Automated Test Case Selection for Flight Systemsusing
Genetic Algorithms

Kevin Barltrop, Brad Clemerit Greg Horvatfy and Cin-Young Lek
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91009

Without rigorous system verification and validation (SVV), flight systems have no
assurances that they will actually accomplish their objectives (e.g., the right system was
built) or that the system was built to specification (e.g., the system was built correctly). As
system complexity grows, exhaustive SVV becomes time and cost prohibitive as the number
of interactions explodesin an exponential or even combinatorial fashion. Consequently, JPL
and others have resorted to selecting test cases by hand based on engineering judgment or
stochastic methods such as Monte Carlo methods. These two approaches are at opposite
ends of the search spectrum, in which one is narrow and focused and the other is broad and
shallow. This paper describes a novel approach to test case selection through the use of
genetic algorithms (GAs), a type of heuristic sear ch technique based on Darwinian evolution
that effectively bridgesthe search for test cases between broad and narrow spectrums. More
specifically, this paper describes the Nemesis framework for automated test case gener ation,
execution, and analysis using GAs. Results are presented for the Dawn Mission flight
testbed.

I. Introduction

Finding the fatal flaws or vulnerabilities of compleystems requires thorough testing. In the tiachl
approach for validating such systems, an expedctela few key high fidelity test scenarios thatoneshe
believes will most likely uncover problems. Eadhhe cases is crafted and evaluated by hand. Suoe® the test
engineer adapts his strategy as he goes alongy imeresting results from one test case to gthdeselection of
new cases. The usefulness of these tests in §jridivvs can be limited by the biases and assumptbthe expert
in the selection process.

Another approach augments the expert selectiorepsowith scripting to walk through many scenarimsjersing
values of various test parameters. Evaluationbm@automated with test result scoring to prioritizeiew team
attention according to features found in the tesuiits. Unfortunately, this approach results istiag valuable test
time on families of similar cases with little nemformation gained. Furthermore, because the ¢ash tmust wade
through a large volume of results, there is legsodpnnity to adapt the approach to what is discedealong the
way.

In this paper, we describe the application of genalgorithms to automated test case selectionxfo# the
advantages of both adaptive expert case seleatidraatomated test space exploration by evolvingsesnarios
that expose the vulnerabilities of a system undst (SUT) according to models and scoring functidefined by
the test team. The test team controls the scopesbkpace coverage through what they choosechadia in the
model, and controls the search priorities throuwgh definition of the fitness function to guide taeolutionary
search. Furthermore, the starting point for tteeceis manually specified, allowing the systenadwer the ground
initially defined as important by the test engirseaontinuing the search into other areas as aedl,adapting the
search to examine more closely those areas wittatelsigns of stress.

This paper is organized into the following sectio(i¥ Introduction, (II) Genetic Algorithm Backgrod, (III)
Detailed Approach, (V) Results, and (V) Conclusion

! Senior Systems Engineer, Systems Engineeringa®edii/S 321-320.
2 Senior Member Artificial Intelligence Group, Plamg & Execution Systems Section, M/S 301-260.
3 Staff Software Engineer, Flight Software and Dgyatems Section, M/S 301-270.
* Senior Software Systems Engineer, Flight Softvesre Data Systems Section, M/S 301-285K.
1
American Institute of Aeronautics and Astronautics

Il. Genetic Algorithm Background

Genetic algorithms (GAs) are search algorithms tisa& heuristics based on biological evolution t@euhe
search. The GA search begins by initializing ao$ablutions, referred to as the population, asstaeting point for
the search. Once a population exists, the seatehsamn iterative loop in which: (1) each solutiorthe population,
referred to as an individual, is evaluated to deiee its fitness, (2) the progenitors of the nesttgration (iteration)
are selected from the current population with &s biawards individuals with higher fitness, (3) thelected
progenitors are varied to create new individuaksr avhich to search, and (4) the newly generatetbithaals are
transmitted to the next generation (basically aspdsough operation). These steps are repeatetl sortie
termination criteria are met. The iterative natafésAs is illustrated in Figure 1. For a more dethiprimer on

GAs, refer to (Goldberg, 1989).
‘ — 7/
¥

Figure 1. The genetic algorithm in action.

I11. Detailed Approach

The following section describes the details of hgenetic algorithms can be applied to automated dase
selection. These descriptions are intermingled wifitussions on canonical GAs and how the speaffjiication
domain (automated test case selection) requiredetelopment and selection of new GA approaches.

A. Termination

As most testers know, a system can never have tob nesting. This is simply a reflection that todagomplex
systems cannot be exhaustively tested due to ms@anstraints, which often translates to constdhischedules
and limited time. Since this task was mainly agehnhology demonstrator, we chose to simply termirtia¢ GA
after specified amount of time, in contrast to ¢dao@ GAs in which specific convergence criteri@ arsually
specified (e.g. no new solutions have been found3agenerations).

B. Initialization

Given noa priori information about a search space, the initial fadpn is typically chosen uniformly at
random over the entire search space. This alloav&th to start from the most diverse possible sasbbitions from
the outset, and then focus in on good solutiorth@gare found. This is the recommended approacthésystem
testing domain as well. However, since there willdoubt be system experts available, GAs can bmengpd by
seeding the initial population with individuals sjjied by experts. This can significantly speedthp search in
finding solutions in particular areas; althoughmity also reduce the likelihood of finding unexpecsolutions as

2
American Institute of Aeronautics and Astronautics

the search space may be too focused from theastdrtinable to effectively reach other areas os#a@ch space. A
good balance is to seed the population with soméaa individuals as well as individuals hand selédty experts.
Another approach, which we took, is to incorpor@tpert knowledge by constraining the search spaspécific
areas of interest. This approach proved extremtfgcteve in the application of GAs to test selentifor pre-
existing Dawn test campaigns.

The last thing to consider for initialization is atta reasonable population size is. We chose agtopusize of
15 individuals, which is typical of evolution stegies (an evolutionary computation method simidaG#s) and
perhaps a bit small for GAs. This number was chdsema variety of reasons. First, experiments with-existing
Dawn data showed that changes in population sievden 10-30) did not make a big difference in ggenfince.
Second, and perhaps more importantly this choiceldvallow us to balance exploitation and exploratad the
search for our specific problem of Dawn fault potien testing. The limiting factor for us was thmé required to
run tests (aka individuals) on the actual Dawnbesst which was roughly two hours per test or edentty 360
tests per month (assuming everything went smoothdy)population of 15 individuals then equates to 24
generations, which is a sufficient number of getiena for good solutions to have evolved. Later,wile describe
how we improved the number of individuals explotedough pre-processing of tests via ASPEN (Autochate
Scheduling and Planning Environment) to remove acdmievable cases.

C. Selection

Selection is the process by which individuals asleced for survival to the next generation. Bysluig
selection towards better performing individualg(&igher fitness), the expectation is that trtiits increase fitness
will be transmitted and exploited in subsequentegations. This bias, also termed selection pressarebe tuned
through different selection approaches.

In its infancy GAs used what is called fitness mrtienal selection, which requires the use of dasclitness
function (fithess functions will be described manedetail later under Evaluation). In proportiorsglection, the
probability of selecting a particular individualegual to the individual’s fitness contributiontb® aggregate fithess
of the entire population. A deficiency of this apgch is that the selection pressure depends greattiie actual
fitness values. For example, selection pressurenbes very high if a single individual significanthtperforms
(e.g. order of magnitude) all others as it willdver sampled in the next generation. Similarlyh# fithess scores of
each individual are very closely bunched, thencsiele becomes little more than random choice amdetlis no
selection pressure.

In order to maintain a constant selection presthatis independent of the absolute fitness diffees, we chose
to use tournament selection. This approach avdidspttfalls of proportional selection by runningutoaments
between subsets of the population and selectingdéisé performing individual from each tournameng.(@nly
relative performance matters). Choice of tournansérg can then be used to tune selection presNotee that
when the tournament size is 1 selection is equitéle random choice and there is no selection pres©n the
opposite end of the spectrum, when the tournanieatis equal to the population size, selection quesis at a
maximum because only the best performing individuahe population will ever be selected. A gootérof thumb
for tournaments is one third the population sizeictv we adopted.

D. Variation (and Representation)

There are two primary variation operators used s Gvhose names, mutation and recombination (aka
crossover), are borrowed from genetics and evalatip biology. Mutation serves as a local searchraipe that
slightly perturbs an individual within its neighbaod. Essentially it can be thought of as a hithbing operator
with a specified step size. Recombination is unigu&As (or other evolutionary computation algamthof which
GAs are a subset) and is an operator that swagcombines portion of two individuals with one drest The idea
is that traits of good individuals will retain tloharacteristics that made them good even when sdapgtween
multiple individuals. This operator allows GAs ke, in contrast to the local nature of mutatitegye steps in the
search space that exploit high performing individimy swapping traits between them.

So, how exactly are mutation and recombinationi@d?r Before discussing these details, we needttoduce
the concept of representation or how individuatgi(ealently points in the search space) are repteddan the GA.
This representation, often referred to as the gpeaspace, is an internal representation of theahsearch space,
often referred to as the phenotype space (we w#l thhese two terms interchangeably in the futiajiation
operators must be chosen in such a way that sma@dtions in genotype space result in small chanmgplenotype
space, e.g. they are highly correlated. Withouh stansistency, relationships in the actual seapeltes cannot be
exploited effectively as the search in genotypecepaill cause dramatic and uncorrelated changgsh@notype
space.

3
American Institute of Aeronautics and Astronautics

While we describe the Dawn fault protection (FRYitey phenotype space here, we believe it to bergdg
applicable to FP testing and system testing as@ewfThe phenotype space can be roughly delineatednputs
and preconditions. For Dawn FP testing, this matsféself as: what fault to inject and when in Bavn mission
to inject, respectively. Showing foresight, the Dat@st engineers abstracted the preconditionsmigsion phases
(which we later augmented with other preconditisnsh as battery state of charge) to reduce theo§ittee search
space. In other words, rather than having evergiples precondition parameter as a search paranmssts, of
precondition parameter values were lumped intotiesion phase definitions. This created an intergstructure
to the phenotype space in which certain fault inpas were not applicable under all phases. Fom@i@ during
the launch phase, science instrument fault injesti@ren’t applicable since science instruments'tapemvered on
during launch. One way to visualize this strucigras an unbalanced tree with the choice of branfthrther down
the tree dependent on choices made higher in ¢lee flor Dawn FP testing, a representative strucsusbown in
Figure 5. As we go down the tree, it should be egagathat the phase constrains the choice of &ef, which in
turn constrains the choice of fault type, whichtum affects the choice of fault argument. For eglenphase pl
can only have fault injections in fault area alfanflt type t1, and so on. Swap out the fault itiggcspecifics with
other inputs and we have a generalized phenotygpeedpr system testing.

Now that the phenotype space has been descriteedutstion becomes how to choose an appropriataygpen
space and associated variation operators suclge¢hatype and phenotype spaces are strongly cadglatg. small
changes to an individual in genotype space resutrall changes in phenotype space). Before dasgrdur final
approach, it is instructional to describe anothgareach that did not exhibit the strong correlatiwhich resulted in
efficient traversal of the search space in aniefiicmanner.

O OO O S

Figure 2. Representative phenotype space for Dawn Fault Protection testing

We decided on antuple representation in which each element intipke is an integer gene that maps to one of
the input or precondition parameters in the phgregpace. Without lack of generality, we descrite dpproach
for a 4-tuple space (which is drawn from the acidavn FP testbed). The integer value of each gefieates the
phenotype value whose choices are dependent omgems upstream in the tuple, in other words anviital
needs to be interpreted to phenotype space by ngatkbwn the tree. Take for example the tuple. (1, 1, 0, 0),
where the left most gene is the phase and the mgist is the argument. First, let’s take a looK[&], which is the
first element in T if we start counting indicesrfr zero. Since there are 3 choices for phase pIrps3, a value of
T[O] = 1 indicates that the phase is p2, which has twoiplesarea values al or a2. The valuelpf] = 1 then
indicates an area of a2, which has two possiblesty@ or t3. Continuing down the trd¢2] = O indicates a fault
type of t2, which has one argument r2. Consequdiily = O indicates a fault argument of r2. So the genotype
(1,1,0,0) corresponds to the phenotype (p2, a22j2The full mapping of genotype to phenotypecspia shown in
Table 1.

For this genotype space, a customized mutatiorduired. Since the only concept of distance in $pigce is the
Hamming distance, mutation randomly perturbs wijnag probability the gene value to one of its othessible
values. Depending on which gene is mutated, this megessitate downstream changes as the previoesvgéies
may no longer be valid. For example, if the indiat(1,1,1,0) mutates its phase to p3 from p2nthe individual
(2,1,1,0) doesn’t make sense. When the individodbnger makes sense, the mutation operator rarydsetdcts all
the downstream genes from the possible choiceadore a valid individual is created leading torgdachange in

4
American Institute of Aeronautics and Astronautics

phenotype space. This is done only if there iseslite change. So, if instead the phase of (0,0¢h@)ges from pl
to p2, then the individual (1,0,0,0) does not needhange and can remain as is. In fact, this qudati mutation

retains all the phenotype structure except of @idos the mutated gene value. In these cases, dagielation

between genotype and phenotype spaces is maintdine@duce the occurrence of reinterpretation clvitireaks
the mold of mutation as an exploitative local skamperator, we adjust the mutation rates such rthastion of

downstream genes is much more likely than upstrgames.

Table1. Hierarchical genotypefor notional phenotype space.

GENOTYPE PHENOTYPE
4-TUPLE PHASE | AREA | TYPE | ARGUMENT
0,0,0,(P1 Al T1 R1
0,0,0,: P1 Al T1 R2
1,0,0,(Pz Al T1 R1
1,0,0,: Pz Al T1 R2
1,1,0,(Pz A2 T2 R2
1,1,1(Pz A2 T3 R3
2,0,0,(P& A3 T1 R1
2,0,0,. P& A3 T1 R2

We adopted a single point scheme for crossoveiceSimerpretation of the genotype flows in a doween
manner, by adopting single point crossover we redbe number of reinterpretations that might needctur by
swapping values out of order; hence, the expectasidhat single point crossover will be less digiee than n-
point crossover. It should be apparent that thigr@ch to crossover allows repeated structuresetewmapped
between individuals, allowing whole branches tort@ntained across individuals. For example, theasgbence of
phenotype al, t1, rl1 can be swapped easily betple@ses pl and p2. As with mutation, in the cadghieae isn't a
match of values across the genes, then the recatidminrequires a reinterpretation of the individaat random
selection to make a valid individual. This seargerator then allows effective search across lilentines while
also providing a macro-mutation operation that significantly alter the phenotype structure.

Recalling that the goal of testing is to find adisgible test that expose system flaws rather trengde best test
case, we realized that we would need to enact mesiso ensure exploration of the search space tdigimd to a
halt and converge to a single solution as expest@nonical GAs. One such measure was to co-evoluation
rate based on feedback on the performance of HretseAs the search starts to sputter and not nmplovement
is made, the mutation rate is ratcheted up to eageuexploration of the broader space. Due to tamstraints we
were not able to enact this modification.

E. Evaluation

Evaluation is the process of assigning a fithesseyaften referred to as the fithess functioneach individual
that is indicative of its performance. This valan ¢hen be used by selection to bias the searldokan areas of
high performance. For system testing, ideally ttree$s value would be the number of system flaws dhparticular
test case exposed. However there isn't an easytovajrectly measure the number of flaws exposedveaare
dependent on using indicators that are likely dased with flaws. For Dawn FP testing, this resdilie a multi-
element vector of indicators that incorporateddbifike (1) was fault injected, (2) was fault dédec (3) were there
resource overruns, etc. Refer to the results farerdetails on each element. Moreover certain elésierthe fithess
vector are stronger indicators of a flaw than atheerd were thus weighted more strongly when coreidby the
selection algorithm. This was accomplished by usingmple weighted sum over the indicator vectocrate a
single scalar fithess value. The weights were andsehand based on expert perception of indicatength. It
should be noted that in actuality what ends updeéasted is the combined Dawn flight system antbéesand as
such some indicators were indicators of testbdterahan flight system flaws.

As mentioned previously, the system testing donsaiks to find all solutions, not just a single tsedution.
Thus, it is in our best interest to preserve ditg(g.g. number of unique individuals within a jpdgtion) such that
exploration continues and the search does not cgav&Ve adopted the use of fithess sharing toratlis effort.
“Fitness sharing modifies the search landscapeetiyaing the payoff in densely populated regionfoviters each
population element’s fitness by an amount nearlyaédo the number of similar individuals in the ptagion”
(Krahenbuhl, 1998). This prevents the search fromverging on particular fithess niches and guidhes gearch
away from heavily populated regions leading to meoggloration.

5
American Institute of Aeronautics and Astronautics

GAs are conceptually very simple and in generahtlagrity of computation time is spent in the ewdion step
in determining the fitness of each individual. Hystem testing domain is no exception and for Dawparticular
evaluation requires the execution of a test ontésthed, which requires approximately two hoursdmplete. In
our extended Dawn FP test campaign, it was postibteenerate test cases that would never succebdhence
would be a wasted 2 hour effort on the testbed {leegpreconditions for the specified inputs wauéder occur). As
part of our extension, we used ASPEN to createfieeational scenarios for achieving the preconutiand fault
injection points to be input into the testbed drivdSPEN was a boon to us as it allowed us to aeasjoensive
testbed runs since it could quickly determine (imittens of seconds) through planning and projectiether or
not a given test scenario was achievable.

One aspect of the system testing domain that wadalidnticipate was the non-deterministic behagidribited
by system tests. Stated another way, results &f tising the same preconditions and inputs wereapaatable. We
encountered this in both Dawn FP and NGDSN (Nexte&gion Deep Space Network) testing. Given thatisra
mature flight system (already in operations) and tither is immature (an R&TD task), it doesn't seem
unreasonable that most systems will encounter #&den their development life-cycle of non-deteristic
behavior. The upshot being that noise in a systeads to be addressed. We took a simple approatanidiing
noise in Dawn FP testing (basically the choices e@uwn to how you resample to remove the effeataée).
Since we weren’t preventing previously run indivatgifrom being revisited in later generations, waild re-run
individuals suspected of having faulty results¢sithere were key indicators of the cause of noise)

V. Results

The Dawn Project is a NASA mission to explore thexeS and Vesta asteroids. It launched in Septeofber
2007 and will arrive at Vesta in July of 2011.h#s a fault protection system that often exhibitmplex behavior.
As expected of any reasonably complex system, #enDiest engineers could not exhaustively tespadkible
combinations of preconditions and inputs to the Bd# system. Instead, they restricted the segrabesto a
much smaller and manageable size by abstractingrémonditions into general scenarios or phasesliamitihg
inputs to single fault injections. They also diadngopreprocessing of the test scenarios to rem@variachievable
test cases (e.g. science instrument fault injestébmring launch are nonsensical). The result cfaloonstraints was
that the test space was reduced to a much morenaae size, which was tested exhaustively in aenoorless
random order. Given this expert constrained sespelte, we sought to demonstrate that GAs couttltfie best
test cases (the ones that exposed the most flamr® quickly than random search, which the actugldampaign
implemented. Equivalently, we wanted to show thAsould find the worst system flaws faster tham standard
approach of random selection (sometimes referredstdMonte Carlo approaches) in the context of gremrx
constrained space.

Figure 3 illustrates the performance charactegsticGAs in relation to random selection in finditige top 4
test cases (remember this is a convention in wiiel'best” test cases are really the tests thatecthe system to
exhibit the worst performance). The y-axis expresse cumulative likelihood of finding a specifest case and the
x-axis represents the number of test cases triethave the particular likelihood. In order to ahtstatistically
significant results for the probabilities, thessules were taken from 1000 separate GA runs apphietie pre-
existing test data. Random selection has a lineadseasing probability of finding any particulast case. GAs
mimic this for approximately one generation (e.§.iddividuals), which is expected since the inifigjpulation is
selected at random. However, after the first gaimrathe GA clearly starts to outperform randoreston. These
results are very promising and indicate that GA&env combined with appropriate expert knowledge, can
significantly reduce the amount of test cases ree&mlencover flaws in the system.

6
American Institute of Aeronautics and Astronautics

Comparison of Nemesis vs. Monte Carlo Test

Generation
0.9

0.8 =

0.7 //
0.6
05 / = = = Random
/ / = Best
0.4
/ / 2nd Best
0.3 / /

3rd Best

Probability of finding test case

4th Best

0.2

w oM M~ = M S =N M~ = M
NN M oM s ST ST NN N WoWw W S N~ 00

of unique test cases tried

Figure 3. Comparison of GA test case selection to random test case selection (performancein finding the top
4 test cases).

We used the ASPEN software to model the operatfddasvn with a level of detail that took more time t
debate than to implement! Figure 4 shows an ASBEN for an intentionally unrealistic scenario ihigh mission
activities have been artificially compressed togeth

W ASPEM

-0 R
File Edit Yiew Schedule/Plan Conflicts Goals Preferences User Functions Beal Time System ﬁl:?pl
o ” “ | I rer—
Al IR I R e S R Y - Ea) @
[aamn Tilo0y a0y R iy 500 Ttaan
I_(ﬂﬂﬂlﬂ!rl
[Score: 1.8 [.v.
gty iy ity o
[Changeingie | T
s L e
[dawnacnmy —_—
[GramBaery
(Tauminjection .
[peTheost —
[Femargemtery 3 =
science
slew o - - N 1
usefC |
e — e o |
usePower AR i
useVIR)
5

Figure 4. ASPEN plan for an intentionally unrealistic Dawn scenario

The Dawn proof-of-concept test campaign was limteé two week period, resulting in the executiérd4
unique scenarios. Unfortunately, the distractioramdom test run terminations due to an identjfibdt not
understood, bug in the Dawn test bed thwarted oat tp collect at least 1000 unique cases overeetmonth
campaign. Our triage of the test results was baped asking two key questions: (1) What geneawasi were

7
American Institute of Aeronautics and Astronautics

associated with high fitness values?; and (2) Vdleaes showed high selection pressure? Gene \@asaasbciated
with high fitness and selection pressure indichte d4cenario features that cause our system unstetotbehave
poorly, and suggest possible flaws in the systedeutest.

The first question is answered by computing themeead standard deviation of fithess values forsitenarios
that contain a given gene variant. We then takerikan minus two-sigma fitness value as a measuihe dower
bound on the fitness for scenarios containinggleae. Implicated gene variants would show a higamplus two-
sigma value, meaning that the fitness is consistémngh for all scenarios. This approach helpsnexate variants
that happen to occur in an occasional high fitrsessiario without actually being the cause of tigh fitness.

The second question is answered by computing tpeated frequency of occurrence of the gene withen t
population assuming uniform random selection ofdvatenarios, and comparing it to the observedutaqy. A
high ratio of observed-to-expected frequency in#igaselection pressure, implicating the gene vargmn an
effective inducer of bad behavior in the systemanridst.

Unfortunately, the small population size diluteg thtatistical significance of these assessmentewekkr,
within the small number of cases that were run, hael what appeared to be three classes of flawden t
combination of the flight system and test bed. |&&bshows a relative comparison of the gene veriarhibiting
the most selection pressure (where a gene var@otr® at least twice as often as would be expdayechance).
The fitness rankings are shown as well to illustthe degree of correlation between fithess aretieh pressure.
Four of the top gene variants were connected taauitp the script to evaluate the downlink signathpor the
spacecraft, so the problem was actually in ouritdsdstructure rather than in the flight systefihe fact that three
of those genes directly controlled telecom-reldtstures of the scenario provides a strong exawiptietecting
dependencies between genes. A second flaw watdureoverly strict check on sun-pointing violasp again in
one of our scripts to evaluate the test runs rathan in the flight system itself. Similar to tfiest flaw, three
implicated gene variants were all directly connédtethe same area, in this case, controlling timesensor features
of the scenario. The last flaw category covergaenal and configuration violations. The “CAT Ahd “CAT
B” violations are indications that the system cgufied hardware in a way that formal rules of openatiefine as
dangerous or risky. “Missing launch RTS” indicattest the system failed to complete required camfijon steps.
Investigation of the details for those cases igoimg.

Table 2. Sdection Pressur e Assessment

SCENARIO ATTRIBUTE SELECTION FITNESS
PRESSURE RANKING

FaultType:TWTA_A_LGA [Downlink scoring bug

FaultArea:HVEA | CAT A & B Violations (TBD)
FaultType:PDU_Stuck_On_Safe_LoadShed | ‘. Missing launch RTSs (TBD)

FaultArea:WTS I [Downlink scoring bug

Activity:telecom | [Downlink scoring bug

FaultArea:PDU | [End state and missing launch RTSs (TBD)
Fault:581316:1 | [W Downlink scoring bug, sun constraint eval
FaultType:PDU_No_Power | [CAT A & B Violations (TBD)
FaultType:CSS_Zero_Current | ‘I Sun constraint eval

FaultArea:CSS | [Sun constraint eval

NetPower:high | [Ambiguous (TBD)

Fault:100:01:00 | I CAT A Violations (TBD)]

Table 3 shows a relative comparison of the geniamnar associated with the highest fithess valuepitied in the
column labeled “FITNESS 2SIGMA”). The frequencyaitso presented to show where luck, more than tsaec
pressure, may be behind the high fithess. For plarnhe top scoring gene variant for a reactiorettassembly
(RWA) bearing failure occurred only once during ttaenpaign, so we cannot claim that the fithessqalay strong
role in uncovering the issue. However, we cantbay randomness aspect of the GA approach allowex be
uncovered since it was not part of the initial gatien of cases.

8
American Institute of Aeronautics and Astronautics

Table 3. Fitness Assessment

SCENARIO ATTRIBUTE FITNESS
2SIGMA

FaultType:RWA_Bearing_Failure CAT B Violations
FaultType:THR_Mech_Stuck_Off End state and missing launch RTSs
PrimaryHvea:C ‘l CAT B Violations
FaultType:THR_Mech_Stuck_On I CAT B Violations

FaultArea:RCS [CAT B Violations
FaultType:RWA_Direction_Bit [Missing launch RTSs
FaultType:MZ_LGA_PATH_WTS5P2 I CATB Violations

BatterySOC:low [CATA & B Violations

FaultArea:RWA [Missing launch RTSs a

The Dawn project will soon resume testing using framework, with the possibility of expanding gwpe of the
model to allow exploration of even more varied sase

V. Conclusion

Using genetic algorithms we have successfully destrated via four different adaptations the capgbid
autonomously explore scenarios and to provide h foatfinding the worst problems in a system unist. Our
errors in the evaluation scripts solidly demonstighe approach’s effectiveness in pointing to $latvough in this
case in the test infrastructure rather than insifstem under test. We expect that the Dawn prejeesumption of
testing with corrected scripts offers the mostcegfit and cost-effective way for uncovering the stdtaws that
remain in the functions needed for in-orbit openadi

Acknowledgments

We thank the Dawn Project for the interesting cstedy material, Giangi Sacco for his work invediigg the
sensitivity of the performance to GA parameter atiohs, and Richard Terrile for his advise on G/Alegation.
The research described in this paper was carriédabuhe Jet Propulsion Laboratory, California ituge of
Technology, under a contract with the National Aenagics and Space Administration.

References

Periodicals
Krahenbuhl, B.S., “Fitness Sharing and Niching MethRevisited,1EEE Transactions on Evolutionary Computation, Vol.
2, No. 3, 1998, pp. 97-106.

Books
4Goldberg, D.,Genetic Algorithms in Search, Optimization, and Machine Learning, Kluwer Academic Publishers, Boston,
MA, 1989.

Proceedings
7Thompson, C. M., “Spacecraft Thermal Control, Designd Operation,”AIAA Guidance, Navigation, and Control
Conference, CP849, Vol. 1, AIAA, Washington, DC, 1989, pp31D15

9
American Institute of Aeronautics and Astronautics

