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ABSTRACT

Dynamic targeting (DT) is an emerging concept for improv-
ing science yield on Earth-observing missions limited by
power-constrained sensors. DT uses a lookahead sensor to-
gether with on-board decision making to save resources for
valuable observations in the future. Previous work has fo-
cused on developing DT mission use cases, such as storm
hunting and cloud avoidance, that have relatively straightfor-
ward observation goals (i.e., look for storms, avoid clouds).
However, DT has the potential to improve the science return
of more complex missions and studies. To demonstrate this,
we present and develop a new DT mission scenario to study
the Planetary Boundary Layer (PBL). This paper describes
the elements of our PBL mission scenario, which not only
only involves multiple spacecraft, but also more sophisticated
instruments, science models, and on-board decision making.

Index Terms— New Observation Systems, Remote Sens-
ing, Autonomous Earth Satellite, Planetary Boundary Layer,
Artificial Intelligence

1. INTRODUCTION

Dynamic Targeting (DT) is an emerging concept in which
a satellite uses data from a lookahead instrument so it can
intelligently reconfigure and point a primary instrument that
is power constrained (Fig. 1). The goal is to save energy
for valuable observations that can be identified in advance
with the lookahead sensor, thus improving science return on
the mission. For example, in the Smart Ice Hunting Radar
(SMICES) a forward-looking radiometer is used to detect
and then selectively target rare convective ice storms using
a power-hungry radar [1]. Several dynamic targeting algo-
rithms have been developed for on-board decision making us-
ing ideas from operations research and artificial intelligence;
these algorithms have been tested on different simulation
studies that involve storm hunting and cloud avoidance ap-
plications [2, 3]. Tapia and Grogan expand the notion of DT
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Fig. 1. Dynamic targeting is a concept that uses information
on board from a lookahead sensor to identify future targets for
a primary pointable instrument, thus improving science yield
when subject to operational and power constraints.

for storm hunting to two spacecraft: a leading satellite and a
trailing satellite [4]. Recent work matures the concept of DT
by introducing more realistic instrument slewing models and
physical constraints, and by incorporating machine learning
to improve the on-board targeting algorithms [5].

This work presents and develops a new mission scenario
in which DT is leveraged to better study the Planetary Bound-
ary Layer (PBL). The PBL is the lowest part of the tropo-
sphere which is subject to direct Earth-atmosphere influence
because of its proximity to the surface of the Earth. Several
of the key PBL science questions are about the interactions
between PBL thermodynamics and global processes that can
only be properly observed from space [6]. A global PBL
observing system is urgently needed to address fundamen-
tal PBL science questions and societal applications related to
weather, climate and air quality. This is supported by the 2017
National Academies of Sciences, Engineering and Medicine
Earth Science Decadal Survey, which recommended the im-
plementation of a PBL incubation program [7]. Our previous
DT mission scenarios focused on simpler atmospheric phe-
nomena and their corresponding use cases (i.e., storm hunting
and cloud avoidance [3]). By contrast, our new PBL scenario
requires more sophisticated instruments, science models, and
on-board objectives, as well as multiple spacecraft. The rest
of the paper describes these elements in greater detail.
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Fig. 2. Mission concept to study the PBL by Teixeria et al.
[6]. The concepts consists of three satellites: one lookahead
satellite that carries hyperspectral sounders (infrared and mi-
crowave) to use as a source of contextual information, and
then two primary satellites that collect vertical profiles of the
PBL, each using a unique differential absorption instrument.

2. MISSION SCENARIO

In this work, we employ a modified version of the mission
concept that was originally proposed in the study report by
Teixeira et al. for a PBL observing system [6]. This concept
consists of a “train” of three low Earth orbit (LEO) space-
craft: one lookahead satellite followed by two primary satel-
lites (Fig. 2 and Fig. 3).

The lookahead satellite carries two push-broom hyper-
spectral sounders, infrared and microwave, that offer a high
spatial footprint with a horizontal resolution of 5-20 km. The
instruments complement each other effectively: the infrared
sounder provides observations at higher resolutions but is lim-
ited to clear skies or tenuous clouds, while the microwave
sounder has a coarser resolution but can observe all types
of skies, even cloudy ones. An analogous instrument is the
Atmospheric Infrared Sounder (AIRS) [8] on NASA’s Aqua
satellite, which provides measurements of temperature and
water vapor through the atmospheric column along with a
host of trace gases, surface, and cloud properties. AIRS data
is used by weather prediction centers around the world to im-
prove their forecasts. In this work the idea is that the looka-
head satellite: 1) measures various physical variables of in-
terest for studying the PBL, such as water vapor, cloud prop-
erties, and temperature; and 2) use these variables to identify
targets for the primary satellites on the mission.

One primary satellite carries a Differential Absorption Li-
dar (DIAL), while the other satellite has a Differential Ab-
sorption Radar (DAR) [9]. These are pointable sensors that
provide higher spatial resolution and accurate vertical pro-
files. Both instruments have a whisk-broom scanning pattern
with one degree of freedom (left-right pointing). The DIAL
cannot see through clouds but it has a low power consumption
(6 W). On the other hand, the DAR can penetrate clouds but
it consumes much more power (200 W), hence it has a 0.25%
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Fig. 3. Three-spacecraft simulation.

duty cycle because it needs to be turned off most of the time.

In this mission concept the lookahead satellite detects tar-
gets of interest and generates observation schedules on-board
for each of the primary satellites. This concept assumes that
the lookahead satellite sends these schedules over using a
small data rate through interlink communication.

3. SIMULATION STUDY

3.1. Simulation Framework

We adapted and improved our satellite simulation framework
that was originally developed for DT for a single spacecraft
[3]. The new framework simulates satellite orbits as well as
instrument observations that would be collected by each of the
three spacecraft (Fig. 3 and Fig. 4). General Mission Analy-
sis Tool (GMAT) [10], an open-source space mission analysis
tool, was used to simulate and generate realistic satellite tra-
jectories. For each satellite, we simulated a LEO with a 65
degree inclination, a 800 km altitude, an approximate period
of 100 minutes, and an eccentricity of O (Fig. 4). In our con-
cept the lookahead satellite is 800 km ahead of the primary
satellites (Fig. 3). Hence, on-board computation and interlink
communication must not exceed 2 minutes. There is a dis-
tance of 200 km (about 30 seconds) between the DIAL and
DAR satellites. DIAL should only be pointed at targets that
are not obstructed by clouds.

3.2. Variables of Interest

The PBL can be classified and studied according to a num-
ber of parameters such as climate zone or surface type [11].
At the same time, a number of properties such as landform,
daytime, and sky conditions can impact the PBL status and
should be taken into consideration when studying the PBL
[12]. Here we generally focus on three kinds of conditions
that impact PBL types: static (surface), time (daytime, sea-
son), and dynamic (atmosphere). These conditions are listed
in Table 1. We assume that dynamic variables are observed
using the lookahead sensors (sounders), whereas static and
time conditions are readily available on board the satellite.



Table 1. PBL properties defining observation values

Variable | Values
Static (Surface)
climate zone tropical, subtropical, polar
landform land, ocean
Time
daytime day, night
season Spring, Summer, Fall, Winter
Dynamic (Atmosphere)
cloud fraction %
water vapor kg/m?
air temperature K

water vapor (kg/m2)

latitude (degrees)

-50 0 50
longitude (degrees)

Fig. 4. The mission simulation framework uses the GEOS 5
Nature Run dataset to simulate instrument observations (red)
that would be collected along a satellite trajectory (black).

3.3. Dataset

The framework simulates the aforementioned conditions (Ta-
ble 1), especially dynamic ones (water vapor, clouds, tem-
perature) using the GEOS-5 “Nature Run” dataset [13]. This
is a global, 2-year computer simulation for the period June
2005 through May 2007. This model simulation is driven by
prescribed sea-surface temperature and sea-ice, daily volcanic
and biomass burning emissions, as well as high-resolution in-
ventories of anthropogenic sources. The Nature Run dataset
has a high horizontal resolution (7 km) and provides many
standard meteorological parameters (e.g., wind, temperature,
moisture, surface pressure, cloud conditions, etc.).

4. OBSERVATION STRATEGIES

A vital element of DT is on-board decision making. Previous
work on DT focuses on simpler atmospheric phenomena and
thus algorithms that favor exploitation. For example, storm
hunting consists of prioritizing storm observations, and cloud
avoidance prioritizes clear sky observations. By contrast, this
new PBL scenario needs to be more comprehensive and also
consider exploration, that is, observing different PBL types
and conditions throughout the globe in a diverse and repre-
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Fig. 5. Three DT sampling strategies for studying the PBL.

sentative manner. To this end, we propose three different PBL
observation strategies that offer different balance levels be-
tween exploration and exploitation (Fig. 5).

4.1. Diverse Sampling

This strategy favors exploration over exploitation. It collects
a balanced number of observations of different PBL types us-
ing established concepts from information theory [14] (Fig. 5
a). The notion of Shannon entropy H measures information
in observed data. A small entropy means that our set of ob-
servations X is diverse, whereas a large entropy indicates the
opposite. This results in the following maximization problem:

max H (X), H(X):—;{P(x)log(x). (1)

4.2. Representative Sampling

This strategy balances exploration and exploitation. It gathers
observations that better explain the variability of the whole
scene by using theory and algorithms for near-optimal sen-
sor placements [15] (Fig. 5 b). The goal here is to col-
lect observations X that minimize the difference d (e.g., Eu-
clidean distance) between a predictive function fx that is
constructed using X (e.g., machine learning), and the real un-
derlying function f (i.e., the actual scene):

mind(fx, f), d(fx. f) = lfx = fll: (2)

4.3. High-Gradient Sampling

This strategy favors exploitation over exploration. It targets
high-gradient locations, thus observing interesting phenom-
ena on the boundaries between different PBL types (Fig. 5 c).



We propose to maximize a simple cumulative function F' that
is a linear combination of gradient magnitudes ||VV;(X)]].
one for each of the ¢ = 1,...,n variables V; (e.g., water va-
por, clouds, temperature, land vs. ocean, etc.). That is:

max F (VVp(X),..., V(X)) 3)
where F'(...) =Y w|[VVi(X)|l. (4)
=1

S. CONCLUSIONS AND FUTURE WORK

This work presents a DT mission scenario to study the PBL.
The mission concept consists of a train of spacecraft: a looka-
head satellite followed by two primary satellites (DIAL and
DAR). Each satellite carries a different set of instruments with
synergistic properties for the mission. This paper also de-
scribes our DT simulation framework that has been adapted
to incorporate several spacecraft and multiple variables of in-
terest for studying the PBL. Finally, this work proposes and
formulates three different observation strategies as optimiza-
tion problems that offer varying levels of balance between ex-
ploration and exploitation.

Future work will use state-of-the-art planning algorithms
to solve the proposed optimization problems within feasible
and realistic compute times for a mission of this nature. It
will also conduct a thorough evaluation and comparison of
the proposed observation strategies in a simulation study, an-
alyzing the strengths and weaknesses of each.
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