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Abstract 

Current and future remote space missions, such as 
the aerial exploration of Titan by an aerobot, have the 
potential for collecting more data than can be returned 
for human observation. To relieve this bottleneck, we 
develop sub-polynomial algorithms for autonomously 
clustering aerial imagery. Specifically, we construct an 
Earth-based aerial image dataset as a Titan analogue. We 
compare performances of k-means-based clusterings 
against expert clustering. Among 19 low-level image 
descriptors accounting for color, texture, temporal and 
spatial arrangement, several are found which allow for 
clusterings that more closely match that of an expert than 
do clusterings based on random or periodic sampling. 
Results show potential for allowing scientists to infer 
semantic content of all images by downlinking 
representative images from each cluster. This allows for 
more efficient use of downlink bandwidth, and therefore 
higher quality science return in remote space exploration. 

1 Introduction 

NASA’s Solar System Exploration Strategic 
Roadmap [14] outlines the role of aerial vehicles in the 
future exploration of the solar system, particularly with 
respect to missions to Venus or Titan. In the case of 
Saturn’s moon, Titan, an aerobot (blimp) would collect 
remotely-sensed data some 8km above ground level. It 
would be capable of circumnavigating the moon within a 
six month mission. The Cassini-Huygens mission has 
shown that Titan contains rich and varied landscapes 
(Figure 1), including smooth and rough terrain, sand 
dunes, ethane lakes, shorelines, craters, clouds, and 
possibly cryovolcanoes. With such Earth-like diversity, 
Titan is of great scientific interest. 

Data yield for a Titan mission would be limited not 
by the rate of image acquisition, but rather by 
communications constraints. Communication with Earth 
would be subject to latencies that exceed two hours. 
Downlink bandwidth is expected to be 4500 bits/second, 
or 130Mbits / day assuming an 8 hour transmission 
window [7]. These considerations motivate autonomous 
methods of classifying aerial image data that could 
preselect the most scientifically meaningful data for 
return to Earth.  

Previous work in onboard data understanding has 
focused on rover and satellite platforms. For the Mars 
Exploration Rovers (MER), science targets such as dust 
devils or rocks of specific size, albedo, and shape can be 

 
Figure 1: Cassini-Huygens images showing the 
diversity of Saturn’s moon, Titan. Top-row images are 
from the Huygens probe and show a field containing 
frozen rocks with horizon, a hill etched by 
hydrocarbon rain, and part of a dried riverbed, 
respectively. Bottom-row images are from Cassini 
radar data and show sand dunes, and hydrocarbon 
liquid bodies, respectively. 

 
automatically recognized [3]. For the EO-1 Satellite, 
hazardous events such as fires, floods, and volcanic 
activities are detected and pertinent data downlinked. [5]. 
In both cases, targets can be detected without human 
direction, allowing for automatic data prioritization and 
improved science return.  

Additional challenges exist for an aerobot; it would 
be in constant motion, but difficult to control due to 
unpredictable atmospheric currents. Processing would be 
shared between continuous autonomous control and data 
processing, but would be limited due to radiation 
hardening and energy constraints. A typical 
radiation-hardened processor used in space, the RAD750, 
is clocked around 200MHz, has 128MB RAM, and can 
maximally perform 400 MIPS—several orders of 
magnitude lower than modern desktop computers. These 
limitations, combined with the diversity of surface 
features the aerobot might encounter, favors a 
computationally inexpensive, unsupervised approach that 
makes few assumptions about the image content the 
aerobot will encounter.  Unsupervised methods have 
been proposed for selective data return applications in 
the rover domain. [2, 15]; they have also been widely 
used for image search and retrieval [4] and image 
sequence representation [10, 11] Clustering has been 
applied to aerial imagery [8], though not in an online 
fashion to our knowledge.  

By clustering images as they are collected, an 
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aerobot mission can analyze greater data volume.  For 
example, the aerobot can downlink the r most exemplary 
images closest to each cluster centroid, providing a broad 
overview of the types of data collected. If some clusters 
prove to be consistently interesting then all images from 
those clusters can be prioritized for downlink. Finally, 
scientists can also opt to downlink images most 
dissimilar to the all others—outliers or anomalies. In 
summary, clustering enables selective data return based 
on a representative sample, a biased sample, or outliers. 
These options provide compelling alternatives to other 
data collection methods such as returning images 
collected at random, arbitrary or periodic intervals. 

In this paper, we investigate the application of 
unsupervised classification for selective transmission of 
aerial image data in remote space exploration. We 
represent images in a metric space to compare their 
similarities. We identify specific image feature 
descriptors to encourage clusters based on semantic 
content such as presence of horizons, clouds, and water 
bodies.  A broad survey of different image features 
suggests several that are both computationally efficient 
for spacecraft computing resources and relevant to the 
image categories identified by planetary scientists. 

Section 2 begins by describing a small Earth-based 
aerial image dataset.  Section 3 details the low-level, 
computationally inexpensive features we consider. These 
features account for color, texture, spatial arrangement, 
and time. Section 4 details both our algorithmic and 
manual (expert) clustering methods, as well as the metric 
with which we compare them. Sections 5 and 6 compare 
the effectiveness of different feature and clustering 
parameters.  For our dataset, clustering based on several 
frequency-space features can more closely match an 
expert’s clustering than periodic or random sampling. 

2 Dataset 

We constructed a dataset of aerial imagery using a 
consumer-grade digital camera (Canon PowerShot 
SD850 IS) with resolution limited to 1600 x 1200. A total 
of 162 images were collected during a commercial flight 
from New York to Los Angeles. Images primarily 
contain shots dominated by sky, horizon, or undeveloped 
land. Some contain clouds, discernable water bodies, 
developed land, or have small portions of the plane’s 
wing or window at one more edges. Example images are 
displayed in section 4. 

Factors such as varied terrain, presence of clouds, 
horizons, water bodies, and artifacts (e.g. the occasional 
window or wing obstruction) made this dataset a 
particularly appropriate Titan analogue. 

3 Features 

We chose features to represent the color, texture, 
time, and spatial arrangement of each image. In order to 
reduce computational costs we favored simple features 
based on first- or second-order statistics that required 
little preprocessing. 

We split the features into four themes: edge, color, 
frequency, and time. The edge and frequency features 
correlate with image texture, color captures basic color 
statistics, and time is an integer denoting the temporal 
order of image acquisition.  

3.1 Edge Features 

Let ܫ   be an ݉ 3 ݔ ݀ ݔ  image, and ܫ′  be its 
 be the resulting binary image ′′ܫ grayscale. Let ݀ ݔ ݉
from performing convolution with a Sobel operator on 
image ܫ′ . Let ܩ௬, ௫ܩ  be the ݉ ݔ ݀  matrices 
representing vertical and horizontal gradient responses, 
respectively. Let ܮ׏ ൌ ඥܩ௬

ଶ ൅ ܩ௫
ଶ  be the ݉ ݔ ݀ 

matrix representing gradient magnitudes, and ߠ ൌ
,௬ܩ2ሺ݊ܽݐܽ ௫ሻܩ  be the ݉ ݔ ݀  matrix representing 
gradient orientations. Then the edge features are: 

 

଴ܨ ൌ
ଵ

௠ௗ
∑  ᇱ (edge density)ܫ

 

ଵܨ ൌ
ଵ

௠ௗ
∑ሺ׏Lሻ (mean gradient magnitude) 

 
ଶܨ ൌ  ሻ  (gradient magnitude entropy)ܮ׏ሺܪ
 
ଷܨ ൌ  ሻ (gradient orientation entropy)ߠሺܪ
 
Figure 2 contrasts the edge densities of images with 

smooth and rough terrain. 
 

 
Figure 2: The density of edges (middle) as visualized 
in a heat map (right) provide texture information. 
Water bodies (top) tend to be homogenous regions 
containing few edges as compared to purely 
land-based imagery, such as this dust devil-torn 
landscape (bottom) in the southern hemisphere of 
Mars taken by THEMIS (image ID V07829003, [18]). 
The edge density of the top image is 0.02 while the 
edge density for the bottom is 50% greater at 0.03. 



3.2 Color Features 

Let ௜ܲ be the ݉ ݔ ݀ matrix of pixels in band ݅ of 
Then, for all ௜ܲ .ܫ  the color features are: 

 
ସ..଺ܨ  ൌ   standard-deviation( ௜ܲሻ 
 
଻..ଽܨ  ൌ   meanሺ ௜ܲሻ 
 
ଵ଴..ଵଶܨ ൌ min( ௜ܲሻ 
 
ଵଷ..ଵହܨ ൌ max( ௜ܲሻ 
 
Figure 3 contrasts the color features of two images 

containing different terrain. 
 

 
Figure 3: Terrestrial images (left) and their color 
histograms (right). Images dominated by clouds or 
sky will have histograms distinctive from many 
ground-based images (bottom). The top image has 
greater expression of all colors (standard deviation 
about the mean of red, green, and blue bands are 38, 
30, 23) resulting in an image dominated by white. The 
bottom image contains diminished color expression as 
demonstrated by the tighter standard deviation of 
colors about their means (22, 12, 8). 

3.3 Frequency Features 

Let ݂ be the resulting ݉ ݔ ݀ matrix after the 2D 
Fourier transform on ܫ′, and let ܩሺ݂ሻ ൌ |݂|ଶ  be the 
 power spectrum of ݂. For the normalized power ݀ ݔ ݉

spectrum ܰ ൌ
ீሺ௙ሻ

∑ீሺ௙ሻ
 the frequency features are given 

by: 
 
ଵ଺ܨ ൌ  ∑ ܰ௫வ଴,௬வ଴  (quadrant-1 energy) 
 
ଵ଻ܨ ൌ  ∑ ܰ௫ழ଴,௬வ଴  (quadrant-2 energy) 
 
These features were motivated by [12], which were 

found by a survey of 28 low-level frequency-space 

statistics to best discriminate a subset of the Brodatz 
textures. 

Figure 4 provides visualization of a 2D Fourier 
transform in terms of its amplitude on both real and 
synthetic data. 

 

 
Figure 4: Top row shows images of a square, circle, 
and sand dunes within Mars Proctor Crater (image 
ID V02571003 [18]). Bottom row shows respective 
log-scale magnitude images of their Fourier 
transforms. Notice that quadrants 1 and 3, as well as 
quadrants 2 and 4, of the magnitude images are 
symmetric. 

3.4 Time Features 

For a sequence of images collected in serial, let the 
acquisition order ܫ௧  be an integer representing the 
ordering of each image:   

 
ଵ଼ܨ ൌ  ௧  (acquisition order)ܫ

 

3.5 Spatial Features 

In addition to accounting for texture, color, and time, 
we attempt to capture the spatial distribution of image 
features. Traditional approaches use image segmentation 
or region-growing methods to find objects or areas of 
uniform color or texture.  These methods may be too 
expensive for aerobot applications. 

Instead, we account for spatial arrangement by 
splitting each image into ݊ ݔ ݊ equal-sized subimages 
and collecting the same features in each. Hence, for 
݊ ൌ 1, we collect each desired feature once on the whole 
image, whereas for ݊ ൌ 4 we collect each feature in 
each of 16 subimages (except for acquisition order, 
which is never collected more than once).  These 
subimage features are appended into an ordered vector 
whose dimensionality grows in proportion with the 
number of subimages. 



4 Clustering 

We cluster using iterative k-means per the standard 
Lloyd’s algorithm [13]. We initialize cluster centers 
using random datapoints and use a Euclidean distance 
metric to assign cluster membership.  Image features 
were standardized prior to clustering. 

Distances in the Euclidean space are sensitive to 
noisy or redundant dimensions.  To account for these 
factors we employed a linear dimensionality reduction 
using Principal Component Analysis (PCA) with varying 
numbers of principal components. 

4.1 Expert Labeling 

We elicited a manual clustering of our dataset from a 
planetary volcanologist to serve as a ground-truth 
standard for evaluation.  The expert’s only formal 
introduction to the task was a three minute introduction 
to custom software that facilitated manual clustering 
through a graphical, drag-n-drop interface. Additionally, 
the following written prompt was provided: 

 
Suppose that the following aerial images were taken 
of an environment for which we have little 
knowledge or data. Furthermore, suppose that you 
may not be able to receive all images. Please sort 
these images into 5 groups in such a way that if you 
could only receive a small number of images from 
each group, you could reasonably infer the content of 
the remaining images in that group. 
 
We considered allowing the expert(s) to choose the 

number of clusters, but decided that this would provide 
too much flexibility given our intentionally vague 
prompt.  This could create confusion about clusters’ 
appropriate extent and roles.  It is especially important 
since accepted methods of interpolating multiple, 
non-homogenous expert clusterings (e.g. [16]) are 
inadequate if scientists pursue multiple, independent 
goals. We settled on 5 clusters for the simple reason that 
the number of clusters should be at least an order of 
magnitude less than the size of our dataset.  The current 
study uses the data provided by a single expert. Upon 
interview, the expert felt that five was a mostly adequate 
number; six would have been ideal so that an outlier 
group could have been established. Notably, the expert 
spent roughly 20 minutes clustering 162 images. 
 

 
Figure 5: Five randomly chosen images from each of 
five clusters created and named by a planetary 
volcanologist 

The expert sorted images by the semantic 
distinctions “Rivers”, “More Clouds”, “Land”, 
“Horizon”, and “Desert.” Figure 5 shows representative 
images selected at random from each. In terms of 
low-level features, images in the “Horizon” category 
contain a line separating the image into two regions of 
color and texture: above the horizon the sky contains 
nearly uniform texture and a gentle gradient from light to 
dark blue, while below the line both texture and color 
dramatically vary. “Land” images largely contain patches 
of ground in shades of brown and green while “Desert” 
images are dominated by only brown patches. Texture in 
all images generally becomes smoother as the altitude 
increases. The clouds in “More Clouds” images contain 
patches different from neighboring areas in color and 
texture. “Rivers” images appear to be the most difficult 
to describe in image primitives. One observation is that 
the rivers are meandering polylines of widely varying 
thickness and are typically of a different color and 
smoother texture than their surroundings. 

4.2 Cluster Comparison 

We compare automatic clusterings against the expert 
standard using the information theoretic adjusted mutual 
information (AMI), which we briefly derive here. 

 
Given dataset ܵ ൌ ሼݏଵ, …,ଶݏ ,  ேሽ and clusteringsݏ
 
 ܷ ൌ ሼ ଵܷ, ܷଶ, … , ܷோሽ            (1) 
 
 ܸ ൌ ሼ ଵܸ, ଶܸ, … , ஼ܸሽ            (2) 
 

where ⋂ ௜ܷ
ோ
௜ୀଵ ൌ ∅, and ⋃ ௜ܷ

ோ
௜ୀଵ ൌ ܵ (e.g. the ௜ܷ are a 

partitioning, or clustering, of ܵ, and similarly for ܸ). 
Then, the probability that a random data ݏ ∈ ܵ is also 
contained in some cluster ௜ܷ is  

 

 ௨ܲሺ݅ሻ ൌ
|௎೔|

ே
            (3) 

 
The probability that ݏ is contained in some ௝ܸ is 



 

 ௩ܲሺ݆ሻ ൌ
ห௏ೕห

ே
            (4) 

 
The joint probability that ݏ ∈ ௜ܷ and ݏ ∈ ௝ܸ is 
 

 ܲሺ݅, ݆ሻ ൌ
ห௎೔ ∩ ௏ೕห

ே
            (5) 

 
The mutual information is then defined as 
 
,ሺܷܫܯ  ܸሻ ൌ  ∑ ∑  ஼

௝ୀଵ
ோ
௜ୀଵ     (6)  

    ܲሺ݅, ݆ሻ log ቀ
௉ሺ௜,௝ሻ

௉ೠሺ௜ሻ௉ೡሺ௝ሻ
ቁ 

 
Mutual information quantifies how much knowing 

about one clustering tells us about the other. Though it is 
symmetric and non-negative, it is not upper-bounded by 
a constant, and so is not useful as a general metric for 
comparing clusterings. Furthermore, Vinh et al. 
demonstrate that mutual information does not take a 
constant value when comparing random clusterings, and 
tends to grow with the number of clusters [17]. They use 
a hypergeometric model of randomness to derive an 
expected value for two random clusterings.  This 
permits a correction similar to the Adjusted Rand Index 
[9] that ensures random clusterings produce a constant 
value, This correction yields the Adjusted Mutual 
Information (AMI): 

  

,ሺܷܫܯܣ ܸሻ ൌ
ሺெூሺ௎,௏ሻି ாሼெூሺ௎,௏ሻሽሻ

୫ୟ୶ሼுሺ௎ሻ,ுሺ௏ሻሽି ாሼெூሺ௎,௏ሻሽ
  (7) 

 
The entropies of clusterings ܷ, ܸ  denote the 

uncertainty in a data point’s cluster membership: 
 
ሺܷሻܪ ൌ  െ∑ ܲሺ݅ሻ log ܲሺ݅ሻோ

௜ୀଵ    (8) 
 
ሺܸሻܪ ൌ  െ∑ ܲሺ݆ሻ݈ܲ݃݋ሺ݆ሻ஼

௝ୀଵ    (9) 
 
The denominator in ܫܯܣ corrects for randomness 

and serves as a normalization, as otherwise ܫܯሺܷ, ܸሻ ൑
minሺܪሺܷሻ, ሺܸሻሻܪ . Furthermore, ܫܯܣሺܷ, ܸሻ ൌ 0  only 
when equal to its expected value (e.g., that expected by 
comparing two random clusterings), and ܫܯܣሺܷ, ܸሻ ൌ 1 
when clusterings ܷ, ܸ are identical. 

5 Results 

5.1 Exhaustive Parameter Search 

We begin with an exhaustive search over the 
parameter space to identify promising features.  
Specifically we cluster the dataset once for each possible 
non-empty subset of the four feature themes (edge, color, 
frequency, time). We consider each theme as the smallest 
unit (rather than each individual feature), which yields 15 

potential combinations. Finally, we use subimage 
decompositions of size  1, 4, 9, and 16, corresponding 
to ݊ ൌ 1, 2, 3,  and 4.   

We apply PCA with different dimensionalities to 
account for potential redundancy within, or interplay 
between, feature themes (e.g. the possibility that one 
edge feature and one color feature are most 
discriminative). We vary the number of principal 
components used from 1, 2, … ,19, 20, 24, 28,
… , 96, 100  or up to the dimensionality of the base 
feature set. Finally, we also vary the number of clusters, 
݇, over 3, 5, 7, 9, 11. 

For each set of parameters, we compare algorithmic 
clustering with the expert clustering. In figure 6, the 
maximal AMI for each feature theme across all 
parameters is reported. For convenience, we summarize 
the parameters: 

 The 15 non-empty subsets of themes: {edge, 
color, frequency, time}. 

 Using PCA vs. not using PCA. 
 When using PCA, the number of principal 

components from 1,… , 100.  
 Number of clusters, ݇, from ሼ3,5,7,9,11ሽ. 

 

 
Figure 6: Best clustering performances among feature 
themes over increasing numbers of subimages. 
Reference performances of random and acquisition 
order (t) clustering are also displayed to the far right. 

Increasing the number of subimages improves the 
AMI for all theme combinations that do not make use of 
frequency-space features. Except for the FT features, 
AMI does not exceed 0.26 for any subset of features 
unless collected under 16 subimages, at which point 
dimensionality reduction becomes necessary. For one 
subimage, the FT features yield the highest overall AMI 
of 0.343.  We exclusively consider this combination in 
the analysis that follows because it is fast to collect and 
data are represented in a mere three dimensions. 

5.2 Frequency-Space and Time Features 

In further investigating clusterings with FT features, 



we first verify the trend in figure 6 that larger numbers of 
subimages will lower performance. We fix the number of 
clusters to ݇ ൌ 5 and conduct 100 trials for each of 1, 4, 
9, and 16 subimages, and over all possible number of 
principal components. For each variation in the number 
of subimages we restrict our results to the set of trials 
that yielded the highest AMI over all possible number of 
principal components. Figure 7 displays these results. 

 

 
Figure 7: FT-based clustering performance with 
varying subimages. The solid and dotted horizontal 
lines represent mean AMI over 100 trials of 
acquisition order and random clustering, respectively. 

We next consider the utility of PCA for one subimage. 
This is an appropriate question since the FT combination 
may not require all features for optimal performance. 
 

 
Figure 8: FT-based clustering performance using 5 
clusters and 1 subimage while varying the number of 
principal components. The solid and dotted 
horizontal lines represent mean AMI over 100 trials 
of acquisition order and random clustering, 
respectively. 

We see that there is no statistical significance 
between the base feature set and a compressed feature set 

(Figure 8). Considering the performances of acquisition 
order clustering and frequency-space clustering in figure 
6, it may be that only one frequency-space feature, paired 
with acquisition order, is necessary. Alternatively, 
designers can implement all three features, opt out of 
dimensionality reduction, and suffer no detriment. 
 

Next, we vary the numbers of clusters within 1 
subimage.  

 

 
Figure 9: FT-based clustering performance using 1 
subimage and no PCA while varying the number of 
clusters, k. The solid and dotted horizontal lines 
represent mean AMI over 100 trials of acquisition 
order and random clustering, respectively. 

Figure 9 shows optimal performance when the 
number of clusters matches the number used in the 
expert’s manual evaluation. 

Finally, we compare the results of clustering with FT 
features against methods based on acquisition order and 
random clustering in figure 10. 

 

 
Figure 10: Comparison of FT-based clustering 
performance over 100 trials against acquisition order 
and random clusterings 

Random clustering results in a low, fixed 
performance score and clustering with frequency and 



time features consistently outperforms clustering based 
on time alone. 
 

 
Figure 11: Example algorithmic clustering of a 
terrestrial dataset using FT features. Three 
representative images closest to each cluster centroid 
are displayed (gray lines). Four outliers are also 
displayed (red lines). 

More qualitatively, Figure 11 displays an FT 
clustering in two dimensions with near centroid and 
outlier images. Most striking is the separation between 
images containing horizon and/or clouds from those 
containing ground-based images. Cluster 2 favors images 
with clouds while cluster 3 favors images with horizon. 
Both horizon and clouds are abundant in the outlier 
images contained by Cluster 2. Both of these clusters 
contain images with significantly lower energy in the 
power spectrum of their Fourier transforms when 
compared to the rest of the images. This is likely due to 
the contribution of strong, lower-frequency signals from 
homogenously textured clouds and sky, and the weakly 
periodic nature of images speckled with clouds. There is 
no clear distinction between Clusters 1, 4, and 5 in terms 
of the expert categories, but it is interesting to note that 
the representative images in Cluster 5 have highly 
detailed textures and are taken at a relatively low 
altitude. 

6 Discussion 

Our initial investigation revealed three features 
which outperform both random and acquisition 
order-based clustering, which respectively serve as 
analogues for random sampling and periodic sampling in 
an environment. These features are relatively fast and 
simple to collect. The requisite Fourier transform is an 
 operation [6] while the normalization and energy ݊ ݃݋݈݊
sums are linear with respect to image size. 
Dimensionality reduction need not be used.  With a 
fixed number of iterations, k-means runs in linear time. 
Therefore the total algorithmic complexity is 
sub-polynomial in image size and linear in the number of 

images. 
The computational cost of the Fourier transform may 

be reduced if, in future work, it were found that these 
features worked as effectively on thumbnail-sized images 
or independent subimages. 

It is well known that solutions provided by k-means 
are sensitive to initialization. In our results, we see that 
performance can vary by as much as 0.05 AMI, but it 
never underperforms clustering based on acquisition 
order. Even so, there has been significant work on clever 
initialization of k-means that tends to improve both 
performance and runtime (e.g. [1]). These should be 
considered for future work. 

Exploration of domain-specific features would also 
be useful. Determining methods that reliably form 
clusters for specific terrain (or its lower-level counterpart, 
texture) could aid specific science objectives. Beyond 
forming clusters based on terrain, it might also be 
interesting to consider forming clusters based on raw 
image quality. That is, can we easily set aside images 
which are marred with noise or sensor artifacts, or were 
collected with unfocused optics? 

Finally and most importantly, we are comparing 
against a single expert and dataset. These results should 
be validated against additional experts and datasets.  

7 Conclusion 

We have explored onboard, computationally 
inexpensive clustering for improving the science return 
of missions where more data can be collected than 
returned for human observation. Motivated by the 
potential for the aerial exploration of Titan via an aerobot, 
we have collected an Earth-based aerial image dataset 
and compared k-means clustering with that of a planetary 
volcanologist. Among 19 low-level features accounting 
for color, texture, spatial and temporal arrangement, 
three were found which more closely match the manual 
clustering of an expert than do clusterings formed by 
random or periodic sampling. 
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