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Abstract

We present an adaptive sensing method for federated plan-
ning observations of Earth science phenomena. Adaptive
sensing is a technique that assists in studying these events
by utilizing online analysis of the phenomena to determine
the locations most advantageous for sensing. We use a feder-
ated planning framework to select observation requests for a
set of heterogeneous assets and submit those requests to spe-
cific asset planners to produce detailed plans. We develop and
demonstrate two constraint optimization algorithms to max-
imize the utility of the observation requests while following
operational constraints of the assets. We show that adaptive
sensing with federated planning is capable of collecting ob-
servations of significantly better quality than a baseline sam-
pling approach.

Introduction
The large spatial scales and quick evolution of complex
Earth science phenomena, such as extreme weather, often
makes comprehensive sensing prohibitively difficult. Adap-
tive sensing can focus limited resources and observational
capacity to extract the maximum quality science data. This
technique utilizes online analysis of the target phenomena to
direct sensing assets to collect the most advantageous obser-
vations. Figure 1 illustrates this concept. Observation utility
is calculated based on a model of the phenomena and some
scientific goal, this utility is used to plan observations for a
set of assets, the plan is executed and the collected data is as-
similated back into the model. This cycle then repeats while
the target phenomena is active.

When studying these complex phenomena, it is often the
case that a set of heterogeneous assets is used, with differ-
ent sensing capabilities. Additionally, some or all of these
assets may be operated by external organizations with an ex-
isting operations pipeline. To implement adaptive sampling
in these systems, it could be prohibitively difficult to di-
rectly integrate into the existing planning software. Instead,
they may expose a limited observation request interface that
could be used. The federated planning paradigm, presented
in this work, addresses this by using a multi-tiered planning
approach, seen in Figure 2, to decouple the utility function
from the individual asset operations pipelines.

Copyright © 2023. All Rights Reserved.

Here we describe an effort to apply adaptive sensing
with a federated planning paradigm to perform observational
planning for the study of large scale storms such as hurri-
canes and typhoons. We utilize a numerical model of a hur-
ricane and simulated assets to demonstrate the efficacy of
these methods in improving the science return from a set
of asset observations. The work performed here is part of a
larger effort (Tavallali et al. 2020).

Figure 1: An illustration of the adaptive sensing concept.
A utility function is created based on a model of the target
phenomena, this utility function is used to generate a plan,
which is then executed. Finally the data from those obser-
vations are assimilated back into the model and the cycle
repeats.

Related Work
This project extends prior work on event-based satellite ob-
servation scheduling, where alerts from other assets were
used to trigger observations of flooding (Chien et al. 2019)
and volcanic activity (Chien et al. 2020). The work com-
pleted here builds on this by incorporating observation
utility into the planning process instead of using simple
event → observation triggers. Nag et al. (2020) presents a



tool to schedule distributed spacecraft observations to maxi-
mize science return, but does not consider non-spacecraft as-
sets or a federated approach to planning. An AAV path plan-
ning algorithm to maximize the information gain of science
measurements in tropical cyclones is discussed in Darko
et al. (2022). This is similar in that it is selecting the most
beneficial observations, but it is only concerned with a single
asset. Clement and Barrett (2003) develops a method for co-
ordinating activities between multiple self-interested assets,
but does not consider utility maximization and uses a dif-
ferent hierarchy for multiple agents. Chien et al. (2000) de-
scribes three frameworks for coordinating multiple agents.
This describes the use of multiple levels of planning, sim-
ilar to the federated approach described here, but does not
directly address distributing goals (e.g. requested observa-
tions) between assets to maximize a black-box utility func-
tion. Robinson et al. (2017) describes a planning method
for assigning observation requests to a set of heterogeneous
assets to maximize utility based on Bayesian logistic re-
gression, however it does not utilize a complex data model
for calculating utility of observations. Fioretto, Pontelli, and
Yeoh (2018) describes a multitude of approaches for general
multi-agent constraint optimization, but does not address the
specific problem discussed here. Aghighi and Bäckström
(2015) performs a theoretical analysis of Cost-optimal and
Net-benefit planning; a similar problem formulation to what
is described here. Parjan and Chien (2023) address the prob-
lem of assigning observations to a set of spacecraft, modeled
as a distributed constraint optimization problem, but does
not address the federated problem or planning to maximize
a complex utility function. Squillaci, Roussel, and Pralet
(2021) and Levinson et al. (2022) both present MILP based
methods for planning observations across a set of space-
craft, but they do not consider utility maximization or the
federated problem. Schaffer et al. (2018), Le Moigne et al.
(2017), and Maillard et al. (2023) discuss planning based
tools for developing spacecraft missions, based on maxi-
mizing the science return. These tools focus on the design
of such missions, while we discuss planning approaches for
mission operations.

Problem Statement
In the federated planning paradigm, the objective of the fed-
erated planner is to select a set of observations to request
from each available asset such that the utility of the final
collected observations are maximized, while minimizing the
cost of acquiring those observations. This problem is repre-
sented as a constraint optimization problem with inputs of a
utility function, a set of assets to produce requests for, and
a set of constraints, encoded as objective functions, related
to those assets. These constraints utilize common specifica-
tions of the assets such as orbit path, max slew angle and
rate, and AAV endurance to determine potential observa-
tions and allow for the federated planners optimization al-
gorithm to avoid selecting requests that are self-conflicting
and infeasible for the individual asset planners to schedule.
It is generally expected that the federated planner will not be
able to encode all operational constraints for all assets and
thus will rely on the asset planners to account for all con-

straints and produce a final observation schedule.

Figure 2: An illustration of the Federated Planning
Paradigm. A federated planner takes the utility function as
input and produces a set of requested observations for each
potential asset. Those sets of requests are sent to a special-
ized asset planner which then produces planned observations
for each asset.

Algorithms
Greedy
The greedy algorithm is a simple hill-climbing approach.
Starting with an empty set of requests for each asset, each
iteration adds one observation request to the set for one as-
set. The request/asset pair is determined by that which best
improves the objective function. To do so, it calculates the
utility gain given the addition of a single request/asset pair,
for all such pairs. This continues until the objective function
cannot be improved any further.

Simulated Annealing
A standard simulated annealing approach is used to per-
form hill-climbing search, with the ability to escape local
maxima (Kirkpatrick, Gelatt Jr, and Vecchi 1983). The al-
gorithm starts with an empty set of requests for each asset.
Neighbors are selected in the following way. On each itera-
tion, an observation request can be added to the solution, re-
moved from the solution, or swapped for a different request.
Which of these three options is selected at random, along
with the observation request and the asset. If the resulting
neighbor is an improvement over the previous solution, then
it is kept and the search continues. If it is not an improve-
ment, then it is kept with probability e−∆E/t, where ∆E is
the change in the objective function score and t is the cur-
rent temperature value. The temperature is determined by
the equation, t = tstart ∗ exp valuei where tstart is the
starting temperature, exp value is a number less than 1 in-
dicating how quickly the temperature should decrease, and
i is the current planning iteration. In our implementation
we also include a dwell value which indicates how many
neighbors to evaluate before moving to the next iteration
and the next temperature value. The search terminates when
the temperature reaches a pre-determined minimum value.
For our experiments, we used the following parameter val-
ues: tstart = 20000, exp value = 0.97, tend = 0.05, and
dwell = 100. Generally, a longer search with a more gradual
reduction in temperature will produce a better result, with
diminishing returns. These values were determined experi-



mentally by determining when the solution was no longer
improving with longer search times.

Experiments
We performed multiple simulation experiments to evaluate
the performance of federated planning for adaptive sam-
pling. These experiments focus on the federated planning
and plan execution components. The objective is, given a
utility function, to select observations to request such that
the utility of the final taken observations is maximized.
These experiments are performed with multiple asset types
where each asset type is subject to unique operation con-
straints. This experiment consists of 10 runs where each run
utilizes a different utility function and variations in the as-
sets operational constraints. Both constraint optimization al-
gorithms and a baseline planning method are evaluated on
all 10 runs.

Experiment Procedure
Figure 3 outlines the procedure for each experiment run and
the relevant data passed to each operation. First two pre-
planning steps are completed, the utility function is gener-
ated from the model and the planning constraints for each
asset are determined from known asset specifications. The
resulting utility function and set of constraints are provided
to the federated planner. The federated planner uses one of
the two algorithms outlined above to produce a set of obser-
vation requests for each asset. These observation requests
are then passed to the individual asset planners to generate
the final plans. Note that these sets of requests are the only
input to these planners from any of the previous steps. This
decouples them from the utility function, simplifying inte-
gration with existing operations pipelines. Thus the science
objectives of the assets are entirely driven by the federated
planner while the individual asset planners only attempt to
maximize fulfilled requests. These plans are then executed.
For this experiment we assume no deviation from the plans
during execution, so all planned observations will be col-
lected. Periodically during execution, replanning, if enabled,
is triggered. After the experiment simulation is complete the
final utility score of all taken observations can be calculated.

Utility Function
As part of the adaptive sensing strategy, we introduce a data-
driven utility function and framework that determines where
and which observations to sample, given a large number
of possible locations and types of measurements. A util-
ity function computes a certain value of one or a set of
observations jointly, based on some specified science ob-
jective. Specifically, we focus on the overall reduced vari-
ance of forecast ensembles from an Ensemble Kalman Fil-
ter (EnKF) system (Zhang, Minamide, and Clothiaux 2016).
EnKF models are extensively adopted for numerical weather
prediction and modeling of complex dynamic systems, such
as hurricanes.

We develop a utility function based on forecast sensi-
tivity (Ancell and Hakim 2007; Xie et al. 2013), which is
widely used to provide insight into the performance of the

Generate Utility
Function

Run Federated
Planner

Determine Asset
Constraints

Run Asset Planners

Execute Asset Plans

Utility Function Constraints

Requested Observations

Asset Plans

Completed Observations

No YesReplan?End

Start
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Figure 3: A flowchart of the procedure used for this exper-
iment. The input to each step is labeled next to the arrows.
Before planning, the utility function and all asset constraints
are determined via input files. These are incorporated into
the federated planner, which produces a set of requests for
the individual asset planners. These asset planners produce
a final plan for each asset. Those plans are then executed. If
replanning is enabled, the process periodically repeats from
the federated planner.



numerical forecast models that predict physical phenomena.
In this context, the change in the forecast variance for a
certain physical variable of interest, e.g. sea level pressure
in case of a hurricane, can be approximated by a simple
linear relationship as derived in Torn and Hakim (2008),
therefore, the reduction in variance utility function could
then be further obtained through the ordinary least squares
(OLS) total sum of squares decomposition

∑
i(yi − ȳ)2 =∑

i(ŷi − ȳ)2 +
∑

(yi − ŷi)
2, where yi is the actual value

of the variable of interest, ȳ is the mean of yi and ŷi are
the corresponding predicted values of the variable of inter-
est. It can then be defined as a percent variance explained,
a generalized version of coefficient of determination or R2,
η2 = 1− r

v , where v =
∑

i(yi− ȳ)2 is a total sum of squares
and r =

∑
(yi − ŷi)

2 as residual sum of squares. The utility
function for each variable of interest simply becomes:

uS = η2S × v,

where S is a set of locations of interest. In other words,
given the simplified assumptions of an EnKF-based forecast
sensitivity metric, we could cast the utility function as mea-
suring the model or explained sum of squares improvement
given a set of locations and types of variables at those loca-
tions for predicting a specified variable of interest, e.g. sea
level pressure.

In order to avoid the drawbacks of OLS and to generalize
the problem, we substitute linear modeling with a non-linear
machine learning method of ensemble trees. In particular,
we estimate the utility uS , by predictions ŷi obtained from a
Random Forest model, which also allows the use of all the
locations jointly without over-specifying the problem (i.e.
an OLS model will fit data perfectly with an expanded set of
any inputs). The ensemble tree methodology is able to ex-
tract individual contributions of each location to the predic-
tion of the variable of interest (Kuzmin et al. 2011), similarly
to OLS contributions from linear regression coefficients. As
a result, we can select a set of locations and the types of
measurements for those locations that have the highest con-
tributions to the prediction of the variable of interest, and
therefore, possibly the highest utility values for observing
these locations, which will also depend on the variance of
the variable of interest, v, for each ensemble. Finally, the
formulation of the utility function through ensemble trees
also makes the computation relatively efficient in near-real
time.

Since a large set of locations can be used to compute their
impact on the forecast ensemble variance reduction, many of
these locations will carry very small, but non-zero utilities as
shown in Figure 4. To reduce the complexity of the planning
problem, we filter the potential targeted observations to only
contain a certain number of locations with the highest indi-
vidual utilities, i.e. the utility if only that point was observed.
For our experiments we limit our set to a 1000 locations.
Although the utility function used in the federated planner
calculates the joint utility of all requested observations, we
found that the potential added value to the joint utility for a
given location is unlikely to be significantly larger than each
individual utility.

Figure 4: An example utility function used in the experi-
ment.

Assets
Two types of assets were used in this experiment, low
Earth orbit (LEO) satellites and autonomous aerial vehicles
(AAV). The LEO satellites were roughly based on the Planet
Labs SkySat constellation. Each satellite has a push-broom
sensor with a field-of-view of 2 degrees, the capability to
slew 15 degrees off-nadir in the across-track direction, and a
slewing speed of 5 degrees per second. Along-track slewing
and taking observations while slewing is not possible. Two
satellites were used, resulting in two flyovers of the target
region for each experiment run. To vary the flyovers, dif-
ferent SkySat orbits were used for the different experiment
runs. The CLASP Planner was used as the asset planner for
the LEO satellites (Maillard, Chien, and Wells 2021). The
federated planner provides a set of observation requests to
CLASP which uses a greed, Squeaky Wheel Optimization
planner to produce a final plan for each LEO asset. As the
LEO satellites use a pushbroom sensor, the set of taken ob-
servations will be larger than the set of requested observa-
tions. The utility score of the final plans are calculated using
all taken observations, even those not requested.

The AAV assets were based on the Raytheon Coyote,
which have been previously used for hurricane observations
(Cione et al. 2016). Each AAV has a max endurance of 1
hour (3600 seconds) and a velocity of 30 m/s, resulting in a
total travel distance of approximately 108km. The Google
OR-Tools Vehicle Routing Problem solver is used as the
AAV asset planner (Perron and Furnon 2021). This is a gen-
eralization of the Travelling Salesman Problem for N agents.
Given a set of requested observations, a graph is constructed
connecting each location to every other location with an
edge of cost equal to the distance between the two obser-
vation locations. Additional, a start/end node is added with
a 0 cost edge to every other location, so the resulting asset
paths can start and end at any observation. The path length of
each asset is also constrained based on the total endurance.
As the federated planner can request more observations than
are feasible, the solver is permitted to drop observations.



However, as this solver does not have access to the utility
function, it will only attempt to maximize the number of
observations completed. The solver uses the ”Path Cheap-
est Arc” strategy to produce the initial solution. This strat-
egy always extends the current path with the next cheapest
location. This initial solution is then optimized through lo-
cal search. Similar to the LEO assets, all locations along the
AAV path length are included in the taken observations, even
if they were not requested.

Objective Function

The objective function used for the federated planning is the
linear combination of the utility function and the costs for
four types of constraints. The objective function is shown
below, where OAll represents the observation requests for all
assets, Oa represents the observations requests for a single
asset a, U is the utility function previously discussed and
C1−4 are the constraints listed below.

F (OAll) =
U(OAll)−

∑a
Assets C1(Oa)+C2(Oa)+C3(Oa)+C4(Oa)

The utility function is calculated based on the combined
asset observations and the constraints are calculated on a per
asset basis. Each asset does not utilize every constraint type.
One type of hard constraint (Max Requests) and three types
of soft constraints (Observation Cost, Clustering, and LEO
Slew) are used. Hard constraints, when violated, produce
a cost of ∞, ensuring that combination of observation re-
quests is not selected. Soft constraints instead produce a cost
that increases depending on the severity of the constraint vi-
olation. This allows for minor violations and is important
for the correct function of the simulated annealing algo-
rithm. These constraints utilize basic asset specifications to
roughly determine feasible observations for each asset. For
the LEO asset this includes orbit path, max slew angle, and
slew rate and for the AAV asset this includes endurance. In
practice, specific asset planners will incorporate additional
constraints that are not represented in the federated planner.

Max Requests Constraint The Max Requests Constraint
places a hard limit on the number of observations that can
be requested for a single asset. This constraint applies only
to the AAV assets. During the federated planning procedure,
it is difficult to estimate the path length based on the cur-
rent set of requested observations. This constraint limits the
number of total requests to a set that is reasonable for the
AAVs to complete. This, of course, also depends on the loca-
tions of those requests, which is controlled by the Clustering
Constraint. The equation below is used to calculate this con-
straint for an asset a. If the set of requested observations for
asset a is greater than max obsa then the constraint is vio-
lated. max obsa is a tunable parameter based on the number
of AAV assets and their endurance.

C1 =

{
0 if len(requestsa) <= max obsa
∞ otherwise

Clustering Constraint The Clustering Constraint is a soft
constraint that encourages observations for a single asset to
be group spatially. This constraint applies only to the AAV
assets. The limited endurance of the AAVs makes it critical
that all requests are clustered into a small area, compared
to the entire experiment region. This cluster helps to maxi-
mized the number of requests that a single AAV can fulfill.
The equation below is used to calculate this constraint for an
asset a. Any observation that is greater than cluster sizea
from the centroid costs costc. These two parameters are
tunable based on the number of AAV assets and their en-
durance.

C2 =

r∑
requestsa

{
costc if dist(r, centroid) > cluster sizea
0 otherwise

LEO Slew Constraint The LEO Slew constraint encour-
ages observation requests to be feasible based on all the
other requests. The possible observations that a LEO space-
craft can take are limited by its ability to slew from one
pointing angle to another. For the spacecraft to take observa-
tions that are off-nadir in the across-track direction, it must
slew the spacecraft such that the instrument is pointed at the
target location. As this slewing procedure takes time, ob-
servations that are close in distance on the along-track axis
but far in the across-track axis cannot both be observed. The
equation below is used to calculate this constraint for an as-
set a. For each requesta that is in conflict with any other
request for that asset, costs is added to the constraint. An
observation is in conflict with another if they cannot both
be observed by asset a in a single overflight. As only across-
track slewing is allowed, determining if two observations are
in conflict only requires calculating the spacecraft pointing
angle at the time of each observation and calculating if the
time between observations is greater than the time required
to slew between those two pointing angles.

C3 =

r∑
requestsa

{
costs if conflict(r, requestsa)
0 otherwise

Observation Cost Constraint The Observation Cost
Constraint applies a cost for the total number of requests
per asset. The asset planners only attempt to maximize the
number of fulfilled requests and cannot reason about the ob-
servation utility, as such, making significantly more requests
than are feasible can reduce the quality of the resulting final
observations. Each asset is allowed to have a different cost
per observation, however for our experiment, all assets used
the same cost. This constraint limits the number of observa-
tions that will be requested. Observations that provide low
marginal utility will not be added as this constraint cost will
offset the positive utility value. The equation below is used
to calculate this constraint for an asset a. cost per obsa is a
tunable parameter for each asset.

C4 = len(requestsa) ∗ cost per obsa



Replanning
Replanning can be performed periodically to account for re-
quested observations that were not fulfilled by the asset plan-
ners or were not observed during plan exeuction. This in
done by re-running the federated planner, generating a new
set of observation requests, and then generating new asset
plans using the asset planners. The exact replanning strategy
used is dependent on the assets operational constraints. For
this experiment, we used a simple replanning strategy. Re-
planning is performed in any time interval over a fixed dura-
tion that does not contain any observations. This is to allow
time for planning to complete and for the updated plans to
be sent for execution. The time inverval is selected such that
replanning was performed between overflights of the LEO
satellite assets and after the completion of the AAV asset
flights. When the replanning is performed by the federated
planner, the previously taken observations are accounted for
when calculating the utility function.

Baseline
A baseline method representative of non-adaptive search
was developed for comparison against the adaptive ap-
proached. In this baseline method, the LEO spacecraft takes
continuous nadir observations over the target region. AAVs
were given N random target locations in a small search re-
gion near the area of minimum sea level pressure in the hur-
ricane model. That region was selected as the scientific goal
used to produce the utility function was minimizing the un-
certainty in the modeled minimum sea level pressure. The
AAV paths are planned using the black box Vehicle Routing
Problem planner. No replanning is performed in the baseline
method.

Results
An example plan using the federated planning approach is
shown in Figure 5. The reachability swaths for the two LEO
assets are shown in light red. These swaths represent all pos-
sible observations that the LEO assets can take. Each black
dot is an observation that has been requested from one of the
assets. The smaller dark red swaths represent the taken ob-
servations from the LEO assets. The dark red paths represent
the two executed AAV paths.

Over all the experiment runs, the Simulated Annealing
and Greedy algorithms outperformed the Baseline method.
There was little difference, with respect to the final utility
of all taken observations, between the Simulated Annealing
and Greedy algorithms. Figure 6 shows the resulting utility
of all taken observations, grouped by the three different al-
gorithms, Baseline, Simulated Annealing, and Greedy.

The wall clock runtime of the two federated approaches
are shown in Figure 7. Here we see that although the Sim-
ulated Annealing algorithm did not result in an improved
observation utility. The required runtime to achieve those
results was significantly lower than that of the greedy al-
gorithm.

In addition to comparing the federated planning methods
to the baseline approach, we also compared the capability
of replanning versus no replanning for those approaches.

Figure 5: An example execution from the experiment. The
LEO swaths, representing all possible LEO observations, are
represented in light red. The actual LEO observations and
the AAV paths are represented in dark red. The black dots
mark requested observations.

Figure 6: The utility of collected observations for each algo-
rithm over all experiment runs.



Figure 7: The wall-clock runtime for each algorithm over all
experiment runs.

In Figure 8 we see a minor improvement with replanning
enabled. The number of experiment runs with low utility
scores reduced, resulting in the median increasing by ap-
proximately 5 points and the spread of the distribution over
all runs to decrease.

Figure 8: The utility of collected observations with replan-
ning enabled versus disabled over all experiement runs.

Discussion
The experiment results demonstrate that the federated plan-
ning paradigm and adaptive observation approach can pro-
duce observation plans that improve results over baseline
observation methods, based on the utility of the completed
observations. Little difference was seen in the resulting ob-
servation utility of the two federated planning algorithms.
However, the runtime for the Simulated Annealing approach
is significantly shorter than that of the Greedy approach.
Each timestep of the Greedy approach requires evaluating
the change in utility for each potential observation request,
resulting in significant wasted computation for evaluating
low utility observations at each timestep. Simulated An-
nealing is able to avoid this by evaluating the utility only

once per timestep. Although this will often result in initially
adding many low-quality observations to the solution, the
ability to later removing these low-quality observations re-
sults in a final solution of similar quality to the Greedy ap-
proach for much lower computation effort. Simulated An-
nealing has the additional capability of escaping local max-
ima to produce an improved solution, however as the quality
of the final solution is similar to that of the Greedy approach
that is likely not an important factor for the specific problem
setup in these experiments.

The addition of replanning for this experiment resulted in
a small increase in the utility of the final taken observations.
The expected improvements from replanning come from the
differences in the taken observations versus the requested
observations. In this experiment, the planning constraints
match the assets observation capabilities well, so most re-
quested observations are fulfilled by the assets. This results
in the small improvement to the final results. The addition
of contention with other external requests or additional asset
observational constraints that are not well represented with
the federated planning constraints would likely result in a
more significant improvement from replanning.

Future Work
This work provides an initial proof of concept for adaptive
sampling using the federated planning paradigm. The asset
observation models used here were fairly simplistic. Real-
world assets would have additional constraints that would be
difficult to model in the federated planner, including wind-
velocity, AAV deployment capabilities, LEO observation
contention, and data limitations. We would like to investi-
gate these additional constraints and determine how that af-
fects the performance of the federated planning algorithm.
Additional, the performance of other constraint optimiza-
tion algorithms should be evaluated. The federated planning
paradigm should also be evaluated using a more diverse va-
riety of possible utility functions and potential assets. Ide-
ally these next steps would be completed with a more con-
crete set of assets to target, including operational asset plan-
ners, as that would drive the experiment towards realistic
constraints and optimization objectives.

Conclusion
In this paper we presented work on developing and demon-
strating an adaptive sensing system for Earth Science using
a heterogeneous set of observation assets. We utilized a fed-
erated planning paradigm for requesting observations from
those assets. We developed two algorithms, a greedy hill
climbing approach and Simulated Annealing to select ob-
servation requests. These developments were tested against
a baseline non-adaptive observation planning method in a
simulation experiment for planning hurricane observations.
The experiment results showed significant improvement of
both algorithms over the baseline method. This work has
demonstrated that the adaptive sensing concept and feder-
ated planning paradigm can be used to improve science re-
turns over non-adaptive sampling methods.
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