limits (Barrett et al., 
2009; Tompkins et al. 2010). 
 As mission planning systems mature, planners often find 
that satisfying constraints is too difficult.  Science teams 
and spacecraft designers can provide overly conservative 
constraints early in mission development.  Analysts may 
determine that the constraints can be relaxed without 
compromising safety or science (Barrett et al., 2009). 
Example Activity Model of Spacecraft Slewing  
There is a long-standing, fundamental problem in applying 
automated planning to physical systems. In order to make 
this concrete, consider the difficulty of representing a 
relatively simple spacecraft activity for changing attitude. 
 (:durative-action slew  
 :parameters (?from – attitude 
              ?to - attitude)  
 :duration (= ?duration 5)  
 :condition  
  (and  
   (at start (pointing ?from))  
   (at start (cpu-on))  
   (over all (cpu-on))  
   (at start (>= (sunangle) 20.0))  
   (over all (>= (sunangle) 20.0))  
   (at start (communicating))  
   (over all (communicating))  
   (at start (>= (batterycharge) 2.0)))  
 :effect  
  (and  
   (at start (decrease (batterycharge)2.0))  
   (at start (not (pointing ?from)))  
   (at end (pointing ?to))))   



The difficulty stems from developing system models that 
are disconnected from the system (leading to inaccuracy) 
and from modeling representation language limitations 
(adding to complexity).  The PDDL above specifies a 
spacecraft attitude change activity.  The activity model is 
more abstract than a typical simulator’s, which would use 
the spacecraft's command set, lighting conditions (a 
function of the orbit), dynamics of slewing the spacecraft, 
communication asset locations, spacecraft power 
utilization, and battery performance.  Typically, extracting 
knowledge from the simulator to configure the planning 
system is manual, inefficient and error-prone.  The modeler 
must address the following issues: 
• How do planner model attitudes relate to real spacecraft 

operations’ continuous attitudes? For example, does it 
suffice to represent a deep-space craft with camera 
directional sensors using a discrete valued attitude 
variable with values such as to-Earth (for deep-space), 
Earth-nadir (for Earth orbits), Sun-pointing (for solar 
power generation), and others for sets of navigation 
guide stars?  How does data from the inertial 
measurement unit map to these discrete directions? 

• How does the planner model battery discharge?  How 
can the model conservatively estimate the battery energy 
consumed by subsystems for different possible system 
states?  For example, does temperature affect power 
usage?  How is a cap on battery capacity modeled to 
avoid overfilling?  How is solar recharging modeled? 

• What drives slew duration?  Is it proportional with 
angular slew distance?  Will a slew always follow the 
shortest rotation?  Must it avoid pointing instruments at 
the sun?  What determines the choice of control system 
(reaction wheels, thrusters, or torque rods)? 

• How is reaction wheel momentum dumped? 
• Along what axes can the spacecraft slew while 

communicating? conducting science measurements? 
recharging the battery? changing trajectory? 

• What are the communication coverage requirements?  
What information is needed about the spacecraft orbit, 
availability of ground communication assets, and the 
spacecraft antenna type and configuration?  When do 
ground stations require communications to monitor 
trajectory changes or other related activities? 

• How does the abstract slew correspond to one or more 
sequences of spacecraft commands? Are there setup and 
teardown activities? Is the slew for each axis performed 
separately to avoid risk of concurrent interactions? 

 
Before flight, the orbit, attitude, engineering subsystem 
specification, and simulations can change frequently.  
These changes require efficiently reconfiguring the activity 
planner.  For example:  
• New targets or navigation aids require updating the set 

of discrete attitudes. 

• Changes in sequences can cause a change in attitude 
control system performance, leading to activity changes. 

• Any power-using subsystem that changes performance 
(e.g., attitude control system or communication) will 
change power consumption.  If planning determines 
mission objectives are infeasible, a need to slew faster 
could also increase power consumption  

• Changing orbit, communication coverage plan, or 
antenna configuration may change the activity.   

• Changing flight software (or the uses of major spacecraft 
operating modes) might require changing the commands 
that affect attitude. 

Clearly, configuring the mission planning system with 
even the one activity described here requires much effort.   
The effort includes extracting knowledge from the flight 
rules, command and data dictionaries, and simulation APIs 
and output.  Currently, those data (and input from the 
mission operations system orbit, trajectory and 
communications elements) often reside in documents that 
are difficult to extract planning knowledge from. 

Interactive Model Development Environments 
for Space Mission Operations  

In this section we describe how an Integrated Model 
Development Environment (IMDE) could integrate 
planning and simulation to address the challenge of model 
development.  This integration could simplify validation of 
models within the development cycle, thereby making 
modeling for space mission planning more efficient. The 
challenge is to integrate a planner and simulator to 
automate model development and validation. 
 The next sections state assumptions that simplify the 
discussion, describe IMDE design features and 
architecture, outline a concept of operation for modeling 
with the IMDE, characterize discrepancies that indicate 
modeling errors, and describe how these modeling errors 
may be identified and fixed. 

Assumptions 
The following assumptions simplify in the description of 
the IMDE and also indicate additional challenges 
addressed toward the end of the paper. 
• The simulator input includes a list of time-tagged 

commands. 
• The simulator runs deterministically.  
• The simulator reports any errors (undesirable behavior). 
• The system (spacecraft) and simulator are defect-free. 
• The simulator is a black box (the user can neither change 

nor inspect its code and models) 
• The simulator outputs time-tagged value samples of 

system state variables. 



• Formal flight rules define mission constraints that are 
verifiable with the simulator output. 

• Every plan that the planner sends to the simulator is 
consistent with the planner’s model. 

• An action in the plan corresponds to a list of time-tagged 
commands. 

• The planner generates plans that conform to model 
constraints or else identifies all constraint violations.  

IMDE Design Features 
The hypothetical IMDE shares many features of a 
traditional programming language Integrated Development 
Environment (IDE); An IMDE’s model corresponds to an 
IDE’s code, plans correspond to test cases, and the 
simulator corresponds to the computer.  One distinctive 
IMDE function is the generation of test cases to aid model 
validation.  Another is the generation of suggestions on 
how to fix modeling errors.  In the traditional IDE, this is 
similar to suggesting code fixes for program run failures.  
Following sections discuss validation and model fixes. 
 Figure 2 shows the system architecture of the proposed 
IMDE.  The Model Editor provides traditional IDE 
functions.  The Simulation API Browser provides model 
creators access to the simulation API. With the Abstraction 
Editor a user documents how plan model building blocks 
(objects, states, timelines, actions, constraints) relate to 
data and commands in the simulation API, thus providing 
traceability for detecting model problems.  These  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Hypothetical IMDE Architecture and data flow. 

abstractions are the semantic glue connecting the planner 
to the “the world”/simulator.  The Abstraction and 
Refinement Engines integrate the planner and simulator.  
The Refinement Engine transforms a plan into simulator 
command input.  The Abstraction Engine transforms 
simulator output into an actual/simulated execution for 
comparison with the expected/planned execution.  These 
executions are time-tagged actions and state variable 
values in the language of the planner.  The Validator 
identifies discrepancies between the two executions, errors 
reported by the simulator, and any planning model 
constraint violations, some of which the simulator may not 
check (e.g., flight rules).  A Plan Viewer (not shown) 
comparatively displays the simulated and planned 
executions (e.g., in a Gantt chart).  The Plan Viewer 
(and/or an Error Viewer) visualizes discrepancies between 
the executions and highlights those that indicate modeling 
errors.  Finally, the Fixer suggests model changes that may 
eliminate one or more errors seen in the current and past 
simulations of different plans.  We later explain how to 
detect errors and make suggestions. 

Concept of Operation 
An IMDE user may start with an empty or existing 
planning domain model.  Depending on the modeling 
language, an edit to the model may add, change, or remove 
actions, state variables, constraints, and effects (or their 
associated object types and sets).  The user may create and 
edit abstractions to ground the model in simulator 
elements.  A simulation interface exposes these elements, 
including commands and system state variables.  These 
edits initiate the following basic workflow: 
1. The user edits the model, or 
2. the user edits abstraction by either 

a. copying variables from the simulator interface to 
the model (e.g. sunangle), 

b. abstracting variables in the model (e.g. 
(pointing Earth) is true in the planner if the 
simulator’s xyz attitude is for each axis within 1 
degree of the attitude to point directly at Earth), 

c. copying a simulator command to the model as an 
action (e.g. turn on CPU), or 

d. abstracting a command sequence to model an 
action (e.g. command sequence to slew spacecraft) 

3. The IMDE generates possible initial states and plans 
and tests each by 
a. translating the initial state and plan into simulator 

commands, 
b. running the simulator with those commands, 
c. translating simulator output to an execution, 
d. checking the execution for violations of constraints 

in the planning domain model, and 



e. checking for discrepancies between planned and 
simulated executions. 

4. The IMDE analyzes test results to suggest changes to 
the planning model that could fix discrepancies. 

5. The user assesses planned and simulated executions, 
their constraint violations, their discrepancies, and 
suggested fixes. 

6. Repeat. 
 
 The idea is that when the user edits the model, in the 
background the IMDE generates and simulates different 
plans to search for discrepancies indicating modeling 
errors.  The user can be made aware of these errors even 
while editing (much like syntax errors in an IDE), and 
when the user is ready to see what is in error, the IMDE 
may already have suggested fixes for the user to select.    
 When the user performs these operations, they can 
document the relationship between the planning model and 
elements of the simulation using the Abstraction Editor, as 
shown in Figure 2.  This provides traceability so that 
elements of the model are ‘grounded’ in the simulation, 
and as we will see below, provides a means of detecting 
problems when things go wrong. 
 Adding a new variable or timeline to a domain model 
requires informing the Plan Viewer.  The Plan Viewer also 
must maintain a consistent view of the plans.  It may be 
impractical to regenerate all of the plans every time the 
underlying model changes.  So, an established policy must 
address stored plans generated using older models.  A 
typical plan repair strategy might work well for 
“scheduling” errors in older plans.  But it may take a lot of 
work to indicate what must be fixed when an older plan’s 
timelines, semantics, and state and object names change. 

Translating Plans as Abstraction and Refinement 
The previous workflow uses abstractions heavily.  For 
example, in step 3a the Refinement Engine may translate 
one slew(?from,?to) action in the plan into three 
ordered subsequences of simulator commands to rotate the 
spacecraft around each of its three axes.  In step 2c and 2d, 
the user specifies this abstraction as an action 
decomposition, similar to hierarchical plan decomposition. 
 Another abstraction type for data specifies how state 
variables in the planning model relate to those in the 
simulator output. For example, an abstraction could map 
the simulator xyz spacecraft attitude to a discrete 
(pointing ?target) planner predicate, with 
?target either Earth, Sun, or SomewhereElse.  
An abstraction function could specify that (pointing 
Earth) is true if the simulator xyz attitude is within 1 
degree of pointing the transceiver to the Earth’s center1.   
                                                 
1 An abstraction could be any function of a set of time-varying variables 
that calculates the time-varying values of another set of variables such 

 When the Refinement Engine translates initial state and 
plan information into simulator commands using these 
abstractions in steps 2a and b, some data abstractions may 
need to be reversed.  For example, translating a plan’s 
slew(Sun,Earth) action into simulator commands 
would translate the Sun and Earth symbols to the 
corresponding xyz attitudes for pointing to the targets.  
 The Validator checks for discrepancies with the planned 
execution and helps identify modeling errors by translating 
simulation results into execution information in the planner 
language using the abstractions in Step 3c.  The 
abstractions provide the time-varying planner state values, 
but another step is needed to construct the execution that 
explains these values, using the Abstraction Engine.  Our 
assumptions make this relatively simple, but in general it 
can be a difficult state estimation optimization problem. 

Identifying Modeling Errors 
Modeling errors are indicated by errors explicitly reported 
by the simulator and by plan constraint violations on the 
simulated execution that do not occur in the planned 
execution (a discrepancy in constraint violations).  For 
example, in testing the slew(Sun, Earth) action, the 
simulator might report an error from the fault management 
system because the computer had not yet been booted 
when commands were sent to the reaction wheels (a flight 
rule violation).  This is an error in the planning model 
because the slew action lacked a necessary precondition 
that the computer be booted.  As another example, the plan 
test case might include a goal (or constraint) (pointing 
Earth) to check that the effect of a slew is achieved.  
The simulator output could be error-free, and yet translate 
back to an execution state where (pointing Earth) 
was never achieved, failing the goal.  This could be the 
result of the plan containing an overlapping slew that 
commanded the spacecraft to retarget the slew.  In this case 
the modeling error was in allowing overlapping slews. 
 This simple specification for identifying modeling errors 
applies generally to different kinds of errors.  For example, 
how would an error in the timing of a slew be detected?  If 
the model specified a fixed duration for slew, the test plan 
still only needs a constraint that (pointing ?to) be 
true at the end of the slew activity.  If the slew takes 
longer than expected, then the constraint will be violated in 
the simulated execution. 
 Discrepancies between the planner and simulator need 
not be modeling problems.  Defining the planning states as 
abstractions of the simulator’s states could naturally lose 
information.  For example, the planning model could 
represent battery depletion as instantaneous while the 
simulation represents depletion as gradual.  Discrepancies 
                                                                                 
that the magnitude of the domain is smaller than the magnitude of the 
range. 



will probably manifest between the planned and simulated 
battery levels.  But, planning the battery levels 
conservatively could avert simulation failures.  The user 
may choose to omit specific discrepancies from reporting 
(as with waiving constraint violations in mixed initiative 
planning systems, Aghveli et al. 2007).   
 At the same time, the discrepancy might indicate an 
opportunity to improve efficiency: a more detailed battery 
depletion model could enable scheduling more activities.  
These discrepancies of inefficiency could be detected by 
finding plans with constraint violations that do not occur in 
the simulated execution. 

Generating Plans to Validate the Model 
Different test plans are generated (step 3) in order to 
validate that the model will work for all situations.  This 
requires validating all possible plans acceptable by the 
model.  In general, this may be an infinite number of plans, 
but there may be a manageable number that is enough to 
validate a single part of the model. 
 For example, if the user wants to ensure that the 
(pointing ?to) effect is always satisfied at the end of 
slew(?from,?to), then a complete space of plans to 
test would combine all possible initial attitudes, slews for 
all target attitudes (slew from each attitude to each other 
attitude), all possible additional actions (slews from each 
target to each other target), and the different temporal 
orderings of those other actions with respect to 
slew(?from,?to). 
 It is possible to generate all of these plans with special 
purpose code, but the planner itself may accomplish this.  
Instead of generating all combinations, incorporate this 
parameterization into a planning problem: what initial state 
and ordering of instantiations of slew(?from,?to) 
will achieve (pointing ?to) at the end? The set of 
valid solutions to this planning problem is the test suite. 
 It is expected that multiple simulations could be 
necessary to validate a single plan.  For example, there are 
an infinite number of xyz attitudes that translate to 
(pointing Earth).  So, why not test all possible 
simulations instead of all possible plans?  If plans are 
meant to be the only mechanism for generating command 
sequences for the spacecraft, the other simulations will 
never occur because a plan only translates to one set of 
commands resulting in one deterministic simulation.  On 
the other hand, the initial state is not dependent on actions 
in the plan, so the complete space of test cases would 
include the infinite number of attitudes that translate to 
(pointing Earth).  In this case, conventional test 
coverage techniques may still be necessary. 
 Another reason to generate simulations instead of plans 
may be that a model is in its infancy, and many actions 
have yet to be modeled, so the necessary plan-based test 

cases to validate the first modeled action would be 
insufficient.  Thus, generating simulations based on the 
simulator interface specification (using simulator 
commands instead of planner actions) would be useful and 
more robust to model changes.  It may also be better to 
generate simulator-based test cases when there are many 
actions in the planning model.  If activities are defined for 
many combinations and orderings of simulator commands, 
then the space of plans necessary to validate an action 
could be greater than the space of simulations due to 
repetition of commands in a combination of actions. 
 Again, it may be possible to cleverly scope the 
validation to reduce the number of sequences tested.  For 
example, test cases including two slews following the slew 
to be validated should find the same errors as those test 
cases with only a single following slew.  Thus, a tractable 
number of test cases may be identified for validating an 
action in a model.  This test coverage problem is known to 
be quite difficult and, thus, part of the challenge. 
 The tractability of validating the entire model depends 
on that of individual actions.  Validating each action in 
isolation is enough to validate the entire model since the 
soundness of the planner guarantees action combinations. 

Suggesting Changes to the Model 
When the IMDE runs a batch of plans through the 
simulator, some may result in simulator errors and some 
may result in planning constraint errors.  These indicate 
that there are modeling errors, but the modeler may not be 
able to deduce the actual mistake by looking at any one 
execution.  For example, suppose the slew was never 
executed because the CPU was never turned on, resulting 
in a simulation error flag.  There would be a violation of 
(pointing Earth) in the simulated execution, but no 
information in the output ties these errors with the state of 
the computer. So, the modeler would have to know the 
spacecraft (and simulator) very well to guess the problem 
after seeing it in a single run. 
 By finding relationships between plan/state attributes 
and simulator/discrepancy errors, the IMDE can generate 
plausible suggestions for fixing the model.  For example, if 
a complete set of test cases showed that the slew failed 
every time that the computer was not booted, a machine 
learning classifier or data mining algorithm could identify 
the pattern.  Then, the IMDE could suggest abstracting the 
computerMode variable in the simulator interface to a 
cpu-on predicate in the planning model and add the 
predicate as a precondition to slew.  Other suggestions 
include adding a constraint that a turnOnCpu() action 
always precedes slew(?from ?to) or adding a 
simulator command to the slew abstraction/decomposition 
to bootCpu().  These suggestions from the IMDE Fixer 



component (Figure 2) could include changing action 
constraints, adding state variables, or creating new actions.  
 The challenge of generating suggestions may be in 
framing the learning problem.  Plans have variable 
numbers of actions, so there is not an obvious feature set 
over which to learn.  In addition, the modeler may want 
suggestions in terms of complex functional relationships of 
multiple variables.  For example, the desired fix may be to 
avoid exhausting memory storage by adding a constraint 
that the sum of durations of all communications activities 
in a day must be greater than the sum of data collected 
multiplied by a particular constant.  The number of 
functional relationships that may be part of a feature set of 
a learning algorithm could easily be intractable.  On a 
positive note, the modeler may be able to deduce the 
needed fix with the help of overly-specific suggestions 
learned from a limited set of features. 

Technology Foundations 
While the ultimate vision of the IMDE has yet to be 
achieved, many component technologies have been built.  
This section describes some of these technologies as well 
as research activities that enable the goal. 
 The itSimple tool (Vaquero et al., 2007) is a plan 
domain modeling environment similar to the proposed 
IMDE.  Users of itSimple can build static models of 
objects, actors, and relationships between them in a 
specialization of UML. Users specify dynamic (simulation) 
models of how states of the objects can change using Petri 
Nets (an encoding of state charts).  itSimple automatically 
translates these models to PDDL.  A difference from the 
IMDE approach is the assumed access to the simulator 
model (white-box simulation). 
 PAGODA uses black box simulations to learn activity 
preconditions in an interactive model environment 
(desJardins, 1994).  This is a basic feature of the Fixer 
(Figure 2) used to identify modeling errors.  Another 
interactive environment helps the user identify model 
errors by constructing an invalid plan (that the user knows 
should be valid) by relaxing constraints (Chien, 1996). 
 The Procedure Integrated Development Environment 
(PRIDE) (Izygon et al., 2008) is a procedure authoring 
technology prototype that can be used to create procedures 
for execution by flight controllers and crew.  PRIDE  
presents procedure authors with a command and telemetry 
database; users can drag commands and telemetry 
references into a plan directly from the command and 
telemetry database GUI. PRIDE provides access to either 
state-chart simulations or high-fidelity simulations that the 
procedure writer can use to manually check procedures for 
correctness.  Procedures can also be automatically verified 
by means of translation to Java and the use of model 

checking software (Brat et al., 2008).  The use cases for 
creating procedures are quite similar to the assumptions 
made here.  However, there is no abstraction mapping, and 
procedures lack formalisms needed for planning.  
 The Data Abstraction Architecture (DAA)  (Bell et al., 
2010) is designed to address the problem of transforming 
spacecraft or space system telemetry into useful 
information for operators (be they flight controllers or 
crew). The system allows operators to write common data 
transformations using a GUI; the transformations are then 
executed by an engine that accepts telemetry as input, and 
produces more intuitive information as output.  The DAA 
framework is well suited to editing data abstractions for the 
IMDE, but it would need to be extended to capture 
transformations of plan actions into simulator commands. 
 VAL takes steps toward the Fixer IMDE element by 
validating that a specific plan is indeed a solution to a 
planning problem that may be specified with continuous 
effects, including limited forms of time-dependent change 
on numerical state variables (Howey, et al., 2004).  VAL 
can also advise modelers how to fix a plan.  We explore 
the goals of validating that all plans and suggesting fixes to 
the model, not just the plan.  Furthermore, the approach in 
VAL would have to apply to simulated executions. 
 The LOCM system (Cresswell et al. 2009) learns 
planning domain models from sets of example plans. Its 
distinguishing feature is that the domain models are 
learned without any observation of the states in the plan or 
about predicates used to describe them. This works 
because the objects are grouped into sorts, and the behavior 
available to objects of any given sort is described by a 
single parameterized state machine.  LOCM is the latest in 
a number of plan domain learning systems that could be 
employed to abstract black-box simulations into domain 
models as part of the Fixer in our proposed IMDE.  
However, doing so may require learning abstractions from 
simulated command sequences, which plan domain 
learning systems presently do not do, except PAGODA 
(desJardins, 1994). 
 Techniques for ordering test cases to expose errors more 
quickly can also be leveraged.  Instead of generating test 
plans by systematically trying each permutation of plan 
features, test cases may be chosen that are believed to more 
likely discover a flaw based on results of past cases.  The 
Nemesis test system has had success with this by using a 
genetic algorithm to smartly choose test cases (Barltrop et 
al., 2010).  A complementary strategy is to use coverage 
techniques to quickly sweep across the landscape of test 
cases and learn combinations of features to more quickly 
converge on a formula describing the conditions under 
which a flaw appears (Barrett, 2009).  This can be used to 
converge quickly on suggestions to fix modeling errors.  



Challenges in relaxing the assumptions 
The usefulness of the described IMDE may still be 
insufficient because of limiting assumptions.  We describe 
those we deem important and their associated challenges. 
 It is possible that an action may correspond to multiple 
commands, a loop, or any arbitrary function generating 
commands.  As long as this function is a legitimate 
simulator input, then this is not a difficult problem.   
 Many systems have uncertain behavior, for example, 
stemming from attitude and temperature control.  If the 
simulation testbed can be invoked in a way that explores 
different outcomes, then a single plan now translates to 
multiple (possibly infinite) test cases for which the model 
should be validated.  This presents an additional difficulty 
in determining a tractable number of test cases sufficient 
for validating the model.  It also presents a problem of how 
to model the activity correctly; if the action duration varies 
between 30 and 40 seconds, what is the best duration value 
to use?  Moreover, constructing the simulated execution 
from state values may not be obvious and, in general, can 
be a difficult state estimation problem! 
 In addition, the spacecraft may be able to execute 
sequences conditioned on the perceived system state.  This 
requires simulations that incorporate all possible perceived 
states that could influence the plan outcomes.   
 We have discussed some basic examples of modeling 
errors on preconditions and effects.  For expressive 
language elements such as activity decomposition (as 
opposed to the mapping of plan actions to simulator 
command sequences) and parameter dependency functions, 
how can errors and fixes be automatically identified?  Does 
this similarly extend to errors in abstraction specifications? 
 Relaxing other assumptions may not pose difficult 
research challenges but can change the nature of the 
system capability.  For example, if the simulator or system 
(e.g. spacecraft) does have defects, then discrepancies that 
are inconsistencies between planned and executed behavior 
may now be (in addition to modeling errors) indications of 
those system defects.  So the IMDE now can identify 
simulator and system defects and validate them against the 
planner.  Thus, the IMDE may more generally be designed 
for validating multiple systems against each other.  This 
validation is especially important for interactions between 
autonomous spacecraft subsystems (such as an onboard 
planner or a guidance, navigation, and control system). 
 Another assumption was that the simulator is a black 
box. One option is to treat the effects of an action as 
properties that are input to a model checker, which is used 
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a 
complete model of the system and its operation, 
incorporating device, control, execution, and planning 
models (Boddy et al., 2008).  The conventional approach 

of building a model only at an abstract level requires 
extensive testing of different scenarios and could only be 
guaranteed to work if all possible scenarios are tested.  
SLATE only requires testing of individual behaviors 
whose performance envelopes are incorporated into the 
model.  Since the model of the system is complete, SLATE 
can prove system-level properties as model checking does. 
 Another strategy for validating plan abstractions (in 
particular, those of hierarchical plans) is to summarize the 
potential constraints and effects of the potential 
decompositions of each abstract action in the model 
(Clement et al., 2007).  A planner can use this summary 
information to prove that a plan abstraction is either valid 
or invalid.  Like SLATE, summary information validates 
higher level actions composed of more detailed validated 
actions.  Summary information differs in that abstract 
actions retain choices of refinement for flexibility of 
execution, while abstract actions in SLATE are robust to 
uncertain system behavior.  Instead of validation through 
testing like SLATE and the IMDE, summary information 
relies on a detailed, accurate simulation model (white box). 

Conclusion 
The maturation of model-based planning provides an 
opportunity to improve the state of the art in space mission 
planning.  However, doing so will require planning models 
to represent complex constraints derived from many 
sources of information, and for spacecraft engineers to be 
able to build and validate these models.  We have 
described the challenges in doing so, and described an 
IMDE as a means of reducing up-front errors by catching 
and repairing errors during model development. While the 
technologies described in the previous section support 
features of the described IMDE, there remain significant 
research challenges to achieve the overall vision. 
• How can a complete but tractable space of test case plans 

be identified for activity model validation? 
• Can a single test case contribute to the validation of 

multiple model elements? 
• How can errors in different modeling language features, 

command refinement, and data abstraction be clearly 
identified based on simulation output of these tests? 

• What are the features of a learning problem for 
classifying an error? 

• How can suggested fixes be generated for these errors? 
• How can the architecture be adapted to suggest changes 

for plan quality? 
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