
Exploring Parallelization Options for Planning and Scheduling 
 

Bradley J. Clement and Tara A. Estlin  
 

Jet Propulsion Laboratory, California Institute of Technology 
4800 Oak Grove Drive, M/S 301-260, Pasadena, CA, 91109 

Bradley.J.Clement@jpl.nasa.gov, Tara.A.Estlin@jpl.nasa.gov 
 
 

Abstract 
Space missions have a growing interest in putting multi-core 
processors onboard spacecraft.  For many missions 
processing power significantly slows operations.  We 
investigate how continual planning and scheduling 
algorithms can exploit multi-core processing and outline 
different potential design decisions for a parallelized 
planning architecture.  This organization of choices and 
challenges helps us with an initial design for parallelizing 
the CASPER planning system for a mesh multi-core 
processor. 

Introduction 
While processor speeds are leveling off, chip 
manufacturers are still keeping pace with Moore’s Law in 
numbers of transistors and are producing processors with 
increasing numbers of CPU cores.  Space flight software 
could particularly benefit from these advances because of 
the limited computation of current flight processors and the 
many applications competing for CPU time.  Future space 
missions may be able to take advantage of parallel 
computing hardware, including many core processors, such 
as Tilera’s 64 core TILE64™ (Wentzlaff et al., 2007), or 
field-programmable logic devices, such as Xilinx’s Virtex-
5™.  For example, image processing often requires a 
relatively large amount of computation time and can be a 
bottleneck in operations.  Mars Exploration Rover 
operations are slowed while waiting on visual odometry 
and obstacle avoidance software that rely on image 
processing and cannot keep up with rover movement.  In 
addition, faster visual odometry might have helped prevent 
the Spirit Mars Exploration Rover from getting stuck in its 
current sand trap and would have been beneficial during 
the attempted extrication. (November - February 2010).  
 
Not only can missions benefit from faster computation but 
also from new capabilities that additional processing 
capability enables.  Planning and scheduling software can 
take advantage of extra processing power to refine higher-
level goals into command sequences, verify the safety of 
those commands, and alter the planned sequence based on 
unexpected events.  This capability can simplify ground 
operations, but more importantly, having the capability 
onboard gives the spacecraft greater flexibility and 

robustness to carry out longer sequences without human 
assistance.  This greater autonomy can be even more 
beneficial or required for deep space missions where 
communication is greatly delayed by the light-time to 
travel long distances or when communication is not 
possible because the spacecraft is on the far side of a planet 
or the Sun. 
 
Although not specifically aimed at parallelization, 
GEMPLAN and its next generation implementation, 
COLLAGE, divide planning problems into loosely coupled 
sub-problems (Lansky, 1991).  The parallelization of 
planning and scheduling has been investigated indirectly 
through distributed planning and scheduling (e.g., 
Georgeff, 1983, Ephrati and Rosenschein, Wolverton and 
desJardins, 1998, Clement and Barrett, 2003, Brafman and 
Domshlak, 2009).  These approaches typically describe 
how agents can solve sub-problems locally and coordinate 
over shared parts of the environment.  Distributed 
constraint satisfaction and optimization algorithms have 
also been applied to scheduling, giving each variable or 
group of variables its own decision-making process (e.g., 
Sycara et al., 1991, Maheswaran et al., 2004).  Recent, 
direct approaches to parallelization of planning divide the 
search space among processors, typically by load balancing 
search state expansion (e.g. Zhou and Hansen, 2007, Burns 
et al., 2009, Kishimoto et al., 2009). 
 
The choice of how to parallelize algorithm computation 
can be especially difficult because of the number of 
options to consider.  Should the problem be divided and 
how?  What are the bottlenecks in computation, and how 
can they be parallelized?  How are shared constraints 
coordinated?  How are the local solutions merged?  Should 
there be threads or separate processes?  Should information 
be communicated using shared memory or messages?  
What middleware should be used? fork? Pthreads? MPI? 
Should distributed planning software be considered? 
 
Many parallelization decisions and challenges are based on 
hardware architecture.  For example, each core of the 
TILE64™ processor has its own L1 and L2 caches, which 
can be shared with other cores, forming a unified L3 cache 
(Ungar and Adams, 2009).  Because memory access is 



chained through adjacent processors, the time required to 
access a memory location in the L3 cache is roughly 
proportional to the Manhattan distance from the processor 
to the cache where it resides.  In addition, the processor is  
limited to four memory controllers for accessing the RAM, 
so memory access from one core may be waiting on those 
of other cores.  Therefore, parallelization will benefit from 
keeping data close to the processors that need it.  One 
strategy is to use the cores located next to the memory 
controllers to stream data to the others, possibly for 
pipelining data processing across adjacent cores. 
 
 
Here we describe our approach to exploring this space of 
options for an existing planning and scheduling system.   
We will outline the space of design choices we are 
considering, describe performance bottlenecks for the 
CASPER planning system (Chien at al., 2000b) and give a 
high-level design for its parallelization.  While many of the 
concepts here are common for parallel programming, we 
find this organization of options and challenges useful in 
specifying and understanding a design and try to reference 
features common to many planning and scheduling 
problems and algorithms. 

Planning Data and Functions 
There are many kinds of planning and scheduling 
algorithms and some with specialized data structures.  We 
will describe general and specific kinds of data and 
functions that a planning system may have and may want 
to parallelize, but we will do this from the perspective of 
CASPER, the planning system for which we have designed 
parallelization. 
 

CASPER is a continual, local search planning and 
scheduling system.  It is continual in that it re-plans 
continually based on state/resource updates from its 
environment.  It is local search in that chooses its next 
search state (schedule) as a change from the current search 
state.  Typically, CASPER loads either an existing schedule 
or abstract goal activities as the instantiation of a problem.  
Often, it initially uses a heuristic algorithm to refine any 
abstract activities into an initial, fully detailed schedule 
with projected state and resource values determined over a 
specified time horizon.  This schedule is fully committed, 
in that it grounds values for start times, duration, resource 
usage, and other parameters.  Then, CASPER iteratively 
updates the system state from the environment, projects 
future states, identifies flaws of the plan (constraint rule or 
preference violations/deficiencies), picks a flaw, and 
repairs or improves it using stochastic heuristics (Chien et 
al., 2000a, Rabideau et al., 1999).  In this way, CASPER 
explores the search space of possible plans (good and bad) 
stochastically while keeping only one schedule in memory.  
Alternatively, a planning system may systematically search 
for a plan, keep alternative search paths in memory, search 
in “action space” by building a plan action-by-action, 
postpone decisions on timing, ordering, or resource use, 
never introduce a new flaw, or backtrack when there are no 
valid choices. 
 
From this point of view, Table 1 lists the kinds of data and 
associated functions that a planning and scheduling system 
may implement.  The memory used by a planner is often 
dominated by search states.  CASPER typically has a single 
search state, the current schedule, which takes up the 
majority of the process’s memory.  Other search states may 
be alternative parts or modifications to a plan, such as 
actions to include, their parameters, resource usage, 

Planning Data Planning functions 

plans/schedules plan and schedule: identify flaws, add/delete search states 

• activities 
o parameters, possible values 
o parameter dependencies 
o parameter/state constraints 
o reservations 
o temporal constraints 

 valid time intervals/orderings 

add, delete, constrain, move, detail, abstract 
get, set, choose value 
evaluate dependency function, propagate values, check if stale 
find valid values, check if violated, propagate constraints 
apply to state/resource timelines 
add, remove 
 compute valid time intervals/orderings 

• future state/resource variables (timelines) 
o values 

compute valid time intervals, identify conflicts 
compute, propagate, get contributing activities 

• constraint rules 
o conflicts 

• preference/optimization criteria 
o scores, deficiencies 

identify conflicts 
choose conflict, choose resolution method (e.g. move, add delete) 
compute scores, identify deficiencies 
choose preference to improve 

Table 1. The basic data and associated functions a planning/scheduling system may implement. 
Highlighted functions are common bottlenecks for CASPER domains. 



temporal constraints, or “no-good” values (search sub-
spaces to avoid). 
 
Different planning systems may dynamically generate 
different types of data and may cache and delete different 
types.  For example, in CASPER, conflict information is 
cached so that it is not all recomputed on every cycle, but 
valid intervals are re-computed each time an activity is 
scheduled or moved. 

Parallelization Options 
Because of the potential impact of data caching on overall 
performance, it is important to consider the parallelization 
of data as well as the parallelization of function.  In 
addition to determining how to divide or duplicate data and 
function, a design must specify how the data is accessed 
(both locally and remotely) and how results are combined.  
Figure 1 summarizes the options for parallelizing planning 
and scheduling.  The rest of this section will discuss each 
of these choices. 

Parallelizing by dividing memory 
As mentioned in the Introduction, accessing local cached 
memory is important for memory-intensive applications.  
What is memory-intensive depends on the hardware.  For 
the Tilera TILE64™, each core has two 8KB L1 caches, 
one each for data and instructions, and a unified 64KB L2 
cache (Ungar and Adams, 2009).  For certain problem 
domains CASPER’s schedule data can require hundreds of 
megabytes, so it will be difficult to minimize cache misses 
and keep them from dominating performance.  In CASPER, 
we have seen cache misses make a 3X difference in 
performance for runs of the same problem. 
 
For the Tilera processors, a planner can parallelize data 
across CPUs in the L2 caches.  While conceivably any of 
the data in Table 1 could be parallelized by their attributes, 
activity, timeline, and temporal constraint information 
typically dominate memory allocation.  Many distributed 
and multiagent approaches are based on memory division 
or ownership.  For example, an agent may only know about 
its own activities.  In distributed constraint satisfaction and 
optimization, variables are allocated to agents, and, in the 
extreme, each variable is an agent. 

distributing memory 
• which data (search space, plans, activities, timelines) 
• how to partition for load balance 
• data replication 

 
parallelizing computation 

• which functions 
o entire algorithm 
o parts of algorithm 

 identifying valid search operators (valid intervals) 
 performing a planning/search operation  
 parameter dependency updates 
 timeline updates 
 identifying flaws 

o methods of data objects 
o data structure operations 

• symmetry (loop-parallelized, master-slave, distributed) 
 

data access and communication 
• access location types (processing node, cache, RAM, disk, network/messages) 
• allocation control (specify node, specify cache, OS decides) 
• movement of data 
• maintain consistency of replicated data (transactions/mutexes, conflict resolution) 
• integration of results (transactions/mutexes, conflict resolution) 
• data routing (centralized, hierarchical, peer-to-peer) 
• synchronous or asynchronous 
• communication services (hardware specific, threads, socket, file I/O, MPI, CORBA, 

database, distributed system interfaces) 

Figure 1. Summary of options for parallelizing planning and scheduling. 



Parallelizing by alternative plans/schedules 
Depending on the planning algorithm and how it is 
parallelized, there may be multiple plans being explored at 
the same time.  These may be alternative complete plans in 
a search space of plans (plan space), or they may be 
partially constructed plans in a search through action-
space.  In forward expansion action-space search, 
alternative plans may be the same up to a certain action or 
point in time.  If memory is not shared, then the common 
parts of the plan may be duplicated across processing 
nodes.  Instead of alternative plans for the same problem, 
there may be alternative sub-problems, such as with 
contingency planning.  CASPER was used to generate 
command sequences for the Orbital Express mission that 
treated contingencies as completely separate problem 
instances, each corresponding to a combination of 
uncertain values for activity parameters (Knight, 2008). 
The section on Parallelizing computation discusses this 
parallelization of the algorithm at the highest level. 

Parallelizing by time 
One way alternative schedules may share common plan 
pieces is a division of a plan/schedule by time.  For 
CASPER, the schedule could be divided by grounded time 
points, but a least commitment planner may choose to 
divide a partial order plan by minimum cuts of a directed 
acyclic graph formed by causal links or simple temporal 
constraints.  Boundary handling is an issue for constraints 
and activities that span time divisions.   This problem is 
captured by the more general issues of how to share data, 
merge solutions, and access the entire search space, which 
we discuss later. 

Parallelizing by resource/state timeline 
Each processor may be in charge of a different subset of 
timelines, each timeline representing the projection of 
future values of a state/resource variable and its constraints 
(as discussed for CASPER in the section on Planning Data 
and Functions).  This would be advantageous when a 
timeline’s data is small enough to all fit in the local cache. 

Parallelizing by activity 
Activities and their associated data often consume the 
majority of memory for CASPER and other planning 
systems, so spreading activities across processors might be 
a way to avoid communication across nodes or, in the case 
of a multi-core processor, to find the data in the L3 cache 
and avoid accessing RAM.  There are many ways to group 
activities, but does it matter?  If the functions of the 
processing nodes are independent of any particular activity 
data, then grouping may not matter.  If the nodes perform 
all operations involving their locally allocated activities, 
then it may be more efficient to group activities with those 
whom these operations affect.  Grouping by time is an 

example of this.  Activities may also be grouped according 
to temporal constraints or parameter dependencies, as they 
are often grouped in branches of a task network.  
 
Activities may also be grouped by states and resources 
they commonly constrain or affect.  Thus, grouping the 
timelines with the activities that constrain or affect them 
may be a good overall memory partitioning.  If an activity 
affects timelines from two different divisions, then there is 
a choice where the activity is allocated.  If the memory is 
not shared, copies of an activity may exist in multiple 
nodes.  Options for sharing memory are discussed later. 

Load balancing for data 
The disadvantage of data parallelization is load balancing.  
While we just suggested that localizing activities and 
timelines that interact would minimize communication 
costs, at the same time, this strategy could produce 
computation bottlenecks.  Some activities have no choices 
and will rarely need to communicate for updates.  Likewise 
some timelines may capture exogenous effects such as 
day/night states and will never need to propagate.  Groups 
of activities and timelines that require frequent attention 
and represent data bottlenecks may be best partitioned into 
smaller groups and (for multi-core processors) allocated in 
neighboring processing nodes. 
 
Partitioning data for load balancing may be different for 
different scenarios and may even benefit from dynamic 
rebalancing.  For example, time window divisions may 
iteratively shrink and expand depending on time spent in 
some search cycle. 

Parallelizing computation 
Where different functions can execute does not depend on 
where the data is stored if there is a communication path to 
access the data.  But, the decision should not be made 
independently when the time to access the data depends on 
location and affects performance (as we discussed is the 
case for CASPER).  Even still, it is not obvious how 
functionality might be distributed among processing nodes.   
In the section on Parallelizing by alternative 
plans/schedules, we began to discuss how sub-problems 
could be subdivided and solved separately.  Possibly the 
simplest way to parallelize computation is to run the entire 
algorithm in parallel.  A stochastic search algorithm (like 
CASPER) could copy the same problem to different nodes, 
each with a different random seed.  Table 2 gives a design 
for this parallel stochastic search.  Another algorithm may 
be able to solve the same problem on each node but with 
each exploring a different solution space.  For example, 
different nodes could explore different assignments of 
resource alternatives to activities, disallowing them from 
switching resources.  Planning algorithms that employ 
dynamic programming or Markov models can often be 



applied recursively to connected subgroups of states in 
both expanding the state-action space and evaluating them.  
Recent work parallelizes the planning search space by 
iteratively farming out search states for expansion (Burns 
et al., 2009, Kishimoto et al., 2009). 
 
There are many more possibilities when considering how 
to distribute and replicate parts of the algorithm (such as 
those listed in Figure 1).  A simple concept for taking 
advantage of data parallelization is to restrict object 
methods to be invoked on the processor to which the data 
is allocated.  Another potentially easy way to get some 
parallelization speedup is to parallelize basic data structure 
functions such as sort() or find().  Experimental support for 
parallelization of functions such as these is currently 
available as a Parallel Mode extension to the GNU C++ 
Standard Library. 

Symmetry 
The functions listed in Table 1 could be parallelized 
symmetrically and/or asymmetrically.  One kind of 
symmetric parallelization would be running the entire 
algorithm for different sub-problems.  A partially 
asymmetric master-slave parallelization may have a 
centralized planner farming out search operations to other 

processors.  A completely asymmetric distributed planner 
may have processor dedicated to each one of the functions 
in Table 1. 

 Communication for Parallelization 
Choices of how to assign data and function are often not 
clear until it is decided how the processing nodes 
communicate. For example, running the planning 
algorithm in each of a series of time windows can be done 
in many ways.  Activity and timeline data could be divided 
into the caches of the corresponding processor, and 
activities overlapping time windows could be locked so 
that communication between cores is only necessary to 
retrieve timeline updates in shared memory.  Alternatively, 
processing nodes could be launched as separate processes, 
let the OS decide where to allocate the data, allow 
activities to move into other windows, and reference all 
data and containers through objects that either contain the 
data or retrieve it over a socket interface. 

Replicating data and maintaining consistency 
These communication choices literally tie the other design 
choices together.  One fundamental choice for parallelizing 
any subset of data and/or functions is whether the data is 

Table 2. Example stochastic and time-parallelized designs. 

  parallel stochastic search  parallelize by time for mesh multi­core 

target platforms  network cluster and/or multi-core mesh multi-core 
memory distributed  schedule activities, timelines by time 
load balance strategy  none iterative window resizing; elimination of nodes with no 

conflicts 
replicated data  problem none 
functions parallelized  entire algorithm entire algorithm 
symmetry  full full 
data location  RAM and disk local cache, OS controlled 
data movement  none rescheduled activities, window resizing 
replicated data  problem update none -shared memory 
integration  best wins and replaces all constraints spanning time windows handled by 

eliminating nodes making no progress 

data routing  copy in-memory or from file peer-to-peer, adjacent nodes for adjacent time windows 

synchronization  after fixed duration asynchronous, exclusive access to data 
services  SHAC, fork or Pthreads SHAC (Clement and Barrett, 2003) 
advantages  good for large search space on a 

cluster with a lot of memory 
good for activities with time localized constraints/ 
preferences; may keep nearly all data in local cache 

disadvantages  uses too much memory to run 
multiple problems on a single 
multi-core machine; redundant 
search for small search spaces 

poor for non-localized constraints; local cache may not 
be large enough for both instructions and data, but that 
may be unavoidable 



replicated in different locations or accessed just from a 
central location.  A location can be from a processing node 
or shared memory.  Shared memory could be located in 
cache, RAM, or non-volatile storage (e.g. a hard drive).  
The location could be at a remote processing node or this 
one. 
 
If data is replicated, then there must be a strategy for 
keeping the data consistent across nodes.  For example, if 
flaws are being fixed in parallel, one node could be 
rescheduling an activity based on information that another 
has since changed.  One way to handle this is to treat the 
entire computation and subsequent fix as a single 
transaction.  Mutexes could be used to lock other nodes out 
from the particular activities and timelines being read and 
written.  However, efficiency can suffer from long wait 
durations, and care must be taken to avoid deadlock or 
starvation.  Another approach is to allow one node to 
reschedule the activity based on possibly bad information.  
At some point later, all nodes must come to consensus (or 
de-conflict) to ensure a valid solution.  Similarly, when the 
results from different nodes overlap in information, 
merging may require de-confliction of disagreeing results. 

Routing data 
A parallel planning design may also need to consider how 
data is routed among the nodes.  The design may include 
customized routing (such as a message protocol that passes 
tokens around a ring of nodes).   The design may not 
include routing and delegate it to the network, operating 
system, or hardware, depending on the physical layout of 
the nodes. 
 
The design can also passively specify routing by selecting 
which processing node gets which data and functions.   For 
example, if timelines are divided by time on a mesh multi-
core processor where memory access time is proportional 
to the distance the data must travel, then adjacent 
timeframes could be mapped to adjacent processors so that 
changes propagate as quickly as possible.  This is a peer-
to-peer or, more specifically, a chain flow of information. 
Information may also flow to and from a central node.  For 
example, as a stochastic local search planner, CASPER could 
run the same problem on different processors with different 
random seeds.  A single node may be receiving state 
updates and could be in charge of sending out the current 
state and schedule to the other nodes, collecting scores, 
loading the best solution, and repeating by sending out the 
new state and schedule. 
 
The flow may be more efficient in a hierarchy.  The Map-
Reduce concept includes parallelizing the transmission and 
collection of information.  So, instead of a single node 
sequentially talking to each other node, the node could 
spread and merge information through a tree of nodes, 

reducing the overall communication time from linear to log 
of the number of processors.  Planners that model problems 
as Markov decision processes could assign sub-graphs to 
processing nodes to naturally parallelize the Bellman 
backup algorithm in merging results. 

Synchronous vs. asynchronous communication 
The merging of results may require some level of 
synchronous processing.  For example, the Bellman 
backup requires that each node receive all downstream 
results before sending its result upstream.  An algorithm 
that parallelizes by time may allow asynchronous updates 
between nodes.  In general, nodes are consumers and 
producers of data, and consistency can depend on 
processing data from consumers after they have produced 
it.  The choice of synchronous and asynchronous 
communication is similar to that of replicating data.  
Waiting for updated data may avoid wasted computation of 
bad information but could result in wasted time computing 
nothing.  The ideal design minimizes the dependencies 
between processing nodes to avoid both ways of wasting 
processing time. 

Software for parallelizing C++ 
When it comes down to actually implementing a design, 
there are more options to consider. We restrict our 
discussion of these tools to those we have considered for 
parallelizing CASPER, which is written in C++ and 
supported for a wide variety of platforms.  The general 
takeaway is that deciding what to use can be complicated. 
 
For creating and synchronizing threads, simple choices 
include using fork() and wait(). POSIX Pthreads give a 
larger set of functions for managing threads, including 
mutexes and other synchronization functions.  OpenMP 
takes another step in sophistication by providing functions 
for managing shared memory and directives to launch and 
manage groups of threads and their recombination.  
Experimental support of some of OpenMP’s functions 
have recently become available in GNU C++Standard 
Library extensions. 
 
For communicating across processes, possibly on different 
computers, another even larger set of options is available.  
Messages can be passed reliably over the Internet with 
socket libraries. Pipes can similarly be used for systems 
sharing a file system.  A number of other message passing 
libraries using different protocols and syntax are available.  
CORBA allows objects to be shared over the network.  
MPI is a protocol specification of message passing for 
parallelizing across different kinds of multi-processor 
architectures.  Multi-agent software architectures provide 
protocols that are more tailored to reasoning applications, 
like distributed planning.  Shared Activity Coordination 
(SHAC, Clement and Barrett, 2003) is one such distributed 



planning framework that is integrated with CASPER.  SHAC 
allows planning and scheduling to be coordinated using 
scheduling permissions and roles that can be manipulated 
to subdivide problems and ensure consistency.  

Design for parallelizing CASPER on a mesh 
multi-core processor 

As shown in Table 1, typical bottlenecks of CASPER are 
related to computing valid intervals for choosing where to 
reschedule an activity, updating parameters in a network of 
functional dependencies (such as energy = power * 
duration), collecting parameters needing updates from 
dependencies, and, in select cases, detailing and re-
detailing activity hierarchies.  In Table 2, we list options 
for parallelization for two example designs we have 
discussed.  Table 3 summarizes our current design as a 
combination of others for parallelizing CASPER for Tilera’s 
TILE64™ mesh multi-core processor.  This design is 
largely driven by the hardware, the bottleneck functions, 
and simplicity of implementation. 
 

While we will likely run multiple CASPERs in parallel for 
evaluation since it is relatively easy to implement, we do 
not expect it to be a good design choice for a mesh 
processor because of CASPER’s large memory 
requirements.  It would still be possible to spread memory 
across the processors by subdividing the problem (for 
example, by time as shown in Table 2). Also, instruction 
memory could either be replicated for local caches or 
remotely accessed from other cores’ caches.  However, 
with any of these options, we expect that requiring each 
core to execute the entire program will result in slower 
memory access compared to allocating smaller scopes of 
functionality to the cores.  Moreover, the ability to 
subdivide a problem and balance processing can vary from 
problem to problem. 
 
Thus, it makes sense to try and distribute functionality and 
memory at a lower level.  The next highest level of 
functionality that could be naturally distributed and 
uncoupled is the iterative repair cycle.  This is our design 
choice in the right column of Table 3.  Thus, two schedule 
operations could be performed in parallel.  The danger is in 

Table 3. Combined design for CASPER on mesh multi-core processor. Columns represent options for what to 
parallelize.  Rows describe how different parallelization strategies would be implemented.  

 

 parallelize bottleneck functions parallelize repair/optimize by 
flaw type 

memory distributed timelines dependencies/activities none 
load balance strategy dynamic grouping dynamic grouping none needed 

replicated data none none none 
functions parallelized propagation, valid intervals propagation, conflict gathering repair, optimize 
symmetry peer-to-peer peer-to-peer master-slave, asymmetric by 

conflict type 
data location local cache, pre-specified local cache, pre-specified RAM/cache 
data movement none none OS controlled 
replicated data none -shared memory none -shared memory none -shared memory 
integration shared memory, no conflicts shared memory, no conflicts determine independence 

data routing centralized through cache & 
RAM 

centralized through cache & 
RAM 

centralized through RAM/cache 

synchronization synchronize after 
propagation 

full propagate before conflict 
gathering 

sequential processing of 
dependent conflicts 

services Pthreads Pthreads Pthreads 
advantages may keep nearly all data in 

local cache 
may keep nearly all data in 
local cache 

many flaws may be 
independently addressed 

disadvantages local cache may not be large 
enough for both instructions 
and data, but that may be 
unavoidable 

local cache may not be large 
enough for both instructions 
and data, but that may be 
unavoidable 

difficult to take advantage of 
locally cached data. 

difficult to load balance and maximize utilization 



maintaining consistency since flaws involving the same 
timelines and activities can be chosen contiguously.  
However flaws of different types often can be fixed 
independently without significant consistency issues.  
Thus, we plan to only parallelize flaws that we know do 
not interact or can force to not interact.  For example, the 
rescheduling of two activities can be isolated to separate 
timeframes or choice of resource. 
 
Discovering what combinations of operations are legal is a 
significant research effort in itself, so we plan to localize 
functionality according to the type of scheduling operation 
determined just by the type of flaw.  For example, a 
processor may be allocated to only fixing conflicts that 
require an activity be moved.  Another may only fix stale 
dependency functions.   Since each performs a limited 
function, the instruction cache is less likely to miss, but 
there is no guarantee that it will revisit the same data. 
 
In order to address our bottleneck functions, we plan to 
additionally localize timeline and parameter dependency 
data and functions to separate processors as slaves to the 
overall CASPER application (shown in the middle two 
columns of Table 3).  We believe that the data may be 
independently subdivided well enough to take greater 
advantage of the local caches.  Since dependencies 
comprise the majority of the memory for activities, it 
makes sense to distribute the activities with their 
dependencies.  Activities sharing dependencies will be 
grouped on the same core or a nearby core.  Valid timeline 
interval, dependency propagation, and stale dependency 
collection will be parallelized in a simple MapReduce 
fashion (Dean and Ghemawat, 2004) by recursively 
spawning the function calls as threads across cores in a tree 
so that the combination of results is parallelized. 
 
In order to localize both functionality and data, we must 
either keep track of which data is on which core to know 
where to spawn threads or set up persistent services on the 
cores, possibly a thread for each activity and timeline.  
Either choice complicates our design since we need to 
specify in our code to locate data and functions.  We plan 
to spawn threads since having services would require the 
additional complication of a communication protocol. 
 
Another challenge of this design is deciding how to map 
data and functions onto the processors and deciding 
whether to migrate data for load balancing.  The Tile64 has 
different caching schemes for three memory types: read-
only, read-write, and user-managed.  In short, read-write is 
the default and the data is assigned a specific core with no 
replication to other cores.  User-managed allows 
replication, but a write by one core invalidates the cache 
lines of the other cores’ copies, and the data is written to 
main memory.  We want to experiment with these 
schemes, but read-write requires that we determine a fixed 

allocation of data to cores up front.  In order to migrate 
data, we would need reallocate its memory, or create 
copies in CASPER.  Reallocation is possible when re-
detailing activities to different decompositions, but we plan 
to avoid this complication. 

Conclusion 
We have described a large number of choices that may go 
into a design for a parallelized planning system. We 
describe our design for parallelizing CASPER, a stochastic, 
continual iterative repair planning and scheduling system 
for a mesh multi-core processor.  In particular we 
characterize our design choices by listing what 
implementation features each would entail. We found it 
useful to characterize the design options to help us create a 
detailed design plan and to discover potential problems.   

Acknowledgments 
The research described in this paper was performed by the 
Jet Propulsion Laboratory, California Institute of 
Technology.  Reference herein to any specific commercial 
product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government, or the Jet 
Propulsion Laboratory, California Institute of Technology. 

References 
Ronen I. Brafman, Carmel Domshlak. “From One to 
Many: Planning for Loosely Coupled Multi-Agent 
Systems.” In Proc. ICAPS, 2008. 
Ethan Burns, Seth Lemons, Wheeler Ruml and Rong Zhou. 
“Suboptimal and Anytime Heuristic Search on Multi-core 
Machines.” In Proc. ICAPS, 2009.  
Steve Chien, Gregg Rabideau, Russell Knight, Robert 
Sherwood, Barbara Engelhardt, Darren Mutz, Tara Estlin, 
Benjamin Smith, Forest Fisher, Anthony Barrett, George 
Stebbins, and Daniel Tran, “ASPEN - Automating Space 
Mission Operations,” In Proc. SpaceOps. Toulouse, 
France, 2000a. 
Steve Chien, Russell Knight, Andre Stechert, Rob 
Sherwood, and Gregg Rabideau. “Using Iterative Repair to 
Improve the Responsiveness of Planning and Scheduling.” 
In Proc. AI Conference on Planning and Scheduling 
(AIPS). pages 300—307, 2000b. 
Bradley J. Clement, Anthony C. Barrett. “Continual 
Coordination through Shared Activities.” In Proceedings 
of the Second International Conference on Autonomous 
Agents and Multi-Agent Systems (AAMAS), 2003. 
Jeffrey Dean and Sanjay Ghemawat. “MapReduce: 
Simplified Data Processing on Large Clusters.” In 
Proceedings of the 6th Symposium on Operating System 
Design and Implementation (OSDI), 2004. 



E. Ephrati and J. Rosenschein. “Divide and conquer in 
multi-agent planning.” In Proceedings of the National 
Conference on Artificial Intelligence (AAAI), pages 375–
380, July 1994. 
Michael P. Georgeff. “Communication and interaction in 
multiagent planning.” In Proceedings of the National 
Conference on Artificial Intelligence (AAAI), pages 125–
129, 1983. 
Akihiro Kishimoto, Alex Fukunaga, Adi Botea. “Scalable, 
Parallel Best-First Search for Optimal Sequential 
Planning.” In Proc. ICAPS, 2009. 
Russell Knight, “Automated Planning and Scheduling for 
Orbital Express.” In Proceedings of the 9th International 
Symposium on Artificial Intelligence, Robotics and 
Automation in Space, 2008. 
Amy L. Lansky. “Localized Search for Multiagent 
Planning.” In Proceedings of the 12th International Joint 
Conference on Artificial Intelligence (IJCAI), 1991. 
R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, P. 
Varakantham. “Taking DCOP to the Real World : Efficient 
Complete Solutions for Distributed Event Scheduling.” In 
AAMAS, 2004. 
G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. 
Govindjee. “Iterative Repair Planning for Spacecraft 
Operations in the ASPEN System.” in Proc. International 
Symposium on Artificial Intelligence Robotics and 
Automation in Space  (i-SAIRAS), Noordwijk, The 
Netherlands,   June,  1999.  
K. P. Sycara, S. Roth, N. Sadeh, and M. S. Fox. 
“Distributed constrained heuristic search.” IEEE 
Transactions on Systems, Man, and Cybernetics, 21(6), 
pages 1446—1461, 1991. 
David Wentzlaff, Patrick Griffin, Henry Hoffman, Liewei 
Bao, Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-
Chang Miao, John F. Brown III, and Anant Agarwal. “On-
Chip Interconnection Architecture of the Tile Processor.” 
IEEE Micro, 27(5), pages 15—31, 2007. 
Michael Wolverton and Marie desJardins. “Controlling 
Communication in Distributed Planning Using Irrelevance 
Reasoning.” In Proceedings of the National Conference on 
Artificial Intelligence (AAAI). pages 868—874, 1998. 
David Ungar and Sam S. Adams, “Hosting an Object Heap 
on Manycore Hardware: An Exploration.” In Proc. 
Dynamic Languages Symposium (DLS), pages 99—110, 
2009. 
R. Zhou, and E. Hansen. “Parallel Structured Duplicate 
Detection.” In Proceedings of AAAI-07, 1217–1223, 2007. 
 


