

Experience with a Constraint and Preference Language for DSN
Communications Scheduling

Bradley J. Clement, Mark D. Johnston, Steven R. Schaffer, Daniel Q. Tran

Artificial Intelligence Group, Jet Propulsion Laboratory
firstname.lastname@jpl.nasa.gov

Abstract

As part of a new scheduling system for allocating
NASA Deep Space Network (DSN) ground antenna
and equipment resources to space missions, we have
designed and implemented a requirements language
oriented towards the clear and efficient specification of
mission communication constraints and preferences.
In this paper we discuss the requirement language
itself, the model into which the language is translated
for automated scheduling, and the impact it has had on
scheduling algorithm design. The scheduling engine
supporting the language is being integrated into a
mixed-initiative scheduling system for a 2008 delivery.

1. Introduction

NASA’s Deep Space Network (DSN) maintains and
schedules 16 large antennas (26m, 34m, and 70m) to
support interplanetary missions, radio and radar
astronomy, and also some Earth orbiting missions.
Services include command uplink, data downlink,
ranging, and navigation among others. There are
around 150 missions listed as DSN users, with 20 to 25
spacecraft serviced per month.

In an effort to ease the burden of human scheduling,
negotiation, and conflict resolution in allocating
resources of the DSN, we have developed a scheduling
engine that implements a new requirements language.
The language is XML based and designed for clear and
efficient specification of mission communication
requirements. The Aspen planning system [4] uses
these requirements to create schedules and resolve
conflicts using local and systematic search techniques.

The language and the scheduling engine are part of
a mixed-initiative scheduling system, currently under
development as the new scheduling system for the
DSN. The initial delivery to users for evaluation is
scheduled for early 2008, with an initial operational
capability planned for late 2008. Users have estimated
that this more powerful and flexible scheduling system
can save several millions of dollars per year in mission
operations costs.

The language captures all the key metric resource,
durative action, and temporal constraints of a mission’s
communication requirements. DSN service activities
can be requested individually or in bulk. Shared
services are also represented, for example
simultaneous communications with multiple spacecraft
at Mars. The language expresses constraints and
preferences on both local contact timing and non-local
factors such as total contact time, gap time, and gap-to-
track ratio over some time period. The users and the
scheduling engine adjust the schedule within the
flexibility of the constraints and to accommodate
indicated preferences as much as possible.

This paper discusses our experience in developing
the requirement language, the modeling the language
in Aspn, and modifying search and repair strategies in
Aspen based on language features. This paper does not
describe scheduling constraints outside the language,
details of the system architecture, details of the
algorithms, or related scheduling algorithm work that
are specified elsewhere [5],[6]. We discuss other work
related to the requirement language of this paper in
Section 6.

2. Background on Aspen Models

Here we briefly describe a subset of the modeling
language features of Aspen [4] that are used to
implement the requirement language. In Aspen, a task
is defined to have decompositions, parameters,
dependencies, and reservations.1 A decomposition of
a task is a choice of sets of child tasks to be
instantiated with the task as their parent. A parameter
of a task is a variable that is assigned from the outside
as input or computed as a function of other parameters.
Dependencies of the task specify the connection of
parameters through functions and through assignment
between a parent tasks and their children. When a
value of a parameter changes, it propagates through

1 We use the term “task” to refer to an Aspen activity
because we wish to use the DSN meaning of “activity”
as a service provided for a mission. DSN activities and
requirements are modeled as Aspen activity schemas.

dependencies to dependency functions for which the
parameter is an argument and to the parameters of
child tasks to which it is assigned. A reservation of a
task is a constraint or effect on a state or resource
timeline. A timeline is represented as a function of
time to value. For example, a decoder resource
timeline keeps track of how many decoders are
available for use. A viewperiod state timeline keeps
track of when a spacecraft will be in view of an
antenna.

3. Modeling the Basic Requirement Types

The most basic goal of the requirement language is
to help a mission convey its service needs, flexibility,
and preferences in terms of timing and resource use to
other missions and users and to the scheduling engine
for aid exploring scheduling options to avoid or
resolve conflicts or to improve the schedule. The
language also aims to make it easier for a user to
specify many similar activities concisely as a group. A
third purpose of the language is for missions to be able
to manage their activities more easily by editing
requirements instead of repeating edits for individual
activities.

The different types of requirements (named in the
sub-section headings 3.1 - 3.5) share many basic
parameters and some layer on others. The structures of
these types are general and may apply to other problem
domains. The single-activity, continuous, and periodic
types originated from a past attempt to get users to
manage their activities through requirements.

3.1. Single-activity

A single-activity requirement specifies service for a
single pass, i.e. the time period the spacecraft is in
view of a complex of colocated antennas. It is a basic
building block of other requirement types, and its
parameters are used by all of the others. It is meant to
capture flexibility in start time, duration, and usable
antennas. As shown in Figure 1, the min/max
individualTrackDuration and absoluteTime
parameters specify timing flexibility. Antenna
flexibility is specified in assetSpec as choices (using
an OR operator) of antenna IDs or by group name, and
multiple antennas can be requested by grouping them
with an AND operator. The model in Aspen currently
only supports a single AND at the top level with no
restriction on OR nesting.

The model of a single-activity requirement enforces
its timing constraints using parameter dependency
functions (shown in Figure 1 as precedence constraints

on a child task) to constrain the start time and
durations to fall within the absoluteTime bounds. In
addition, service setup and teardown time durations
are looked up using a dependency function of the
services being performed. A track is the service time
between the setup and teardown periods of an activity.
The duration of the track is bounded by a dependency
function to the individualTrackDuration range.

The single-activity requirement is modeled as a task
that encloses the activity task, passing down many
parameters as shown in Figure 1. The assetSpec is
modeled as a string parameter, capturing the AND/OR
nesting of individual antennaIDs. The assetSpec is
parsed, and each OR antennaID choice is assigned a
task decomposition choice, each specific to a
missionID-antennaID pair. An AND grouping is
modeled as a separate decomposition choice (not
shown in the figure) for a continuous requirement (see
Section 3.2) where the overlap is for the entire track.

Many parameters pass down to the “antenna
choice” task for making reservations on timelines such
as the viewperiod timeline (e.g. the missionA-
antenna3-viewperiod state timeline must be “in view”).
The equipment string parameter is used to encode
sharable equipment resources needed for the service
activity (such as specific types of receivers).

3.2. Continuous

A continuous requirement represents uninterrupted
service for longer than a single pass, so the service is
passed off to another antenna, creating another single-
activity instance. This is typical for providing a
spacecraft navigation during launch, trajectory control,
and planetary entry, descent, and landing. As shown in
Figure 2, the track portion of the activities have a
specified overlap, and the continued duration of the

task
temporal
precedence
temporal
equality
parameter
dependency

teardown

single activity
requirement

setup

absoluteTime.min absoluteTime.max

min
max individualTrackDuration

activity

antenna choice 1
OR

antenna choice 2

OR …
… OR

antenna choice 2

individualTrackDuration
assetSpec

antennaID
setup

teardown
missionID

services
equipment

missionID
services

equipment

task
temporal
precedence
temporal
equality
parameter
dependency

tasktask
temporal
precedence
temporal
equality
parameter
dependency

teardown

single activity
requirement

setup

absoluteTime.min absoluteTime.max

min
max individualTrackDuration

activity

antenna choice 1
OR

antenna choice 2

OR …
… OR

antenna choice 2

individualTrackDuration
assetSpec

antennaID
setup

teardown
missionID

services
equipment

missionID
services

equipment

teardown

single activity
requirement

setup

absoluteTime.min absoluteTime.max

min
max individualTrackDuration

activity

antenna choice 1antenna choice 1
OR

antenna choice 2
OR

antenna choice 2

OR …
… OR

antenna choice 2

individualTrackDuration
assetSpec

antennaID
setup

teardown
missionID

services
equipment

missionID
services

equipment

Figure 1. Model of the single-activity
requirement with parameters in italics.

combined service (without double-counting the
overlap time) must add up to totalTrackDuration.

This requirement is modeled in Aspen as a task that
recursively decomposes into successive single-
activities until the total duration is achieved. Like the
single-activity requirement, the start time of the first
activity is restricted with dependency functions so that
the overall continuous sequence is contained inside the
absoluteTime window. The last activity may
accumulate a total duration beyond the
totalTrackDuration and extend beyond the end of the
absoluteTime window with the minimum
individualTrackDuration. In rolling out the
activities, the start time of the next activity is
calculated as a dependency function in the prior
continuous parent from the start time and duration
passed up from the previous activity. The next start
time is then passed to the next continuous parent.
Similarly, the remaining total duration is passed
through the continuous parent tasks subtracting the
track duration of activities along the way. To
determine if the totalTrackDuration is achieved, the
actual total duration is calculated in the last parent and
passed up/back to the top, where the constraint is
checked.

3.3. Segmented

A segmented requirement is useful for specifying
the fraction of time a spacecraft needs service and the
constraints on gaps between services. The main
motivation for this requirement is that spacecraft often
accumulate data at a particular rate and need to
downlink it often so that the onboard storage does not
fill up and start losing data. At the same time, too
much downlink time can clear out the data, and there
will be none to send, resulting in wasted antenna time.

As Figure 3 depicts, the segmented requirement
states that a collection of activities is needed within an
absoluteTime window where the total track time of
the service is within a specified totalTrackDuration
range, the gaps between services are all within a
specified trackGap range, and/or the ratio of time gap
gaps between tracks and the track time is within some
gapToTrackRatio range. Since absoluteTime is a
fixed timeframe, the total duration range and gap-to-
service ratio can be computed from each other:

total gap time =
totalTrackDuration * gapToTrackRatio =
|absoluteTime| - totalTrackDuration.

The segmented requirement is modeled as a task

that decomposes recursively into “segmented parent”
tasks, each decomposing into either two temporally
ordered new segmented parent tasks or a single activity
as a leaf. We chose this binary tree structure so that the
scheduling engine could add or delete tasks in the
middle of a sequence without disturbing other
activities. When Aspen changes a task’s
decomposition, it first abstracts the task by removing
all child tasks underneath and then re-detailing (re-
decomposing) and scheduling new tasks for the new
decomposition choice.

For example, in order to divide the third activity of
a continuous requirement into two, the engine would
abstract the continuous parent, removing the third and
all following activities of the requirement. Then the
engine would recreate and reschedule all of those
activities. The rescheduling is necessary for the
continuous requirement anyway since the fixed overlap
constrains the start time to one value for all but the first
activity, so changing one end time will change the start
of all following activities. However, the gap range for
the segmented gives its activities slack so that it is

trackOverlap

teardown

continuous requirement

continuous parent

continuous parentsetup

activity

activity
trackOverlap

continuous parent

activity

start time
duration

duration

min/max start

start time

actual total
duration

remaining
total duration
start time

actual total
duration

remaining
total

duration
start time

min/max start actual total
duration

durationstart
time

totalTrackDuration

absoluteTime.min absoluteTime.max

trackOverlap

teardown

continuous requirement

continuous parent

continuous parentsetup

activity

activity
trackOverlap

continuous parent

activity

start time
duration

duration

min/max start

start time

actual total
duration

remaining
total duration
start time

actual total
duration

remaining
total

duration
start time

min/max start actual total
duration

durationstart
time

totalTrackDuration

absoluteTime.min absoluteTime.max

Figure 2. Model of a continuous requirement with its unique parameters.

easier to keep the changes local. So, when a lowest-
level segmented parent task is re-detailed, its child
activity may often be the only one affected.

Decomposition of the segmented parent task is
performed similarly to an in-order tree traversal so that
activities are instantiated and scheduled in time order.
We chose to restrict the first activity to start within the
maximum trackGap. The range of the next activity’s
start time is passed down from the activity’s segmented
parent ancestors. The previous activity’s start time and
duration propagate up the tree to the parent it has in
common with the next activity, and that parent
calculates the start time range for the next activity. The
remaining total track duration range is also calculated
for all segmented parents like for continuous
requirements. The scheduling engine uses this range to
spread tracks evenly and to decide whether to split
segmented parents during decomposition. The numbers
of activities before, after, and below are also
propagated and computed to help make the same
scheduling decisions. The use of this information in
decomposition heuristics is described in Section 5.3.

3.4. Periodic

A periodic requirement is meant to make it easy to
request many of the same kinds of activities at once,
especially capturing the need for activities that are
regularly spaced apart, such as “a track every day” or
“3 tracks each week.” Specifically, a periodic
requirement asks for a tracksPerPeriod number of
instances within a time interval of size trackWindow
every specified period of time starting at the minimum
absoluteTime, as depicted in Figure 4.

Like the continuous type, a periodic is modeled to
recursively decompose and roll out parent tasks.
However, each of these also have a “window parent”
child task that recursively decomposes, generating
tracksPerPeriod activities which are constrained to
fit within a duration of trackWindow into the period in
the same way an activity is confined to the
absoluteTime of a single-activity. Notice that the
activity tasks have no ordering constraints within the
same trackWindow.

Although not shown in Figure 4, the period,
trackWindow, and tracksPerPeriod parameters pass
down through the decomposition. The engine currently
assumes that the periodic requirement is for single-
activities but there are plans to be able to also
decompose into segmented and continuous tasks.

3.5. Event Interval

An event is a named time point, interval, or set of
intervals (e.g. apogee, eclipse, day shift). Every
mission plans operations based on their own set of
events, so the scheduling system is designed for users
to schedule with respect to their own event definitions.
Static events are those that the scheduling engine
cannot change. This is the normal sense of events—
the engine does not decide when eclipses or vacations
occur. Dynamic events are those that are events that
are not static. The requirement language allows
dynamic events that reference the time intervals of all
of a requirement’s activities or of the nth activity from
the start or end.

There are two original motivations for dynamic
events for satisfying temporal constraints between
requirements. (1) Different spacecraft sometimes need

totalTrackDuration.min ≤ total ≤ totalTrackDuration.max
total = a + b + c

gapToTrackRatio.min ≤ (|absoluteTime| – total) / total ≤ gapToTrackRatio.max

max trackGap

min/max start
min/max remaining

total duration
#activities before

min/max start
min/max total duration

#activities after

segmented requirement

segmented parent

segmented
parent

setup

activity

activity

segmented
parent

activity

start time
duration

min/max start
min/max total duration

#activities after
local total
duration
#child activities

absoluteTime.min absoluteTime.max

segmented parent

min
trackGap
max TrackGap

min
trackGap
max trackGap

a

b c

start time/duration
local total
duration
#child activities

start time
duration

min/max start
min/max remaining

total duration

min/max start
min/max remaining

total duration
#activities before/after

segmented parent
min/max start

min/max total duration

duration
min/max start

min/max remaining
total duration

start time/duration
local total
duration
#child activities

min/max start
min/max remaining

total duration
#activities before

local total
duration
#child activities

local total
duration
#child activities

totalTrackDuration.min ≤ total ≤ totalTrackDuration.max
total = a + b + c

gapToTrackRatio.min ≤ (|absoluteTime| – total) / total ≤ gapToTrackRatio.max
totalTrackDuration.min ≤ total ≤ totalTrackDuration.max

total = a + b + c

gapToTrackRatio.min ≤ (|absoluteTime| – total) / total ≤ gapToTrackRatio.max

max trackGap

min/max start
min/max remaining

total duration
#activities before

min/max start
min/max total duration

#activities after

segmented requirement

segmented parent

segmented
parent

setup

activity

activity

segmented
parent

activity

start time
duration

min/max start
min/max total duration

#activities after
local total
duration
#child activities

absoluteTime.min absoluteTime.max

segmented parent

min
trackGap
max TrackGap

min
trackGap
max trackGap

a

b c

start time/duration
local total
duration
#child activities

start time
duration

min/max start
min/max remaining

total duration

min/max start
min/max remaining

total duration
#activities before/after

segmented parent
min/max start

min/max total duration

duration
min/max start

min/max remaining
total duration

start time/duration
local total
duration
#child activities

min/max start
min/max remaining

total duration
#activities before

local total
duration
#child activities

local total
duration
#child activities

max trackGap

min/max start
min/max remaining

total duration
#activities before

min/max start
min/max total duration

#activities after

segmented requirement

segmented parent

segmented
parent

setup

activity

activity

segmented
parent

activity

start time
duration

min/max start
min/max total duration

#activities after
local total
duration
#child activities

absoluteTime.min absoluteTime.max

segmented parent

min
trackGap
max TrackGap

min
trackGap
max TrackGap

min
trackGap
max trackGap

min
trackGap
max trackGap

a

b c

start time/duration
local total
duration
#child activities

start time
duration

min/max start
min/max remaining

total duration

min/max start
min/max remaining

total duration
#activities before/after

segmented parent
min/max start

min/max total duration

duration
min/max start

min/max remaining
total duration

start time/duration
local total
duration
#child activities

min/max start
min/max remaining

total duration
#activities before

local total
duration
#child activities

local total
duration
#child activities

Figure 3. Model of a segmented requirement with its unique parameters.

to have contacts that are simultaneous (the case of
Cluster 1 and 2) or back-to-back (STEREO A and B).
(2) Missions may have different requirements for
different services, but the same activities must fulfill
both. For example, Mars missions must keep track of
when they receive uplink services during a pass
because two spacecraft/rovers can share an antenna as
long as only one is uplinking. Thus, since downlinks
always accompany uplinks, the engine schedules each
uplink within a downlink.

An event interval requirement is similar to a
periodic requirement, except that the time windows
into which instances of activities are placed are a
specified set of intervals instead periodic windows of
the same size. For example, a mission may request two
activities between every occlusion.

The model for the event interval requirement uses
the periodic model but adds a string parameter of the
set of intervals and dependency functions to set the
timing of window parents to intervals of the set.

So, like the periodic, the event requirement is also
useful for requesting many activities at once, and it has
an additional convenience in that if there are many
requirements specified relative to an event (e.g.
launch), if the event time changes, the requirements do
not. The user interface of the scheduling system allows
any date/time of a requirement to be an event.

4. Other Requirement Attributes

The last section explained the structure of the basic
scheduling requirement types. We now describe some
other requirement attributes independent of these
types.
4.1. Event constraints

Additional temporal constraints may be specified on

activities in reference to external events (as defined in
Section 0). The requirement language expresses both

“within” and "avoid" logic for specified event sets. For
example, a mission's tracking activities could be
constrained to avoid planetary occultations, to fall
within daylight hours, and to avoid operator vacation
time. While a event interval requirement specifies how
activities are created, the event constraint specifies
where (in time) they are scheduled.

The original choice for modeling these constraints
was to create a timeline for each, but this required an
unknown amount of effort to ensure that Aspen would
support dynamically defining timelines and tasks. This
would be necessary when the scheduling engine
accepted requests to add and remove different kinds
data in the middle of a session.

Instead, we encode the events and their constraints
into a string parameter, and a dependency function of
the start and end times evaluates the string to see if the
constraint is met. If the constraint is violated, the
activity creates a conflict through a reservation on a
timeline devoted to event checking.

The string encodes the constraint as list of
allowable interval relations, Allen relations [1], and an
indicator of whether the constraint must be satisfied for
all or at least one of the event’s intervals. For
example, the string could encode that the activity’s
time interval must be during or containing (but not
having the same start or end as) one of a following list
of intervals. The XML interface currently only
exposes the “within” and “avoid” constraints, but we
expect users will later exploit the much greater
expressiveness of this underlying representation.

4.2. Override

Missions will occasionally interrupt a sequence of
services with another activity. For example, regular,
periodic tracking passes every other day may be
suspended on one day for a trajectory control
maneuver (TCM). Breaking the periodic requirement

periodic requirement

window parent

window parent

absoluteTime.min absoluteTime.max

periodic parent

activity
window parent

activity
window parent

period

trackWindow

tracksPerPeriod

period

trackWindow

periodic parent

activity
window parent

activity
window parent

period

periodic parent

activity

activity

period

periodic requirement

window parent

window parent

absoluteTime.min absoluteTime.max

periodic parent

activity
window parent

activity
window parent

period

trackWindow

periodic parentperiodic parent

activityactivity
window parent

activityactivity
window parent

period

trackWindow

tracksPerPeriod

period

trackWindow

tracksPerPeriod

period

trackWindow

periodic parent

activity
window parent

activity
window parent

period

periodic parentperiodic parent

activityactivity
window parent

activityactivity
window parent

period

periodic parent

activity

activity

period

periodic parentperiodic parent

activityactivity

activityactivity

period
Figure 4. Model of a 2-tracksPerPeriod periodic requirement with its unique parameters. Only

three trackWindows will fit within the absoluteTime bounds.

into two pieces does not work since the day of the
TCM may change. Instead, we directly represent this
kind of relationship. Any requirement can be specified
to override any other. This means that anytime a track
A of a requirement overlaps a track B of another
requirement it overrides, track B is removed, but B still
satisfies its requirement.

This is modeled by decomposing the overridden
track to a noop (phantom activity), so that no
reservations are made on the timelines. The engine also
does not report the activity in schedules and conflicts it
returns. A dependency function of the activity’s start
time and duration determines when it is overridden by
seeing if there are any overlapping activities of
overriding requirements. This function is also triggered
whenever the start time or duration of an activity of an
overriding requirement changes through one of its
dependency functions. These dependency functions are
written in C++ and contain static data structures
keeping track of which requirements override which,
so that checking overrides is simple.

5. Impact on algorithm design

The scheduling engine will generate an initial set of
activities by decomposing requirements based on the
corresponding models described in Section 2. As the
engine creates each activity, it schedules it by choosing
a start time, duration, and allocation of antennas. We
will refer to a choice of these three values as a state of
the activity. A state space is the allowable
combination, of choices for one or more activities. The
scheduling engine’s state spaces only includes states
that meet the constraints of the requirements
(excluding dynamic events constraints as we explain
later) and the spacecraft’s viewperiods.

5.1. State scoring

The states are scored by common and type-specific
criteria. The common criteria are
♦ whether all of the other constraint rules (those of

the DSN, not defined by the requirement) are met,
♦ how well they can satisfy dynamic event

constraints (which we will explain later), and
♦ the closeness of values of the state to their

corresponding preferred values.
For the initial layout, the activity is assigned the

highest scoring state. If there are no legal states, the
activity is rescheduled to a state close to its current
state and maybe satisfying some of the requirement’s
constraints. This is how the single-activity requirement

is scheduled. There are other criteria used for
continuous and segmented types discussed later.

When resolving conflicts, the engine iteratively
chooses a conflict, chooses an activity (or a group of
activities) involved in the conflict, and reschedules
them in one of three ways, depending on the kind of
conflict and type of requirement(s) involved:
1. stochastically assigns a state from the legal space

of choices for the activity, each weighted by score,
2. abstracts (removes) the activities (for a single

continuous or segmented requirement) and
regenerates them through decomposition, applying
method 1 to reschedule each, or

3. systematically searches through the combined
state space of the chosen activities to find and
assign a state for each that together resolves the
conflict if such a combination exists.

The continuous requirement has additional criteria:
♦ the number of subsequent activities that are moved

by assigning the state and
♦ whether the subsequent activities would have legal

state choices.
The segmented requirement uses the same score

criteria as the continuous plus others
♦ for spreading activities evenly across the

absoluteTime range and
♦ for improving the total duration when not within

totalTrackDuration bounds.
If the total accumulated duration falls short of the

evenly-spread ideal by more than its longest legal
duration, earlier start times and longer durations are
preferred. If the total is larger than the ideal by the min
duration, then later start times and shorter durations are
preferred. Otherwise the total duration is acceptable,
and the score is then based on how close the start time
is to an evenly-spread ideal computed as follows:

ideal start time =
absoluteStartTime.min +
(|absoluteStartTime| *

 accumulated total track duration) /
totalTrackDuration.middle –

state.duration – trackGap.middle

In situations when the segmented actual total track
duration is outside the totalTrackDuration bounds,
each state is also scored by how much its duration
increases or decreases in the direction to get the total
within the totalTrackDuration bounds, getting a zero
score if not improving.

5.2. Dynamic event constraints

The scheduling engine does not restrict the state
space based on dynamic event constraints as it does

with static because doing so could prevent the possible
resolution of an event conflict. Suppose that a state of
an activity that satisfies its requirement A can violate a
dynamic constraint that another requirement B has
with A. We cannot simply remove the states that cause
this violation from the state space because it can keep
the engine from exploring some legal combinations of
states, those that require rescheduling activities of both
A and B. For example, as shown in Figure 5, if B’s
activity must be within A’s, but A’s is not in a legal
viewperiod of B, B will not have any legal states. A’s
activity could also have no states if it were required to
cover B, preventing them both from being able to
move to some other time/antenna where they could
satisfy all constraints, shown at the bottom of Figure 5.

Since the state space of activities cannot be reduced
for dynamic event constraints, scoring is used to favor
states that satisfy these constraints, as mentioned in the
second bullet of Section 5.1. Note that when scoring
whether an activity state meets constraint rules, only
the constraints defined for the activity’s requirement
are checked—not those that other requirements have
on it. So, this scoring is based on event constraints
defined in other requirements. The only design choice
here is how to find for an activity the others that have
an event constraint on it. The engine does this by
looking at nearby constraints and effects on common
timelines to find the constraining activities and chooses
states that help satisfy those events constraints.

5.3. Segmented task decomposition heuristics

In Section 3.3, we discussed the model of the
segmented requirement, how the engine decomposes
the task, and how the task decomposition propagates
information in parameters to inform decomposition
heuristics. Here we describe how the decomposition
heuristic uses this and other related information.

The decomposition of the segmented requirement
task is delicate because the number tasks and their
durations are not fixed, allowing for a great number of
possible activity sequences, but viewperiod, event, and
resource constraints can complicate the choices. In our
experience, the performance of the engine was most
influenced by the choice of these heuristics. For one

test, performance ranged from generating a schedule
with ~100 conflicts and growing the conflicts during
rescheduling to a schedule with 6 conflicts on average
and resolving). The effort put into the heuristics was a
significant portion (~10%) of the overall development.

When a requirement is only partially decomposed,
it is difficult to determine whether to split a segmented
parent to add another activity in decomposing the
entire task tree or only a part. In this case, the engine
benefits from knowing
♦ the number of activities there are before, after, and

underneath this parent task in question,
♦ the prior, remaining, and local total track duration,
♦ how many segmented parent tasks are there after

this one that are not yet decomposed,
♦ when the next existing activity starts,
♦ whether it is the next activity after this task,
♦ the min/max number of activities in the tree,
♦ the number and duration of activities outside this

requirement constrain this one, and
♦ the number and duration constrained by this one.

In some cases the decision to split is obvious; e.g.
there will not be enough maximum remaining total
duration to create a minimum duration activity.
Otherwise, the engine compiles the information above
into a few metrics (each ranging in value from 0.0 to
1.0) for computing the probability to split. We do not
give detailed definitions or formulas for these but list
them to give an intuition of our experience in
balancing them to keep the decomposition from
making obvious errors without restricting the
combined state space.
♦ howFarIn = fraction of time into the requirement,
♦ deepEnough = task is deep enough into the tree,
♦ enoughTrackRate = enough prior total track

duration per time,
♦ enoughDuration = enough overall track duration,
♦ enoughSpread = enough activities for an even

spread of duration over time, and
♦ enoughActivities = enough activities overall.

The overall formula for the probability of not
splitting (i.e. no need for another activity here) is

((1.0 – howFarIn) * deepEnough +
 0.5 * enoughTrackRate +
 howFarIn * (enoughDuration + enoughSpread
 + enoughActivities)) /
(2 * howFarIn + 1.5)

The engine uses the howFarIn metric to emphasize

the importance of others with respect to the beginning
or end of the activity sequence. For example,
expanding deep enough is important to balance the tree
for more flexibility in local problem solving, but the

activity A

A in view

activity B

A in view
B in view B in view

B within A

activity A

activity B

activity Aactivity A

A in view

activity Bactivity B

A in view
B in view B in view

B within A

activity Aactivity A

activity Bactivity B

Figure 5. Dynamic event conflict resolution

deepEnough metric is not important (and potentially
damaging) for choosing whether to add activities to the
end. Likewise, there will never be enough activities or
total duration at the beginning of the decomposition, so
placing importance on the last three metrics up front
would result in a very unbalanced tree. The dividend
of the formula normalizes the value to a probability
ranging between 0.0 and 1.0.

6. Related Work

A design of the overall scheduling system [6] gives
more context for the role of the DSN scheduling
engine and the challenges faced in other parts of the
project. An earlier report of this work [5] discusses
other details of the overall scheduling problem,
resource modeling, search strategies, and how other
scheduling problems and approaches relate to that of
DSN scheduling. The report also includes some history
of prior attempts to automate DSN resource allocation.

Some other network scheduling systems use similar
higher-level goal specifications. Mexar2 [3] addresses
the problem of scheduling downlinks for the Mars
Express Orbiter in order prevent the overwriting of
data stores onboard. The segmented requirement is
also meant to capture this problem but does not treat it
as directly as Mexar2 as it is meant to provide a simple
abstraction to avoid the complexity of representing
operations at this more detailed level for each mission.

The European Space Agency tracking network
Management and Scheduling System (EMS) [9]
represents and schedules periodic requests with
min/max gap and other similar constraints. EMS also
uses iterative repair as the engine discussed in this
paper does along with systematic local search.
Continuous tracking and other single-activity services
are allocated by the NASA Space Network Demand
Access System using a first-come, first-serve policy
with no rescheduling [8]. Scheduling for the Air Force
Satellite Control Network [2] is treated as
oversubscribed variant of job-shop scheduling with
additional constraints, similar to single-activity
scheduling for the DSN.

7. Conclusion

In designing a scheduling engine for a requirement

language that more directly and concisely captures

higher-level understanding of scheduling goals, we
found complexity in modeling and search heuristics
inside an iterative repair framework. Our solutions to
these problems point out that hierarchical task models
of basic goal structures are non-trivial, and local search
heuristics can be intricate and fragile. In future work,
we expect to expand the scope and role of systematic
search in the scheduling engine to help offset the
burden of developing and maintaining heuristics.

8. Acknowledgments

The work described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under contract with NASA.

9. References

[1] Allen, J. F., “Maintaining knowledge about temporal
intervals.” Comm. of the ACM 26(11) pp.832—843, 1983.
[2] Barbulescu, L., Watson, J., Whitley, D. and Howe, A.
“Scheduling Space-Ground Communications for the Air
Force Satellite Control Network.” Journal of Scheduling,
Vol. 7, Issue 1, pp. 7-34, January 2004.
[3] Cesta, A., Cortellessa, G., Fratini, S. and Oddi, A. “An
innovative product form space mission planning an a
posteriori evaluation.” In Proc. of International Conference
on Automated Planning and Scheduling. pp 57—64, 2007.
[4] Chien, S., Rabideau, G., Knight, R.., Sherwood, R.,
Engelhardt, B., Mutz, D., Estlin, T., Smith, B., Fisher, F.,
Barrett, A., Stebbins, G. and Tran, D. “ASPEN - Automating
Space Mission Operations using Automated Planning and
Scheduling.” in Proc. of SpaceOps,. Toulouse, France, 2000.
[5] Clement, B. J., and Johnston, M. D. “The Deep Space
Network Scheduling Problem.” In Proc. of the Innovative
Applications of Artificial Intelligence Conference, 2005.
[6] Clement, B. J., and Johnston, M. D. “Design of a Deep
Space Scheduling System.” In Proc. of the 5th International
Workshop on Planning and Scheduling for Space, 2006.
[7] Fayyad, Kristina E., Hill, R. W., Jr., and Wyatt, E. J.
“Knowledge engineering for temporal dependency networks
as operations procedures.” In Proc. of the AIAA Computing
in Aerospace Conference, pp. 1040—1047, Oct, 1993.
[8] Gitlin T. A., Kearns, W., Horne, W. D. “The NASA
space network demand access systems (DAS).” In
Proceedings of SpaceOps, 2002.
[9] Nizette, M., Götzelmann, and M., Calzolari, G. P.
“Automated planning of ESA’s tracking network services.”
In Proceedings of the 7th International Symposium on
Reducing Costs of Spacecraft Ground Systems and
Operations (RCSGSO), Moscow, pp. 11—15, June 2007.

