
The Challenge of
Configuring Model-Based Space Mission Planners

Jeremy D. Frank**, Bradley J. Clement*,
John M. Chachere***, Tristan B. Smith+ and Keith J. Swanson**

*Jet Propulsion Laboratory, California Institute of Technology, ***SGT Inc, +MCT Inc., **NASA Ames Research Center
FirstName.MiddleInitial.LastName@nasa.gov

Abstract

Mission planning is central to space mission operations and
has benefited from advances in model-based planning
software, but developing a planning model still remains a
difficult task. Mission planning constraints arise from many
sources, including simulators and engineering specification
documents. Ensuring that these constraints are correctly
represented in the planner’s model is a challenge. As
mission constraints evolve, planning domain modelers must
add and update model constraints efficiently using the
available source data, catching errors quickly, and
correcting the model. We describe the current state of the
practice in designing model-based mission planning tools
and the challenges facing model developers. We then
propose an Interactive Model Development Environment
(IMDE) to configure mission planning systems by
integrating modeling and simulation environments to reduce
model editing time, generate simulations automatically to
evaluate plans, and identify modeling errors automatically
by evaluating simulation output.

Introduction
Mission planning is central to space mission operations,
and has benefited from advances in model-based planning
software (Chien et al., 2005, Bresina et al., 2005, Knight et
al., 2009, Reddy et al., 2010). Space mission planning has
diverse information sources such as engineering
specification documents (Barreiro et al., 2010),
communication coverage, simulations of spacecraft
subsystems (Ko et al., 2004; Yen et al., 2005), and
trajectory and attitude specifications. A principal obstacle
to fielding model-based planning systems for space
missions is the complexity of their configuration, typically
through domain modeling. Building a domain model
requires identifying these information sources,
understanding them, and often abstracting them.
 Throughout the mission’s development, changes to the
constraints require changes to the models used to generate
plans. Detecting and managing discrepancies between the
constraints, plans generated from the model, and spacecraft
behavior increases mission cost, schedule, and risk. A
discrepancy may indicate an error in modeling that should
be fixed prior to operations in order to avoid harm to the
spacecraft and laborious re-testing at the subsystem and
system levels. Such errors are difficult to avoid because

models are often developed as disconnected abstractions of
the system and are difficult to validate against spacecraft
behavior and the sources of operational constraints. For
example spacecraft behavior is often captured in a
simulation testbed, which is used to validate command
sequences that correspond to a plan. Today this process is
performed by hand; the modeler must be familiar enough
with the simulator output in order to characterize, for
example, power usage, activity duration, and activity
mutual exclusions.
 Validating the planning system (not just a plan) is a
central challenge to automating model development. An
automated planning system is (in part) a plan verification
system because it checks constraints on system states that
the plan’s activities affect. However, validating the plan
additionally requires validating that the constraints and
effects in the model are consistent with the simulation
testbed. Validating the planning model, therefore,
validates all plans that the planner generates or accepts as
feasible.
 Model checking software can automatically check a plan
or model for foreseeable problems described in another
formal language (e.g., Howey et al., 2004, Brat et al., 2008,
Long et al., 2009, Raimondi et al., 2009, Cesta et al.,
2010). From the point of view of system validation, model
checking approaches only provide verification of
plans/models in isolation.
 In contrast, the challenge we pose is to automate the
validation of the planning system application and the
identification of modeling errors. Instead of model
checking rules, we propose to use the simulator for
checking the planning model. This approach avoids
having to specify model checking rules and provides a
direct path for finding problems that may be unforeseeable.
 To understand better how the proposed automated model
development and validation may be used, consider the
validation of the CASPER automated planning system for
onboard commanding of NASA’s Earth Observing 1 (EO-
1) spacecraft. This validation process involved tabletop
model reviews with EO-1 engineers and operators, safety
reviews to elicit potential hazards, and automated tests
stochastically generated as perturbations to nominal
scenarios and executed on simulation platforms of varying

fidelity where spacecraft, operations, and safety constraints
were checked (Cichy et al., 2004). The automation
proposed here may not be able to eliminate any of these
steps. However, for an edit to the model, the simulator can
be invoked to identify, avoid, and fix modeling errors.
This continual testing could make the reviews simpler
since plans have already been validated for a documented
set of constraints by the simulators. The reviews could
then focus on what is modeled instead of how.
 This paper first describes space mission and activity
planning in the context of other mission operations system
elements. We use a sample activity description to show
how an activity’s pieces are constructed in a declarative
domain model from the various information sources, and
describe the various challenges in ensuring this activity
description is valid. We then propose an Interactive Model
Development Environment (IMDE) that simplifies the
construction, validation, and maintenance of automated
planning system models. The latter half of the paper
describes the proposed IMDE from a functional and
architectural perspective. We then describe both current
and near-term technologies that can be used to build such
an IMDE, and conclude with a description of open research
problems.

The Mission Planning Process

A mission’s planning systems reside in a context of
mission planning processes. In particular, constraints are
central to mission planning systems, and many of these
constraints come from the mission operations system.

Mission Operations System
The mission operations system (MOS) is the integrated
system of people, procedures, hardware, and software that
executes space missions (Carraway et al. 1999); recent
examples are described in (Garcia et al. 2009) and
(Tompkins et al. 2010). The MOS has several planning
functions. Mission planning decides how and when the
spacecraft and subsystems will act. Activity planning (or,
sometimes, sequencing) is creating or enabling specific
command sequences, either onboard the spacecraft or in a
ground station. Attitude determination and flight dynamics
planning (which are typically distinct from mission and
activity planning) determine where the spacecraft is and
where it maneuvers. Communications planning (another
distinct discipline) determines who to communicate with
and when (Clement and Johnston, 2005). Communications
planning critically depends on flight design and the
availability of communications assets. Mobile surface
missions like the Mars Exploration Rovers include a
planning system for surface operations (Ko et al., 2004;
Yen et al., 2005). Science targets, science instrument or

payload constraints, and preferences for science payloads
and instruments are typically input to mission and activity
planning. Flight dynamics, communications, surface
operations, and science planning provide input to mission
and activity planning but can also be constrained by it.
 Before commanding the spacecraft, mission operators
typically transform plans into sequences that simulators
and other tools validate (Ko et al., 2004). Finding
discrepancies in this process affects cost, schedule, and
risk.

Challenges of Configuring the Mission Planning
System
Academic planning (modeling) languages and algorithms
originally used Boolean state variables only. Such
variables are generally impractical for representing time,
location, and other numerical states. Planning languages
are more expressive now (Howey et al. 2004, Fox and
Long, 2003) but their limitations still force inelegant
workarounds that make system models complex. Models
strongly influence the performance of automated planning,
so revising the model to improve performance can increase
the complexity further. This complexity can combine with
human error and lack of information about the modeled
system’s behavior to produce inconsistencies (with the
model and the modeled system). Finding the
inconsistencies can require significant work, and fixing
these inconsistencies can require significant changes.
 Configuring the mission planning system involves
identifying planning problems, methods to solve those
problems, and ways to communicate sequences derived
from the plan to the command and telemetry system (for
uplink to the spacecraft or execution on the ground). We
focus on the first of these issues: describing planning
problems. Model-based planning experts know that the
“right way” is to build a declarative planning model.
However, the sources of space mission constraints present

Figure 1: How the Mission Planning System interacts with
the Mission Operations System.

challenges to model building. Figure 1 illustrates how
MOS components interact during the mission and how they
influence the mission planning system’s design. The
remainder of this section details the sources of Mission
Planning System constraints, describes how constraints
change, and explores the difficulty of modeling an activity.
Flight rules
Flight rules and other operational constraint products
document constraints and best practices for system
operations to ensure mission safety and mission success
(Barreiro et al., 2010). Instrument teams, spacecraft
manufacturers, and sometimes the mission operations team
create these documents. These rules provide essential
planning system input, but are typically stored as human-
readable (office) documents. Over time, missions have
evolved a set format for these rules. A typical flight rule
(below) shows features that are common in operational
constraints: the rule is broken up into discrete parts, the
action maps to fine-grained commands in multiple ways;
the rule’s criticality indicates it could be waived; the action
duration is explicit; and the mission phase dependency
demonstrates rules that only apply in certain contexts.
Instrument Rule 1
Rule: To power down, close the cover (Inst-Close-A or
Inst-Close-B), do not issue any further CMDs, wait at least
35 seconds, and then issue the power down CMD (PDU-1-
Power-Down-Inst or PDU-2-Power-Down-Inst).
Rationale: When not in use, the cover must be closed for
protection from Sun. Instrument needs to be powered
during the 35 seconds it takes to close cover.
Criticality: Category B
Mission Phase Dependency: Pre-launch, Cruise, Orbit
Commands Affected: Inst-Close-A, Inst-Close-B, PDU-
1-Power-Down-Inst or PDU-2-Power-Down-Inst
Cognizant Individual: Instrument Operations Contact
Notes: If the cover-close command is issued when the
cover is closed, the cover remains closed, and the
command is rejected. Once the closure procedure is started,
it is not possible to interrupt it.

Sequences
Sequences are lists of fine-grained spacecraft commands.
Operators command the spacecraft by executing sequences
on the ground, by sending them to the spacecraft for
immediate execution, or by storing them onboard the
spacecraft to await a later event or command trigger.
Simulation is used to determine sequences’ time and other
resource constraints. The exact simulation used depends on
the sequence’s origin. For instance, instrument teams may
simulate their instruments (Barrett et al., 2009; Tompkins
et al. 2010). A spacecraft manufacturer or mission
operations team also may build a simulator (Yen et al.,
2005). Often, simulations are used solely to check
sequences against flight rules (Ko et al., 2004).

Flight dynamics and communications
Flight dynamics may simulate orbits and trajectories using
a commercial product like Satellite Toolkit (Tompkins et
al. 2010). Orbits provide key information for mission
planning systems. Examples include day / night times, sun
angles, and the relative locations of asteroids, comets, and
communications assets.
When constraints change
Constraints can change greatly before a mission. Mission
planning systems must accommodate these changes and be
validated at low cost (Carraway et al. 1999). For example,
target changes, such as on LCROSS (Tompkins et al.
2010), may require orbit changes, which can ripple further
through the planning systems. Changes in communication
coverage can cascade in a similar manner. While these
changes may appear to be ‘mere’ changes in plans, if
communication windows shrink, constraints governing
communication coverage times may also need to change.
 Changes to vehicle configuration (specific equipment,
interconnection or equipment location, or equipment
performance characterization) can also cause changes in
mission planning constraints. Examples include new flight
rules, science instrument sequence changes, changes in
maneuvers, dust on solar panels, frozen robotic arms or
wheels, or new power or thermal limits (Barrett et al.,
2009; Tompkins et al. 2010).
 As mission planning systems mature, planners often find
that satisfying constraints is too difficult. Science teams
and spacecraft designers can provide overly conservative
constraints early in mission development. Analysts may
determine that the constraints can be relaxed without
compromising safety or science (Barrett et al., 2009).
Example Activity Model of Spacecraft Slewing
There is a long-standing, fundamental problem in applying
automated planning to physical systems. In order to make
this concrete, consider the difficulty of representing a
relatively simple spacecraft activity for changing attitude.
 (:durative-action slew
 :parameters (?from – attitude
 ?to - attitude)
 :duration (= ?duration 5)
 :condition
 (and
 (at start (pointing ?from))
 (at start (cpu-on))
 (over all (cpu-on))
 (at start (>= (sunangle) 20.0))
 (over all (>= (sunangle) 20.0))
 (at start (communicating))
 (over all (communicating))
 (at start (>= (batterycharge) 2.0)))
 :effect
 (and
 (at start (decrease (batterycharge)2.0))
 (at start (not (pointing ?from)))
 (at end (pointing ?to))))

The difficulty stems from developing system models that
are disconnected from the system (leading to inaccuracy)
and from modeling representation language limitations
(adding to complexity). The PDDL above specifies a
spacecraft attitude change activity. The activity model is
more abstract than a typical simulator’s, which would use
the spacecraft's command set, lighting conditions (a
function of the orbit), dynamics of slewing the spacecraft,
communication asset locations, spacecraft power
utilization, and battery performance. Typically, extracting
knowledge from the simulator to configure the planning
system is manual, inefficient and error-prone. The modeler
must address the following issues:
• How do planner model attitudes relate to real spacecraft

operations’ continuous attitudes? For example, does it
suffice to represent a deep-space craft with camera
directional sensors using a discrete valued attitude
variable with values such as to-Earth (for deep-space),
Earth-nadir (for Earth orbits), Sun-pointing (for solar
power generation), and others for sets of navigation
guide stars? How does data from the inertial
measurement unit map to these discrete directions?

• How does the planner model battery discharge? How
can the model conservatively estimate the battery energy
consumed by subsystems for different possible system
states? For example, does temperature affect power
usage? How is a cap on battery capacity modeled to
avoid overfilling? How is solar recharging modeled?

• What drives slew duration? Is it proportional with
angular slew distance? Will a slew always follow the
shortest rotation? Must it avoid pointing instruments at
the sun? What determines the choice of control system
(reaction wheels, thrusters, or torque rods)?

• How is reaction wheel momentum dumped?
• Along what axes can the spacecraft slew while

communicating? conducting science measurements?
recharging the battery? changing trajectory?

• What are the communication coverage requirements?
What information is needed about the spacecraft orbit,
availability of ground communication assets, and the
spacecraft antenna type and configuration? When do
ground stations require communications to monitor
trajectory changes or other related activities?

• How does the abstract slew correspond to one or more
sequences of spacecraft commands? Are there setup and
teardown activities? Is the slew for each axis performed
separately to avoid risk of concurrent interactions?

Before flight, the orbit, attitude, engineering subsystem
specification, and simulations can change frequently.
These changes require efficiently reconfiguring the activity
planner. For example:
• New targets or navigation aids require updating the set

of discrete attitudes.

• Changes in sequences can cause a change in attitude
control system performance, leading to activity changes.

• Any power-using subsystem that changes performance
(e.g., attitude control system or communication) will
change power consumption. If planning determines
mission objectives are infeasible, a need to slew faster
could also increase power consumption

• Changing orbit, communication coverage plan, or
antenna configuration may change the activity.

• Changing flight software (or the uses of major spacecraft
operating modes) might require changing the commands
that affect attitude.

Clearly, configuring the mission planning system with
even the one activity described here requires much effort.
The effort includes extracting knowledge from the flight
rules, command and data dictionaries, and simulation APIs
and output. Currently, those data (and input from the
mission operations system orbit, trajectory and
communications elements) often reside in documents that
are difficult to extract planning knowledge from.

Interactive Model Development Environments
for Space Mission Operations

In this section we describe how an Integrated Model
Development Environment (IMDE) could integrate
planning and simulation to address the challenge of model
development. This integration could simplify validation of
models within the development cycle, thereby making
modeling for space mission planning more efficient. The
challenge is to integrate a planner and simulator to
automate model development and validation.
 The next sections state assumptions that simplify the
discussion, describe IMDE design features and
architecture, outline a concept of operation for modeling
with the IMDE, characterize discrepancies that indicate
modeling errors, and describe how these modeling errors
may be identified and fixed.

Assumptions
The following assumptions simplify in the description of
the IMDE and also indicate additional challenges
addressed toward the end of the paper.
• The simulator input includes a list of time-tagged

commands.
• The simulator runs deterministically.
• The simulator reports any errors (undesirable behavior).
• The system (spacecraft) and simulator are defect-free.
• The simulator is a black box (the user can neither change

nor inspect its code and models)
• The simulator outputs time-tagged value samples of

system state variables.

• Formal flight rules define mission constraints that are
verifiable with the simulator output.

• Every plan that the planner sends to the simulator is
consistent with the planner’s model.

• An action in the plan corresponds to a list of time-tagged
commands.

• The planner generates plans that conform to model
constraints or else identifies all constraint violations.

IMDE Design Features
The hypothetical IMDE shares many features of a
traditional programming language Integrated Development
Environment (IDE); An IMDE’s model corresponds to an
IDE’s code, plans correspond to test cases, and the
simulator corresponds to the computer. One distinctive
IMDE function is the generation of test cases to aid model
validation. Another is the generation of suggestions on
how to fix modeling errors. In the traditional IDE, this is
similar to suggesting code fixes for program run failures.
Following sections discuss validation and model fixes.
 Figure 2 shows the system architecture of the proposed
IMDE. The Model Editor provides traditional IDE
functions. The Simulation API Browser provides model
creators access to the simulation API. With the Abstraction
Editor a user documents how plan model building blocks
(objects, states, timelines, actions, constraints) relate to
data and commands in the simulation API, thus providing
traceability for detecting model problems. These

Figure 2. Hypothetical IMDE Architecture and data flow.

abstractions are the semantic glue connecting the planner
to the “the world”/simulator. The Abstraction and
Refinement Engines integrate the planner and simulator.
The Refinement Engine transforms a plan into simulator
command input. The Abstraction Engine transforms
simulator output into an actual/simulated execution for
comparison with the expected/planned execution. These
executions are time-tagged actions and state variable
values in the language of the planner. The Validator
identifies discrepancies between the two executions, errors
reported by the simulator, and any planning model
constraint violations, some of which the simulator may not
check (e.g., flight rules). A Plan Viewer (not shown)
comparatively displays the simulated and planned
executions (e.g., in a Gantt chart). The Plan Viewer
(and/or an Error Viewer) visualizes discrepancies between
the executions and highlights those that indicate modeling
errors. Finally, the Fixer suggests model changes that may
eliminate one or more errors seen in the current and past
simulations of different plans. We later explain how to
detect errors and make suggestions.

Concept of Operation
An IMDE user may start with an empty or existing
planning domain model. Depending on the modeling
language, an edit to the model may add, change, or remove
actions, state variables, constraints, and effects (or their
associated object types and sets). The user may create and
edit abstractions to ground the model in simulator
elements. A simulation interface exposes these elements,
including commands and system state variables. These
edits initiate the following basic workflow:
1. The user edits the model, or
2. the user edits abstraction by either

a. copying variables from the simulator interface to
the model (e.g. sunangle),

b. abstracting variables in the model (e.g.
(pointing Earth) is true in the planner if the
simulator’s xyz attitude is for each axis within 1
degree of the attitude to point directly at Earth),

c. copying a simulator command to the model as an
action (e.g. turn on CPU), or

d. abstracting a command sequence to model an
action (e.g. command sequence to slew spacecraft)

3. The IMDE generates possible initial states and plans
and tests each by
a. translating the initial state and plan into simulator

commands,
b. running the simulator with those commands,
c. translating simulator output to an execution,
d. checking the execution for violations of constraints

in the planning domain model, and

e. checking for discrepancies between planned and
simulated executions.

4. The IMDE analyzes test results to suggest changes to
the planning model that could fix discrepancies.

5. The user assesses planned and simulated executions,
their constraint violations, their discrepancies, and
suggested fixes.

6. Repeat.

 The idea is that when the user edits the model, in the
background the IMDE generates and simulates different
plans to search for discrepancies indicating modeling
errors. The user can be made aware of these errors even
while editing (much like syntax errors in an IDE), and
when the user is ready to see what is in error, the IMDE
may already have suggested fixes for the user to select.
 When the user performs these operations, they can
document the relationship between the planning model and
elements of the simulation using the Abstraction Editor, as
shown in Figure 2. This provides traceability so that
elements of the model are ‘grounded’ in the simulation,
and as we will see below, provides a means of detecting
problems when things go wrong.
 Adding a new variable or timeline to a domain model
requires informing the Plan Viewer. The Plan Viewer also
must maintain a consistent view of the plans. It may be
impractical to regenerate all of the plans every time the
underlying model changes. So, an established policy must
address stored plans generated using older models. A
typical plan repair strategy might work well for
“scheduling” errors in older plans. But it may take a lot of
work to indicate what must be fixed when an older plan’s
timelines, semantics, and state and object names change.

Translating Plans as Abstraction and Refinement
The previous workflow uses abstractions heavily. For
example, in step 3a the Refinement Engine may translate
one slew(?from,?to) action in the plan into three
ordered subsequences of simulator commands to rotate the
spacecraft around each of its three axes. In step 2c and 2d,
the user specifies this abstraction as an action
decomposition, similar to hierarchical plan decomposition.
 Another abstraction type for data specifies how state
variables in the planning model relate to those in the
simulator output. For example, an abstraction could map
the simulator xyz spacecraft attitude to a discrete
(pointing ?target) planner predicate, with
?target either Earth, Sun, or SomewhereElse.
An abstraction function could specify that (pointing
Earth) is true if the simulator xyz attitude is within 1
degree of pointing the transceiver to the Earth’s center1.

1 An abstraction could be any function of a set of time-varying variables
that calculates the time-varying values of another set of variables such

 When the Refinement Engine translates initial state and
plan information into simulator commands using these
abstractions in steps 2a and b, some data abstractions may
need to be reversed. For example, translating a plan’s
slew(Sun,Earth) action into simulator commands
would translate the Sun and Earth symbols to the
corresponding xyz attitudes for pointing to the targets.
 The Validator checks for discrepancies with the planned
execution and helps identify modeling errors by translating
simulation results into execution information in the planner
language using the abstractions in Step 3c. The
abstractions provide the time-varying planner state values,
but another step is needed to construct the execution that
explains these values, using the Abstraction Engine. Our
assumptions make this relatively simple, but in general it
can be a difficult state estimation optimization problem.

Identifying Modeling Errors
Modeling errors are indicated by errors explicitly reported
by the simulator and by plan constraint violations on the
simulated execution that do not occur in the planned
execution (a discrepancy in constraint violations). For
example, in testing the slew(Sun, Earth) action, the
simulator might report an error from the fault management
system because the computer had not yet been booted
when commands were sent to the reaction wheels (a flight
rule violation). This is an error in the planning model
because the slew action lacked a necessary precondition
that the computer be booted. As another example, the plan
test case might include a goal (or constraint) (pointing
Earth) to check that the effect of a slew is achieved.
The simulator output could be error-free, and yet translate
back to an execution state where (pointing Earth)
was never achieved, failing the goal. This could be the
result of the plan containing an overlapping slew that
commanded the spacecraft to retarget the slew. In this case
the modeling error was in allowing overlapping slews.
 This simple specification for identifying modeling errors
applies generally to different kinds of errors. For example,
how would an error in the timing of a slew be detected? If
the model specified a fixed duration for slew, the test plan
still only needs a constraint that (pointing ?to) be
true at the end of the slew activity. If the slew takes
longer than expected, then the constraint will be violated in
the simulated execution.
 Discrepancies between the planner and simulator need
not be modeling problems. Defining the planning states as
abstractions of the simulator’s states could naturally lose
information. For example, the planning model could
represent battery depletion as instantaneous while the
simulation represents depletion as gradual. Discrepancies

that the magnitude of the domain is smaller than the magnitude of the
range.

will probably manifest between the planned and simulated
battery levels. But, planning the battery levels
conservatively could avert simulation failures. The user
may choose to omit specific discrepancies from reporting
(as with waiving constraint violations in mixed initiative
planning systems, Aghveli et al. 2007).
 At the same time, the discrepancy might indicate an
opportunity to improve efficiency: a more detailed battery
depletion model could enable scheduling more activities.
These discrepancies of inefficiency could be detected by
finding plans with constraint violations that do not occur in
the simulated execution.

Generating Plans to Validate the Model
Different test plans are generated (step 3) in order to
validate that the model will work for all situations. This
requires validating all possible plans acceptable by the
model. In general, this may be an infinite number of plans,
but there may be a manageable number that is enough to
validate a single part of the model.
 For example, if the user wants to ensure that the
(pointing ?to) effect is always satisfied at the end of
slew(?from,?to), then a complete space of plans to
test would combine all possible initial attitudes, slews for
all target attitudes (slew from each attitude to each other
attitude), all possible additional actions (slews from each
target to each other target), and the different temporal
orderings of those other actions with respect to
slew(?from,?to).
 It is possible to generate all of these plans with special
purpose code, but the planner itself may accomplish this.
Instead of generating all combinations, incorporate this
parameterization into a planning problem: what initial state
and ordering of instantiations of slew(?from,?to)
will achieve (pointing ?to) at the end? The set of
valid solutions to this planning problem is the test suite.
 It is expected that multiple simulations could be
necessary to validate a single plan. For example, there are
an infinite number of xyz attitudes that translate to
(pointing Earth). So, why not test all possible
simulations instead of all possible plans? If plans are
meant to be the only mechanism for generating command
sequences for the spacecraft, the other simulations will
never occur because a plan only translates to one set of
commands resulting in one deterministic simulation. On
the other hand, the initial state is not dependent on actions
in the plan, so the complete space of test cases would
include the infinite number of attitudes that translate to
(pointing Earth). In this case, conventional test
coverage techniques may still be necessary.
 Another reason to generate simulations instead of plans
may be that a model is in its infancy, and many actions
have yet to be modeled, so the necessary plan-based test

cases to validate the first modeled action would be
insufficient. Thus, generating simulations based on the
simulator interface specification (using simulator
commands instead of planner actions) would be useful and
more robust to model changes. It may also be better to
generate simulator-based test cases when there are many
actions in the planning model. If activities are defined for
many combinations and orderings of simulator commands,
then the space of plans necessary to validate an action
could be greater than the space of simulations due to
repetition of commands in a combination of actions.
 Again, it may be possible to cleverly scope the
validation to reduce the number of sequences tested. For
example, test cases including two slews following the slew
to be validated should find the same errors as those test
cases with only a single following slew. Thus, a tractable
number of test cases may be identified for validating an
action in a model. This test coverage problem is known to
be quite difficult and, thus, part of the challenge.
 The tractability of validating the entire model depends
on that of individual actions. Validating each action in
isolation is enough to validate the entire model since the
soundness of the planner guarantees action combinations.

Suggesting Changes to the Model
When the IMDE runs a batch of plans through the
simulator, some may result in simulator errors and some
may result in planning constraint errors. These indicate
that there are modeling errors, but the modeler may not be
able to deduce the actual mistake by looking at any one
execution. For example, suppose the slew was never
executed because the CPU was never turned on, resulting
in a simulation error flag. There would be a violation of
(pointing Earth) in the simulated execution, but no
information in the output ties these errors with the state of
the computer. So, the modeler would have to know the
spacecraft (and simulator) very well to guess the problem
after seeing it in a single run.
 By finding relationships between plan/state attributes
and simulator/discrepancy errors, the IMDE can generate
plausible suggestions for fixing the model. For example, if
a complete set of test cases showed that the slew failed
every time that the computer was not booted, a machine
learning classifier or data mining algorithm could identify
the pattern. Then, the IMDE could suggest abstracting the
computerMode variable in the simulator interface to a
cpu-on predicate in the planning model and add the
predicate as a precondition to slew. Other suggestions
include adding a constraint that a turnOnCpu() action
always precedes slew(?from ?to) or adding a
simulator command to the slew abstraction/decomposition
to bootCpu(). These suggestions from the IMDE Fixer

component (Figure 2) could include changing action
constraints, adding state variables, or creating new actions.
 The challenge of generating suggestions may be in
framing the learning problem. Plans have variable
numbers of actions, so there is not an obvious feature set
over which to learn. In addition, the modeler may want
suggestions in terms of complex functional relationships of
multiple variables. For example, the desired fix may be to
avoid exhausting memory storage by adding a constraint
that the sum of durations of all communications activities
in a day must be greater than the sum of data collected
multiplied by a particular constant. The number of
functional relationships that may be part of a feature set of
a learning algorithm could easily be intractable. On a
positive note, the modeler may be able to deduce the
needed fix with the help of overly-specific suggestions
learned from a limited set of features.

Technology Foundations
While the ultimate vision of the IMDE has yet to be
achieved, many component technologies have been built.
This section describes some of these technologies as well
as research activities that enable the goal.
 The itSimple tool (Vaquero et al., 2007) is a plan
domain modeling environment similar to the proposed
IMDE. Users of itSimple can build static models of
objects, actors, and relationships between them in a
specialization of UML. Users specify dynamic (simulation)
models of how states of the objects can change using Petri
Nets (an encoding of state charts). itSimple automatically
translates these models to PDDL. A difference from the
IMDE approach is the assumed access to the simulator
model (white-box simulation).
 PAGODA uses black box simulations to learn activity
preconditions in an interactive model environment
(desJardins, 1994). This is a basic feature of the Fixer
(Figure 2) used to identify modeling errors. Another
interactive environment helps the user identify model
errors by constructing an invalid plan (that the user knows
should be valid) by relaxing constraints (Chien, 1996).
 The Procedure Integrated Development Environment
(PRIDE) (Izygon et al., 2008) is a procedure authoring
technology prototype that can be used to create procedures
for execution by flight controllers and crew. PRIDE
presents procedure authors with a command and telemetry
database; users can drag commands and telemetry
references into a plan directly from the command and
telemetry database GUI. PRIDE provides access to either
state-chart simulations or high-fidelity simulations that the
procedure writer can use to manually check procedures for
correctness. Procedures can also be automatically verified
by means of translation to Java and the use of model

checking software (Brat et al., 2008). The use cases for
creating procedures are quite similar to the assumptions
made here. However, there is no abstraction mapping, and
procedures lack formalisms needed for planning.
 The Data Abstraction Architecture (DAA) (Bell et al.,
2010) is designed to address the problem of transforming
spacecraft or space system telemetry into useful
information for operators (be they flight controllers or
crew). The system allows operators to write common data
transformations using a GUI; the transformations are then
executed by an engine that accepts telemetry as input, and
produces more intuitive information as output. The DAA
framework is well suited to editing data abstractions for the
IMDE, but it would need to be extended to capture
transformations of plan actions into simulator commands.
 VAL takes steps toward the Fixer IMDE element by
validating that a specific plan is indeed a solution to a
planning problem that may be specified with continuous
effects, including limited forms of time-dependent change
on numerical state variables (Howey, et al., 2004). VAL
can also advise modelers how to fix a plan. We explore
the goals of validating that all plans and suggesting fixes to
the model, not just the plan. Furthermore, the approach in
VAL would have to apply to simulated executions.
 The LOCM system (Cresswell et al. 2009) learns
planning domain models from sets of example plans. Its
distinguishing feature is that the domain models are
learned without any observation of the states in the plan or
about predicates used to describe them. This works
because the objects are grouped into sorts, and the behavior
available to objects of any given sort is described by a
single parameterized state machine. LOCM is the latest in
a number of plan domain learning systems that could be
employed to abstract black-box simulations into domain
models as part of the Fixer in our proposed IMDE.
However, doing so may require learning abstractions from
simulated command sequences, which plan domain
learning systems presently do not do, except PAGODA
(desJardins, 1994).
 Techniques for ordering test cases to expose errors more
quickly can also be leveraged. Instead of generating test
plans by systematically trying each permutation of plan
features, test cases may be chosen that are believed to more
likely discover a flaw based on results of past cases. The
Nemesis test system has had success with this by using a
genetic algorithm to smartly choose test cases (Barltrop et
al., 2010). A complementary strategy is to use coverage
techniques to quickly sweep across the landscape of test
cases and learn combinations of features to more quickly
converge on a formula describing the conditions under
which a flaw appears (Barrett, 2009). This can be used to
converge quickly on suggestions to fix modeling errors.

Challenges in relaxing the assumptions
The usefulness of the described IMDE may still be
insufficient because of limiting assumptions. We describe
those we deem important and their associated challenges.
 It is possible that an action may correspond to multiple
commands, a loop, or any arbitrary function generating
commands. As long as this function is a legitimate
simulator input, then this is not a difficult problem.
 Many systems have uncertain behavior, for example,
stemming from attitude and temperature control. If the
simulation testbed can be invoked in a way that explores
different outcomes, then a single plan now translates to
multiple (possibly infinite) test cases for which the model
should be validated. This presents an additional difficulty
in determining a tractable number of test cases sufficient
for validating the model. It also presents a problem of how
to model the activity correctly; if the action duration varies
between 30 and 40 seconds, what is the best duration value
to use? Moreover, constructing the simulated execution
from state values may not be obvious and, in general, can
be a difficult state estimation problem!
 In addition, the spacecraft may be able to execute
sequences conditioned on the perceived system state. This
requires simulations that incorporate all possible perceived
states that could influence the plan outcomes.
 We have discussed some basic examples of modeling
errors on preconditions and effects. For expressive
language elements such as activity decomposition (as
opposed to the mapping of plan actions to simulator
command sequences) and parameter dependency functions,
how can errors and fixes be automatically identified? Does
this similarly extend to errors in abstraction specifications?
 Relaxing other assumptions may not pose difficult
research challenges but can change the nature of the
system capability. For example, if the simulator or system
(e.g. spacecraft) does have defects, then discrepancies that
are inconsistencies between planned and executed behavior
may now be (in addition to modeling errors) indications of
those system defects. So the IMDE now can identify
simulator and system defects and validate them against the
planner. Thus, the IMDE may more generally be designed
for validating multiple systems against each other. This
validation is especially important for interactions between
autonomous spacecraft subsystems (such as an onboard
planner or a guidance, navigation, and control system).
 Another assumption was that the simulator is a black
box. One option is to treat the effects of an action as
properties that are input to a model checker, which is used
to directly analyze the simulation model. The System-
Level Autonomy Trust Enabler (SLATE) validates a
complete model of the system and its operation,
incorporating device, control, execution, and planning
models (Boddy et al., 2008). The conventional approach

of building a model only at an abstract level requires
extensive testing of different scenarios and could only be
guaranteed to work if all possible scenarios are tested.
SLATE only requires testing of individual behaviors
whose performance envelopes are incorporated into the
model. Since the model of the system is complete, SLATE
can prove system-level properties as model checking does.
 Another strategy for validating plan abstractions (in
particular, those of hierarchical plans) is to summarize the
potential constraints and effects of the potential
decompositions of each abstract action in the model
(Clement et al., 2007). A planner can use this summary
information to prove that a plan abstraction is either valid
or invalid. Like SLATE, summary information validates
higher level actions composed of more detailed validated
actions. Summary information differs in that abstract
actions retain choices of refinement for flexibility of
execution, while abstract actions in SLATE are robust to
uncertain system behavior. Instead of validation through
testing like SLATE and the IMDE, summary information
relies on a detailed, accurate simulation model (white box).

Conclusion
The maturation of model-based planning provides an
opportunity to improve the state of the art in space mission
planning. However, doing so will require planning models
to represent complex constraints derived from many
sources of information, and for spacecraft engineers to be
able to build and validate these models. We have
described the challenges in doing so, and described an
IMDE as a means of reducing up-front errors by catching
and repairing errors during model development. While the
technologies described in the previous section support
features of the described IMDE, there remain significant
research challenges to achieve the overall vision.
• How can a complete but tractable space of test case plans

be identified for activity model validation?
• Can a single test case contribute to the validation of

multiple model elements?
• How can errors in different modeling language features,

command refinement, and data abstraction be clearly
identified based on simulation output of these tests?

• What are the features of a learning problem for
classifying an error?

• How can suggested fixes be generated for these errors?
• How can the architecture be adapted to suggest changes

for plan quality?

Acknowledgements
The authors would like to thank members of the LCROSS
and MER mission team for their insights into planning and

operations for those missions. Some of the research
described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government,
or the Jet Propulsion Laboratory.

References
Aghevli, A., Bachmann, A., Bresina, J.L., Greene, J., Kanefsky,
R., Kurien, J.,McCurdy, M., Morris, P.H., Pyrzak, G., Ratterman,
C., Vera, A., Wragg. S., Planning Applications for Three Mars
Missions. Proceedings of the International Workshop on
Planning and Scheduling for Space. Baltimore, MD, 2007.
Barltrop, K., Clement, B., Horvath, G., and Lee, C. Automated
Test Case Selection for Flight Systems using Genetic Algorithms.
Proceedings of the AIAA Infotech@Aerospace Conference, 2010.
Barreiro, B., Chachere, J., Frank, J., Bertels C., and Crocker A.
Constraint and Flight Rule Management for Space Mission
Operations. International Symposium on Artificial Intelligence,
Robotics, and Automation in Space, 2010.
Barrett, A., Bass, D., Laubach, S., and Mishkin, A. A
Retrospective Snapshot of the Planning Processes in MER
Operations After 5 Years. In Proceedings of the International
Workshop on Planning and Scheduling for Space. 2009.
Barrett, A. and Dvorak, D. A Combinatorial Test Suite Generator
for Gray-Box Testing, IEEE SMC-IT 2009.
Bell, S., Kortenkamp, D., and Zaientz, J. A Data Abstraction
Architecture for Mission Operations. In Proc. of the International
Symposium on AI, Robotics, and Automation in Space, 2010.
Boddy, M., Carpenter, T., Shackleton, H., Nelson, K. System-
Level Autonomy Trust Enabler (SLATE), In Proc. of the U.S. Air
Force T&E Days, AIAA, Los Angeles, CA, Feb, 2008.
Brat, G., Gheorghiu, M, , Giannakopoulou, D., “Verification of
Plans and Procedures,” In Proc. of IEEE Aerospace Conf., 2008.
Bresina, J., Jónsson, A., Morris, P., and Rajan, K. 2005. Activity
planning for the Mars Exploration Rovers. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling, Monterey CA, USA, June 5-10, 2005, S. Biundo, K.
Myers, K. Rajan, Eds. AAAI, Menlo Park, CA., USA 40-49.
Carraway, J., Squibb, G., Larson, W. Mission Operations. In
Wetz, J. and Larsen, W. Space Mission Analysis and Design (3d
edition). Microcosm Press, El Segundo, CA, p. 587-620, 1999.
Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.
Validation and Verification Issues in a Timeline-Based Planning
System. Knowledge Engineering Review, 25(3): 299-318, 2010.
S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R.
Castano, A. Davies, D. Mandl, S. Frye, B. Trout, S. Shulman, and
D. Boyer. Using Autonomy Flight Software to Improve Science
Return on Earth Observing One. Journal of Aerospace
Computing, Information, and Communication, 2005.
Chien, S. A. Static and Completion Analysis for Planning
Knowledge Base Development and Verification. In Proc. of 3rd
Int’l Conf. on Artificial Intelligence Planning Systems. 1996.

Cichy, B., Chien, S., Schaffer, S., Tran, D., Rabideau, G.,
Sherwood, R. Validating the Autonomous EO-1 Science Agent
In: Int’l Workshop on Planning and Scheduling for Space. 2004.
Clement, B., Durfee, E., Barrett, A. Abstract Reasoning for
Planning and Coordination. Journal of Artificial Intelligence
Research, vol. 28, 453-515, 2007.
Clement, B. and Johnston. M., The Deep Space Network
Scheduling Problem. In Proceedings of the 17th Innovative
Applications of Artificial Intelligence Conference, 2005.
Cresswell, S., McCluskey, T. L., and West, M. M. Acquiring
planning domain models using LOCM. Knowledge Engineering
Review, 2012, to appear.
desJardins, M. Knowledge Development Methods for Planning
Systems. In Proceedings of the AAAI Fall Symposium on
Planning and Learning, New Orleans, 1994.
Fox, M. & Long, D. PDDL2.1: An extension of PDDL for
expressing temporal planning domains, Journal of Artificial
Intelligence Research 20, 61–124, 2003.
Garcia, G., Barnoy, A., Beech, T., Saylor, R., Cosgrove, J., Ritter,
S. Mission Planning and Scheduling for NASA’s Lunar
Reconnaisance Orbiter. In Proceedings of the Ground Systems
Automation Workshop, 2009.
Howey, R. and Long, D. and Fox, M. VAL: automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In Proc. ICTAI. pp. 15—17, Nov 2004.
Izygon, M., Kortenkamp, D., Molin, A., “A Procedure Integrated
Development Environment for Future Spacecraft and Habitats,”
Space Technology and Applications International Forum, 2008.
Knight, R., Chouinard, C., Jones, G., and Tran, D. Planning and
Scheduling Challenges for Orbital Express. In Proceedings of the
Inte’l Workshop on Planning and Scheduling for Space. 2009.
Ko, A., Maldague, P., Page, D., Bixler, J., Lever, S., and Cheung,
K. M. Design and Architecture of Planning and Sequence System
for Mars Exploration Rover (MER) Operations. In Proceedings
of the AIAA Space Conference. 2004.
Long, D., Fox, M., and Howey, R. Planning Domains and Plans:
Validation, Verification and Analysis. In Proc. Workshop on
V&V of Planning and Scheduling Systems, 2009.
Raimondi, F., Pecheur, C., and Brat, G. PDVer, a Tool to Verify
PDDL Planning Domains. In Proc. Workshop on Verification and
Validation of Planning and Scheduling Systems, ICAPS, 2009.
Reddy, S., Frank, J., Iatauro, M., Boyce, M., Kurklu, E., Ai
Chang, M., Jonsson, A. Planning Solar Array Operations on the
International Space Station. Special Issue on Applications of
Automated Planning, ACM Transactions on Intelligent Systems
and Technology, 2011.
Tompkins, P.D., Hunt, R., D’Ortenzio, M., Strong, J., Galal, K.,
Bresina, J., Foreman, D., Barber, R., Munger, J., and Drucker, E.
Flight Operations for the LCROSS Lunar Impactor Mission. In
Proceedings of AIAA Space Conference(SpaceOps) 2010.
Vaquero, T., Romero, V., Sette, F., Tonidandel, F., Reinaldo
Silva, J. ItSimple 2.0: An Integrated Tool for Designing Planning
Domains. In Proceedings of the Workshop on Knowledge
Engineering for Planning and Scheduling, 2007.
Yen, J., Cooper, B., Hartman, F., Maxwell, S., Wright, J., Leger,
C. Physical Based Simulation for Mars Exploration Rover
Tactical Sequencing. In Proceedings of the IEEE Conference on
Space Mission Challenges, 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

