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Abstract

A planning system must reason about the uncer-
tainty of continuous variables in order to accurately

project the possible system state over time. A
method is devised for directly reasoning about the
uncertainty in continuous activity duration and re-

source usage for planning problems. By represent-
ing random variables as parametric distributions,
computing projected system state can be simplified
in some cases. Common approximation and novel
methods are compared for over-constrained and
lightly constrained domains. The system compares
a few common approximation methods for an iter-

ative repair planner. Results show improvements in
robustness over the conventional non-probabilistic
representation by reducing the number of constraint
violations witnessed by execution. The improve-

ment is more significant for larger problems and

problems with higher resource subscription levels
but diminishes as the system is allowed to accept
higher risk levels.

Introduction

One historical approach to dealing with uncertainty is
to assume no uncertainty at the level of planning abstrac-
tion. To be used in a real world system, such systems
are often augmented with some replanning mechanism for
when predictions do not match resultShien et al,, 2000;
Koenig, 200]. One step further is to depend on an execu-
tion system to handle any variations in plan execution. Ef-
fectively, the planner itself is abstracted from any knowledge
that the real world does not behave as predicted.

There are many planning systems that reason more directly
about uncertainty. Classifications and surveys of this work are
given by Bresinat al. (2002), Blythe (1999), and Boutilier
et al. (1999). Some techniques handle some level of tem-
poral uncertaintfPuterman, 1994; Boyan & Littman, 2000
or continuous resources, e.fBertsekas & Tsitsiklis, 1996;
Smart & Kaelbling, 2000 and one can represent both com-
plex temporal constraints and continuous states/resources
[Dearderet al, 2003. This is important for domains where
concurrent tasks interact in their effect on continuous re-
sources. For example, a spacecraft can be slewing, operating
instruments, and communicating at the same time. Metric
resources such as power, energy, memory, and temperature
are continuously affected and often require complex tempo-
ral constraints to balance safe operation with efficiency.

This paper outlines one possible approach for directly rea-
soning about the uncertainty in action timing and resource

Planning systems that reason about real world events muspnsumption. While Deardegt al. use a Monte Carlo ap-
eventually deal with the inherent uncertainty of any real worldproach to estimating the value of a plan (2003), we directly
mechanism. For example, actions may take longer or consompute parametric probability distributions for time and re-
sume more resources than predicted. Even if it were possiblgource variables based on a user-supplied model of activities
to model every variable that affected a planned set of actiongnd resources. The distributions are then combined during
doing so is impractical for realistically sized domains. Fur-planning to determine the net probability distribution of a re-
ther, practical modeling abstractions themselves also introsource at any time point, which in turn may be integrated to
duce uncertainty into reasoning about a system. yield the probability of violating any execution constraints on
The way a planning system deals with uncertainty in itsthe resource. The key idea is to use this “probability of con-
actions and observations is critical to how well the systenflict” to score potential plans and to drive the planner’s search
is able to perform in the real world. Clearly, systems thattoward low-risk actions. An output plan provides a balance
effectively reason about uncertainty can better avoid geneetween the user’s risk aversion and other measures of plan
ating plans that are likely to violate execution constraintsoptimality. This is a simple conformant planning approach—
But effective use of uncertainty can also improve the longthe planner does no contingency planning but also assumes
term efficiency of a plan by balancing acceptable risk leveldho future state observability.
against the inefficiencies incurred to avoid those risks. Fi- The present work deals only with durations and resource
nally, knowledge of uncertainty allows the system to betterusages that can be modeled as normally distributed random
assess and report on the most risky plan segments. variables, though the techniques are more widely applica-



ble. To gauge the effectiveness of our probabilistic system,
batch-generated plans are executed in a stochastic simul@c’
tor. A comparative evaluation of our technique versus somexr’
common probabilistic approximations is provided along with ¢ gl-
an analysis of its applicability to different kinds of planning
problems.

0.5+
2 Approach
Planning effort is directed to repairing areas of a plan thapg :
have unacceptable levels of risk, as determined by a user- t1 t'qu time
specified risk tolerance on each resource as a function of time. S s

Risk for any one timeline segment is assessed by computing: . . . ) . ) -
the probability that the sum of all activity reservations tha‘i po'fftlegrlgitg;{ tFi,r:"?gjblmy of activity A with normally distributed duratiod continuing
tentially overlap the segment would exceed one of the mod- V]

eled system resource limits. This probability of resource con- o

straint conflict is readily derived if the resources’ net proba-
bility density functions are available. Our approach for main-
taining each net resource distribution is to combine individualR|
activity resource reservations parametrically. o

Each activity in the plan is considered to make uncertainS
resource reservations that follow a known distribution. Fur-o
ther, each activity can also have a duration that is similarlyg
uncertain. (For simplicity, all activities are considered to have=
certain start times - an assumption that holds for directly com-o
manded actions, but may not apply for exogenous events.) In
this paper, we only consider reservations and durations that
are normally dI.StI'Ik-)Uth rgndom variables, though in praCt'CeFigure 2:Transient resource usage distribution for activityf uncertain duration,
other parametric distributions can also be used. The paramedhowing peaks ak when the activity is likely an@ when the activity is unlikely.
ric representation for a normal distribution is very compact,
requiring only the distribution meamn) and standard devia-
tion (¢). In comparison, a particle filtGordon, Salmond, RI+R2 -
& Smith, 1993 requires a value and weight for each sample
taken from a distribution. Conveniently, specified values can
be also represented as normal random variables with a given
ubuto = 0.

In the case of activities that make persistent reservations R2 -
on a resource (that is, they consume or produce a resource),
the net resource distribution for a timeline segment is the @ R17
sum of all current and preceding normally distributed reserva
tions. Fortunately, the sum of 7 independent normal reser- >
vationsn is itself a normal, with parametefss = >, in, ]

andos, = />, o, 2. Notice that the uncertainty of the sum g 0+
is greater than any single component, indicating that resul-5
tant uncertainty grows with the number of interacting reser-
vations. _
For actions that onIy have a transient reservation (|astin£|gure 32Computing the sum of two bimodal resource usage distributions results in
K . . multi-modal distribution. Each resultant peak weight is the product of the component
for their duration only), the same method can be applied tQeights.
those reservations that are concurrent. In the simple case that
each concurrent activity has a certain duration, the net re-
source distribution is computed by adding each local reser?S:

terd,, time

vation. In the more complex case of concurrent activities P[A](t) = { (i) > . i;isﬁl
with uncertain duration, the net resource distribution itself be- = Pu, 00, (1) T =54
comes a function of time. where®,, ,(z) is the cumulative distribution function for a

For an activityA with start timet, and durationd = d,, £+ normal with mearn. and standard deviation. Strictly, nor-
d,, considerP[A](t) to be the probability that actiod is mal distributions may yield negative samples, so we must
executing at time (see figure 1). Ad is normally distributed, truncate only the duration distributions @ co), or in prac-
the end time.,, is also a normal, and we can expréysi](¢t)  tice [0, u + 30].



Each of A’s resource reservations must reflect the grad- vl
ual diminishment of the activity’s probability. A makes a
reservationk when active, iteffectivereservation becomes
a function of time,R(t), as in figure 2). This distribution _ |
is bimodal: one peak at zero resource usage represents that
the activity is not in effect (weighted, = 1 — P[A](?)), S
and theR peak representd’s transient reservation (weighted J
wgr, = P[A](t)). The peak at zero is a scaled Dirac delta &
function: it integrates tavy, but has infinitesimal width. %

The time-sensitive reservations seen in figure 2 are no”
longer simple normals, so the net resource distribution musp
also be more complex. In fact, the sum|df;| different bi- t
modal reservations results in a multi-modal distribution with S
Q(2|A7"|) distinct p_eaks: one for _eaCh combination of activi- Figure 4: single peak approximation for resource usage distribution in place of
ties that could be in effect (see figure 3). multi-modal distribution (figure 2).

With the net resource distributioRDF g(«,t) in hand,

Computing the probability of violating a system resourcemaximum likelihood as representative of a distribution. For
constraint during a timeline unit becomes a simple integralnormal distributions, this is the mean. Because durations are
For a timeline unif/” with a random variable resource level 550 estimated by the mean, there are no multi-modal distri-
and constraints thak € [lmin, lmaz|, then the probability of  pytions, and resource values are tracked as a single value on
violation is given by: each unit. The Means Only approximation is equivalent to an
PVrl(t) = P[R(t) < lmin] + P[R() > limaa) assumption ;hat_ everything behaves as expected.
1 — Pllmin < R(£) < lnaa] Pe$S|_m|_st|c.S|m|Iarto_the Means Only approximation, the
men = — maz Pessimistic approximation only tracks one value from each

te time

1 — (CDFg(lmazst) — CDFr(lmin, t)) distribution. Instead of choosing the value of maximum like-
lmaa lihood, however, it chooses the “worst case” value. For a nor-

= 1- / PDFg(z,t)dx mal distribution, our pessimistic system tracks only the value
bmin i+ 20 (or u — 20), and considers that to be the actual re-

Fortunately, this integral for normal distributions is fast to source reservation. The choice of which direction constitutes
compute and multi-normal distributions require simple linearthe worst case is inherently domain dependent and must be
combinations of this integral. specified.

In the end,P[Vr|(t) may still be a function of time. In Single Peak:A possible limiting factor of the Fully Prob-
this event, we reporP[Vr| as the maximum instantaneous apilistic system are thé)(QlA\) peaks required when com-
probability of violation during the timeline unit. (Such an bining reservations of uncertain-duration activitids The
assumption works for systems where each random value igingle Peak approximation uses a single normal distribution

chosen once and not resampled.) To avoid checkingall,  in place of this set, as in figure 4 (compare with figure 2).
we currently only check a constant number of critical timesThis forfeits accurate representation in favor of much im-
from T', including the endpoints. proved time complexity. The Single Peak approximation is

The probability of constraint violation for each timeline optimistic in that it underestimates reservations.
unit is compared to the user-specified acceptable risk level, Chebyshev Bound:The Chebyshev Bound approximation
and any violations that are more likely than the risk tolerancgs similar to the Single Peak approximation in that both elim-
are flagged as plan conflicts. A planning algorithm can usénate the multi-modal distributions that arise from uncertain
the tolerance to help decide whether and where to add, ordefuration. However, the Chebyshev Bound uses a more rigor-
move, or remove an activity. ous mathematical foundation for its approximation: for any

In our application, we use an iterative repair planner thatandom variable?, no matter the distribution, the probabil-
chooses one over-risk-tolerance timeline unit at a time angty of receiving a sample further thadrfrom the distribution
attempts to reconcile the risk by moving, adding, or deletingmeany. is given by the single-tailed version of Chebyshev's
resource contributors. For our purposes, the plan is scoreglequality:

according to how many remaining “too risky” timeline units 9
remain, and the planner gradually hill-climbs toward plans PR-—pu>1< ———:
with only tolerable risk levels. o +12
. . . Because the Chebyshev Bound assumes so little about a
2.1 Comparison Approximations distribution, it is necessarily pessimistic. Like the Single

Approximation methods were implemented for comparisorPeak, Chebyshev tracks only a single mean and standard de-
against the fully probabilistic system described above. Eachiation, and the sum of two approximated values is taken to
fits within the same planning and heuristic framework, buthave the worst case standard deviatiorg9f=>". 0,,,%. We
maintains the net resource distributions differently. apply the one-sided Chebyshev inequality to the net mean and

Means Only: One very natural approximation method is standard deviation, and report the resulting upper bound on
to disregard all uncertainty and consider only the one value ofiolation probability agheviolation probability.



The Full Probabilistic system fared the best, consistently
achieving nearly zero errors in each domain. It added an
1 % % % 8 appropriate amount of both resource and schedule slack to

A: Consumable Resource

accommodate the specified risk tolerance of 5%. The Sin-
gle Bump approximation also performed well, only having

or © IS b g . .
‘ ‘ | | ‘ difficulty when the resource uncertainty was doubled in (B).
% B: Consumable Resource with 2x Stdev Notably, the Chebyshev approximation did not meet expecta-
a | tions: it turned out to be so very pessimistic in its distribution
% % estimation that it failed to find good solutions, floundering
% with imagined conflicts.
of ‘ ‘ e ‘ ‘ ] The price of using the Fully Probabilistic system is of
L o feree % | course computation time. For problems in which duration

- . was not uncertain, the Fully Probabilistic system was about
10 times slower (unoptimized) than non probabilistic ap-
o9 7 proaches. When duration was made uncertain, however, a
| . . . 1 vast difference appeared. Notably, the Single Peak approx-
Mean;Only Pessi‘mistic FullProl;abilistc SinglePLaakAprx Chebys‘hevAprx imation was almOSt 100 times faSter than Fu“ PrObabi“StiC!
on par with the non-probabilistic approaches. Systems where
Figure 5:Execution error means for the three abstract domain variations. The 99%computational time is at a premium would likely fare well to
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confidence of the mean is shown as an error bar. adopt a simple Single Peak approximation and instead leave
the Full Probabilistic approach for systems where execution
3 Results errors are extremely high cost.

The Full Probabilistic system was evaluated against eac . .

of the comparison algorithms in two disparate planning do- 2 Orbiter Domain

mains. The first domain is an abstract testbed, and the secorde second domain is a more realistic mock up of an orbit-

is a much more complex orbiting spacecraft domain. ing spacecraft model. The model is based on a synthesis of
For each domain, a random problem generator provideéteas from actual models for the EO-1 spaceck@ftienet

the initial schedule for the planner to repair. An iterative opti-al., 2003 and the proposed ASE spacecrBhien et al,

mization planner was then run for a fixed number of iterations2004.  In addition, we strove to model many of the is-

on the seed plan. The planner was augmented to use eachsfes presented in similar planning competition mofisdsg

the full probabilistic and approximation algorithms, and an& Fox, 2004. There are other planning systems that have

output plan was saved for each. The saved plans were thdreated similar spacecraft domains, d@lobuset al,, 2002;

executed on a stochastic simulator that reported the numbéranket al,, 2001.

of resource constraint violations that occurred. Notably, no The modeled hypothetical spacecraft is an earth-orbiting

replanning was allowed as information became available dursatellite equipped with a camera for imaging the planet. The

ing simulation. It would be possible to augment our exper-craft must take actions only when sufficient power is available

iments with more elaborate execution models (flexible timeto its solar panels or by drawing on its battery. The craft must

points, replanning, etc), but such was not investigated in thavoid overrunning its battery, memory, and disk space capaci-

present work. ties. In addition, the processing power and antenna bandwidth
. are modeled as system resources. Finally, the external envi-
3.1 Abstract Domain ronment is modeled as providing limited availability windows

The abstract testbed domain has a single resource and a seriesdownlinks, imaging, and solar power.
of activities that may consume or replenish that resource. The The probe is tasked with acquiring images during target
model was run with both permanent and transient resourceisibility windows, processing those images in RAM, record-
reservations, and with different levels of reservation uncering them to disk, and later downlinking them to a ground sta-
tainty. A valid solution existed for every generated problem. tion. The probe has to reason about 10 resources and has
A comparison of the simulation error means for each ap-0 different activities to complete its goals. Each activity
proximation method is show in figure 5. As expected, themakes reservations on multiple resource timelines. In this
Means Only approximation stacked activities until the re-domain, the random problem generator does not guarantee
source value was very close to its limit. This resulted inthat its problems will always have a completely valid solu-
simulation errors when the simulated values exceeded thion (that is, the problems could be over-constrained since the
mean. The Pessimistic approximation only fared slightly betplanner is forbidden to shed goals).
ter, likely due to its representation deficiency: a simulation As before, the Fully Probabilistic system achieves statisti-
error occurs when a resource exceeds its limit or falls beloveally significantly fewer simulation errors than either of the
zero. After a sequence of several overestimated consumenson-probabilistic systems, and generates plans on par with
the Pessimistic approximation replenished those reservatiorike Single Peak approximation’s. The box plot in figure
with twice as many underestimated replenishers. This causés conveniently shows a comparison of the error counts for
the resource to fall well below zero, and an error is reportedeach system. On a per-problem basis, the Full Probabilis-
In real systems, resources may have one-sided constraints.tic system had a mean 3.05 fewer simulation errors, with a
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Flgure 6: Execution error distribution for each reasoning system. The box plot .
shows the median as a horizontal line, a 95% confidence of the median as a notch, and ~ Figure 8:Execution Error Distribution for Problems of Different Sizes
the interquartile range as a box. The whiskers extend to encompass 1.5 more interquar-
tile ranges, and outliers are plotted beyond that.
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Figure 9: Execution Error Improvement Distribution for Problems of Different
i Sizes

Flgure 7 . Execution error improvement distribution for problems of different goal

densities. (The improvement is measured as the per-problem difference in errors.)

Probabilistic over a Means Only approach diminishes as the

99.9% confidence interval of [ 1.35, 4.90 ]. The PessimistidiSk tolerance is increased. At a risk tolerance of 5%, they
approximation still suffers from the double resource bounc@re distinct with 100% confidence, but even at 10% risk tol-
problem noted for the abstract model, but still achieves perérance the statistical significance has dropped to 80%. Ata
formance comparable to the Means Only approach. Th&Sk tolerance of 50%, the Full Probabilistic system becomes
overly pessimistic Chebyshev system still fares worse thafnathematically equivalent to the Means Only system.
the Fully Probabilistic system, but is not statistically signifi- ~ The difficulty of the problem also plays an important role
cantly worse than the either of the non-probabilistic systemsh determining the Full Probabilistic system’s dominance. As
Notably, the Single Peak approximation achieves an error rateroblem difficulty (measured as number of goals required)
that is comparable to - perhaps even better than (confidendgecreases, the Means Only approach gains on and eventually
of 85%) - the Fully Probabilistic system. This is likely an ar- overtakes the Full Probabilistic approach in terms of simula-
tifact of our domain, in which activities seldom have tails thattion errors. Figure 7 shows the relevant confidence intervals.
stack up into large multi-modal distributions. Perhaps the most important change is that due to over-
Various parameters of the system were changed to evaluatdl problem size. Figure 8 shows that both the probabilis-
the relative sensitivity of each approach. One such paramet¢ic and non-probabilistic systems suffer a roughly exponen-
is the user-specified risk tolerance. As expected, the payoffal growth in simulation errors as a function of problem size.
(in terms of reduced simulation errors) for using the Fully However, the slope of the Full Probabilistic system’s function



is significantly lower than that for Means Only. This indicates[Bresinaet al, 2004 Bresina, J.; Dearden, R.; Meuleau, N.;
that the difference in simulation error counts will probably = Ramakrishnan, S.; Smith, D.; and Washington, R. 2002.
grow roughly exponentially was well. Figure 9 demonstrates Planning under continuous time and resource uncertainty:
this fact more clearly by showing the per-problem improve- A challenge for Al. InProceedings of the Conference on
ment distribution. At large problem sizes, the Fully Proba- Uncertainty in Artificial Intelligence

bilistic system vastly dominates the Means Only approaChEChienet al, 2004 Chien, S.. Knight, R.; Stechert, A.:
while at small problem sizes, there is hardly any difference. =~ gperwood, R.: and Rabideau, G. 2000. Using itera-

. tive repair to improve the responsiveness of planning and
4 Conclusions scheduling. InProceedings of the International Confer-
We have described an approach for directly dealing with plan €nce on Al Planning and Schedulirgp0-307.
uncertainty by collecting and merging the probability distri- [Chienet al, 2004 Chien, S.; Sherwood, R.; Rabideau, G.;
butions from action duration and resource usage. The es- Castano, R.; Davies, A.; Burl, M.; Knight, R.; Stough, T;
sential idea is that by maintaining such merged distributions, Roden, J.; Zetocha, P.; Wainwright, R.; Gaasbeck, J. V.;
a planning system can ask specific questions about the risk Cappelaere, P.; and Oswald, D. 2002. The Techsat-21

of violating constraints at any time. Being able to ask such autonomous space science ageninternational Confer-
guestions allows the planner to better balance its risk posture ence on Autonomous Agents

against its desire to achieve goals. . {[Chienet al, 2003 Chien, S.; Sherwood, R.; Tran, D.; Cas-
We have shown that augmenting a planner with suc tano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.:

a probabilistic reasoning system allows for plans with Burl, M.; Mandl, D.: Frye, S.; Hengemihle, J.; Agostino
execution-time quality superior to that which can be obtained ;"2 0 R Trout B Shulman. S.: Un’ga.r’ S Gaas-
without directly considering uncertainty. Though the under-  ° . = ’V'.’Boyer 'D.: Griffin. M. Burke. H.: G.r,eeley
lying structure of the planner’s decisions are not changed, the ", D,og.ge.t,t T Williams. K.: Baker. V. and Dohm. J
more robust risk assessment afforded by a probabilistic sys- 26’03_ Autof’nor.ﬁous scien’ce.(’)n the I’EO.—’l mission.lnl-’n ’

fbﬂﬂ:?(ﬁghiglaﬂ)ﬁé,ﬂ%?ﬁ] gfeiesgss'gpgsorré;girrgg:tbperggr;qeternational Symposium on Atrtificial Intelligence, Robotics,
-ASP and Automation in Space

more saturated with subscriptions, such focus becomes more
important to finding plans that perform well on execution. ~ [Dearderet al, 2003 Dearden, R.; Meuleau, N.; Ramakr-
The fully probabilistic system makes its gains using a ishnan, S.; Smith, D.; and Washington, R. 2003. Incre-
O(2") algorithm, but we have also shown that a simple Mental contingency planning. ICAPS Workshop on Un-
approximation technique that still tracks distributions can Ccertainty and Incomplete Information
achieve comparable (and sometimes superior) results witfFranket al, 2001 Frank, J.: Jnsson, A.: Morris, R.; and
only aO(n) algorithm. Smith, D. 2001. Planning and scheduling for fleets of
The techniques we have demonstrated are applicable to earth observing satellites. Proceedings of the Interna-
most planning problems that satisfy a few constraints. First tional Symposium on Atrtificial Intelligence, Robotics, and
the resource and duration distributions of actions must be Automation in Space
known. Second, the system must have a relatively high riske) o, set a1, 2004 Globus, A.; Crawford, J.: Lohn, J.; and
aver:seness for thle probabilistic Sftem to rr?akgl a dd|ﬁerer:jc * Morris, R. 2002. Scheduling earth observing fleets us-
In the current implementation, we have not handled many de- o\ o1utionary algorithms: Problem description and ap-

swa;jt_)le pl?nnt:'rtcapabllltles suc\f;vasl;jlz_ecttg{wp(?[ralhcqnstralnts proach. InProceedings of the 3rd International NASA
or discrete state resources. We believe the techniques are Workshop on Planning and Scheduling for Space

still applicable for problems with such characteristics, albeit )
with some modification. Probabilistic reasoning is especiallylGordon, Salmond, & Smith, 1993Gordon, N.; Salmond,

suited to problems of large size and high cost of failure. D.; and Smith, A. 1993. Novel approach to nonliner/non
gaussian bayesian state estimation.
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