
Aerie: A Modern Multi-Mission Planning, Scheduling, and Sequencing System

Matthew Dailis, Eric Ferguson, Chris Camargo, Adrien Maillard
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr., Pasadena CA 91109
matthew.l.dailis, eric.w.ferguson, christopher.a.camargo, adrien.maillard @ jpl.nasa.gov

Abstract

Aerie is a new open source multi-mission planning, schedul-
ing, and sequencing system for space applications. We briefly
describe the impetus behind the creation of Aerie, comment
on its position within the landscape of other planning sys-
tems, and highlight some key capabilities that make it well
suited for distributed, cross-team collaboration. We also a
present a short case study describing the use of Aerie in
the uplink planning process for Europa Clipper and illustrate
some of the benefits of making Aerie an open source project.

Introduction
Aerie is a new open source multi-mission planning and
scheduling software funded by the Advanced Multi-Mission
Operations System (AMMOS) program managed out of
NASA’s Jet Propulsion Laboratory (JPL). It builds upon
its predecessor, APGen (Maldague et al. 2014), adding en-
hanced capabilities for collaboration, and lowering the bar-
rier to entry for users and developers alike.

There are two primary user types that Aerie targets. Users
of the first type, called ”mission modelers”, are responsible
for describing the activities and resources that are relevant
to their mission. Once they produce the mission model, they
can upload it to Aerie, where users of the second user type,
called ”planners”, can create plans using the activities de-
scribed in the mission model.

Aerie was developed with the following goals in mind:

• Simplify the mission modeling experience by adopting
a common programming language instead of a domain
specific language (DSL)

• Allow missions to make use of existing libraries for mod-
eling, and write custom code in their mission model as
they see fit

• Allow missions to provide a web deployment of a plan-
ning tool such that operators with limited programming
skills can create valid activity plans and run simulations

• Support real time collaboration and parallel hypothesis
testing such that many more iterations of an activity plan
can be tested within the same time frame.

Copyright © 2023 California Institute of Technology. Government
sponsorship acknowledged.

• Allow automation and manual modifications to coexist
throughout the planning process

• Provide a low code constraint checking mechanism to
validate simulation outputs which can be automated
largely

• Provide a low code scheduling mechanism that can scaf-
fold parts of or generate complete activity plans accord-
ing to goal snippets

• Support an easy to use and verified translation from activ-
ities to flight system recognized sequences of commands

In this paper, we will discuss the origins of Aerie (Aerie
Heritage and Influence) and compare and contrast it with
some existing tools (Aerie Within the Planning and Schedul-
ing Landscape). Next, we will highlight some key capabili-
ties that make Aerie unique (Capability Highlights). We will
describe a case study of Aerie’s use on the Europa Clipper
mission (Case Study: Aerie on Europa Clipper), and finally
we discuss the reasoning behind and consequences of mak-
ing Aerie open source (Aerie as an Open Source Project).

Aerie Heritage and Influence
Aerie was conceived in an effort to modernize the plan-
ning and sequencing products offered by the Mission Plan-
ning, Sequencing, and Analysis (MPSA) element of the Ad-
vanced Multi-Mission Operations System (AMMOS) pro-
gram, which is chartered to provide mission operations
ground software to the greater NASA community in order
to increase operations efficiency and reduce operations cost
and risk. While many of MPSA’s product offerings, includ-
ing APGen, had been deployed successfully on a number
of missions (Maldague et al. 2014), they were becoming
more difficult and expensive to maintain and were lagging
behind current software state-of-the-art. In 2018, MPSA be-
gan work on Aerie in an effort to build a modular, web-based
system that would be easier for customers to use and easier
to sustain and grow upon in the future.

The Aerie requirements and architecture were highly in-
fluenced by a number of other planning systems. Given AP-
Gen’s success, the Aerie team wanted to ensure that they had
near capability parity with APGen (e.g. discrete event simu-
lation, general modeling framework, automated scheduling,
constraint checking) and incorporated lessons learned based



on feedback from APGen modelers and users. For exam-
ple, APGen did not expose the ability to automate activity
plan generation beyond its modeling framework, and thus
required modelers to have to translate scheduling goals de-
fined by the mission operations team into imperative code
within the modeling framework. The Blackbird planning
system (Lawler et al. 2020) also had a strong influence on
Aerie, especially in the decision to implement a mission
model framework in an embedded Domain Specific Lan-
guage (eDSL) within the Java programming language.

Aerie’s web-based design, plan collaboration capabilities,
and robust API took significant inspiration from COCPIT,
which was developed for Mars 2020 surface operations
(Deliz et al. 2022). COCPIT was built on top of another
planning system developed out of Ames research center
called Playbook, which has been used for a variety of ap-
plications including planning astronaut schedules on the in-
ternational space station (Marquez et al. 2019). In addition,
the declarative scheduling DSL developed for Aerie was in-
formed by similar scheduling goals that had appeared in AS-
PEN (Fukunaga et al. 1997) system deployments over the
years, particularly for science campaign planning on mis-
sions like Rosetta (Chien et al. 2015).

Aerie Within the Mission Planning and
Scheduling Landscape

The use of planning and scheduling systems appear through-
out the design and operation of most, if not all, space mis-
sions. Given the number of missions and the diversity of
their applications, we similarly see a diverse set of planning
systems, each of which is specially targeted for specific uses
(Chien et al. 2012). Most planning systems are used to per-
form one of the following functions on a space mission:

1. Mission planning and analysis, which takes place
throughout a mission’s life cycle to put together a viable
mission plan that meets mission objectives while adher-
ing to project and spacecraft constraints

2. Operations planning, which often involves the integration
of numerous disparate inputs from payload, spacecraft,
and ground system engineers to build an integrated plan
that meets plan goals and constraints

3. Real-time operations, where the primary objective is to
monitor the execution of the plan as it is carried out
and potentially modify the upcoming plan on very short
timescales

Aerie was designed with the first two use cases in mind al-
though it could probably support real-time operations with
some small modifications similar to what was done with the
predecessor of Playbook, SPIFe (Marquez et al. 2010).

Aerie is best classified as a generalized mixed-initiative
planning system. The design was intended to support itera-
tive interactions between human planners, a goal-based, pri-
ority driven scheduler, and external applications. This design
contrasts with other scheduling systems that are tailored to
optimize a schedule for a specific application such as surface
coverage for pushbroom (Maillard, Chien, and Wells 2021)
or steerable framing instruments (Shao et al. 2018) although

such systems can be integrated into Aerie as external ap-
plications. The Aerie provided scheduler solves individual
scheduling goals in a priority order defined by planners as
opposed to performing multi-objective optimization where
goals would be solved simultaneously. Many space-based
observatories such as Hubble and the James Webb Space
Telescope have used systems that leverage such optimization
techniques to minimize wasted time and propellant usage to
extend mission lifetime (Johnston and Giuliano 2009).

There are a number of similar planning systems to Aerie
intended for multi-mission use beyond those that had a di-
rect influence on its development. For example, the “Ac-
tivity Planner” tool developed out of the Applied Physics
Laboratory (APL) was developed as part of their own Mis-
sion Independent Ground Software (MIGS) effort (Ruffolo,
McCauley, and Berman 2017). Like Aerie, this system is
database driven in that it can centralize and view plan data
from a variety of external sources. While Activity Planner
chose to provide native import/export of domain specific file
formats, Aerie has intentionally kept domain-specific con-
structs out of its core so it can easily be adapted for other
applications (conversion to/from file formats exist as utili-
ties written against the API). Furthermore, Activity Planner
provides a limited, but easy to use scheduling and constraint
checking capability while Aerie provides more expressive-
ness at the potential expense of simplicity.

The PINTA/PLATO tool suite along with their web-based
timeline client TimOnWeb developed at the German Space
Operation Center (GSOC) also has comparable features to
Aerie and is intended to run as a semi-automated mission
planning system (Nibler et al. 2017). This system oper-
ates using a modeling language known as the “Planning
Model” as opposed to Aerie’s approach of using an eDSL
within Java for modeling. PINTA/PLATO have significant
heritage including use on the GRACE-FO and TerraSAR-
X/TanDEM-X missions.

Aerie’s definition of resource profiles is similar to the
definition of timelines in the APSI software platform, and
the Timeline Representation Framework (Fratini and Cesta
2012), but Aerie’s timelines are fully grounded in time,
while APSI can preserve more temporal flexibility and
makes more relationships explicit.

Capability Highlights

In this section we will highlight particular capabilities of
Aerie. We will start by describing what we mean by “mis-
sion model”, and how a mission can define the details of
their own model (Mission Model Framework). We then
identify the key features that enable productive collaboration
between individuals and teams using Aerie (Collaborative
Planning). Next, we will unpack Aerie’s approach to auto-
mated scheduling (Scheduling) and validating constraints of
interest (Constraint Checking). We will also describe Aerie’s
ability to be deployed in the cloud, or on premises (Service-
Based architecture), and describe the rich integrations made
possible by Aerie’s API (GraphQL API).



Mission Model Framework
Aerie provides a framework for modeling activities and
resources in an embedded DSL (eDSL) within Java. The
choice to use Java, as opposed to a custom DSL, was mo-
tivated by the desire to lower the learning curve required
for a mission modeler, as well as enable the use of the Java
ecosystem of editors, libraries, and tools in mission model
development. Java was previously used for this purpose by
Blackbird (Lawler et al. 2020).

The provided framework helps the mission modeler pro-
duce a JAR file that adheres to Aerie’s interface. If a mission
should want to use a different framework, they can do that
as long as they can generate a JAR that adheres to Aerie’s
interface.

Mission models are composed of two primary compo-
nents: Resources, and Activity Types. Resources describe
time-varying quantities of interest, while Activity Types de-
scribe the vocabulary of directives that a planner can use in a
plan. The term ”simulation” in Aerie refers to the process of
evaluating the effect models of all activities in a plan for the
purpose of producing resource profiles and observing activ-
ity decomposition.

Resources In Aerie a resource is any measurable quantity
whose behavior is to be tracked over the course of a simu-
lation. Resources are general-purpose, and can model quan-
tities such as finite resources, geometric attributes, ground
and flight events, and more. Aerie provides some common
models out of the box, including a discrete quantity that can
be set (Register), a continuous quantity that can be added
to (Counter), and a continuous quantity that grows over time
(Accumulator). A mission model can define custom resource
models by either combining the provided models, or defin-
ing new models that define how the resource can be com-
puted from a stream of events.

Resource profiles in Aerie are defined as a series of dis-
crete temporal segments that completely cover the horizon
yet do not overlap just as in (Knight, Rabideau, and Chien
2001). Each segment is associated with a json-like value that
conforms in shape to a schema defined for that resource. Un-
like (Knight, Rabideau, and Chien 2001), there are no se-
mantic constraints associated with a profile; those are de-
fined separately (see Constraint Checking). No distinction
between depletable, non-depletable, or renewable resources
is made by Aerie, similarly to Pinta/Plato (Chien et al. 2012).

Resources for a given mission are encoded in a ”mission”
object that is provided to all activities. Activities use this ob-
ject to affect resources. This object can also be parameter-
ized - these parameters form the ”simulation configuration”,
and can be used to provide initial conditions to the simula-
tion.

Activity Types A mission modeler defines Activity Types
as Java records, as in Listing 1. Parameters to the activity
are encoded as fields on the record. The @EffectModel an-
notation marks a method that is to be called during simu-
lation when the activity begins. In this method, the mission
modeler can describe the behavior of the activity by calling
methods on the model, or by calling built-in utilities such as

Listing 1: Sample Activity Definition
1 record PerformImaging(
2 ImagerMode imagerMode,
3 int numImages
4 ){
5 @EffectModel
6 void run(Mission mission) {
7 mission.imager.beginWarmup();
8 waitUntil(mission.imager.ready());
9 for (int i = 0; i < numImages; i++) {

10 mission.imager.beginImaging();
11 if (imagerMode == HIGH_RES) {
12 delay(30, SECONDS);
13 } else {
14 delay(10, SECONDS);
15 }
16 mission.imager.endImaging();
17 }
18 mission.imager.powerOff();
19 }
20 }

delay, or waitUntil, which pause the method until the given
time has elapsed, or until the given condition is true.

A mission modeler can also define validations, which can
check that the values provided for the activity’s parameters
are within bounds, or in any other way consistent with the
activity modeler’s intent.

Events Aerie’s discrete event simulation uses a notion of
integer time - starting from zero at the beginning of the sim-
ulation, and counting up in microseconds. It also provides a
notion of dense time - when an activity performs multiple ac-
tions in the same time step, those actions are ordered with re-
spect to each other. When multiple activities perform actions
concurrently, Aerie does not arbitrarily pick an ordering, but
rather surfaces the situation to the mission model. The mis-
sion modeler can define how a custom resource model han-
dles concurrent effects. Aerie’s concurrency semantics are
transactional - meaning the two concurrently executing ac-
tivities do not observe each others’ effects until the end of
the current “tick” of the simulation.

Collaborative Planning
Aerie is designed to enable collaboration between multiple
teams on a mission, as well as between individuals on those
teams. It does that by providing two mechanisms for collab-
oration - multi-tenancy and branching.

Aerie enables synchronous collaboration by allowing
multiple users to access the same plan at the same time via
their browser. Changes are pushed to all users’ browsers over
web sockets, so that everyone can always see the most up to
date version of the plan.

Aerie also enables asynchronous collaboration in the form
of branching. A user can create a copy of a plan, called a
“branch”, and freely make edits to it. These changes do not
affect the original plan in any way, which allows the user to
experiment without fear. When that user is satisfied with the
changes they have made, they can issue a “merge request”



to the original plan, where the changes can be reviewed and
incorporated into the plan. If two changes were made to the
same activity, Aerie will surface this situation to the reviewer
as a ”conflict”, and ask the reviewer to choose one of these
two versions to keep.

Scheduler
Aerie features an automated scheduling system based on a
prototype described in (Maillard, Jorritsma, and Schaffer
2021). As other components of Aerie, it designed to be as
independent as possible from other modules. It runs its own
database and provides a distinct GraphQL API that can be
queried by other modules.

The user specifies inputs to the scheduler by writing
scheduling goals in a Typescript-embedded domain specific
language. Goals are expressions focusing on scheduling a
particular consistent set of activity instances. There are sev-
eral types of goals defined in the scheduling language, each
providing a different high-level satisfaction criteria:
1. A coexistence goal is a type of goal in which activity in-

stances are scheduled with respect to an existing set of
time periods, be those instances of another activity type
or a conjunction of state values. This goal translates the
intent expression ”schedule activity A for each activity B
present in the plan, 5 minutes after its end” or ”sched-
ule activity A for each period during which resource R is
above X”.

2. A recurrence goal expresses the need to schedule activi-
ties at a regular cadence, i.e. a set of activities separated
by a specific range of durations.

3. A cardinality goal expresses the need to schedule a num-
ber of activities whose total duration lies in a range of
durations.

4. A composite goal is a conjunction or disjunction of other
goals. The conjunctive composite requires satisfaction of
all subgoals while the disjunctive only requires one of its
subgoals be satisfied. While the composite goal has its
own priority to order it within the wider scheduling pro-
cess, the subgoals are ordered according to their relative
priority within the composite.

Each goal is associated with
• a scheduling priority which reflects its scheduling order

relative to other goals,
• a temporal scope during which the goal is applicable,

which may be different from the overall scheduling hori-
zon

• an activity expression, describing the type of activity
whose instances may satisfy the goal, along with any spe-
cific parameter values for these instances

Our approach with authoring goals is more declara-
tive than imperative. The language allows planners to ex-
press high-level requirements about activity insertions, but
it does not express precisely how to insert activities such
as in (Maldague et al. 2014) which provide an imperative
language to the user, resulting in goals being a collections
of algorithms. Even if a purely declarative scheduling lan-
guage is not possible in our setting for operational aspects,

we try to tend in this direction to increase modularity and
readability of goals. Note that it is still possible for a user
to build their own procedural scheduler and communicate
with the simulation, scheduling, and UI components via the
GraphQL API.

The scheduling algorithm is a constructive algorithm in
which goals are scheduled in priority-first order. To schedule
a given goal, valid constraint intervals are computed and the
current schedule is examined to look for activities already
present and satisfying the goal. If any activities are lacking,
the goal will generate conflicts. Conflicts can be resolved
with different possible resolutions, based on heuristically
chosen start times for activities when several are available.
As their names suggest, goals can be left unsatisfied at the
end of a scheduling run. The scheduler will backtrack when-
ever it turns out, after simulating an activity, that scheduling
that activity at a particular time is impossible. The scheduler
will also backtrack if a goal has been only partially satisfied
while the user has specified that this goal has to be totally
satisfied or left unsatisfied.

The allocation of responsibilities between the scheduler
and the goal allows for more flexibility in terms of schedul-
ing algorithms. Such a simple approach has its drawbacks
in terms of resulting schedule quality but it has advantages
in our setting. Priorities are an easy way to express prefer-
ences but in practice, it is usually difficult to discriminate be-
tween scientific activities. Scheduling priorities are rather an
easily understandable handle for tweaking the results when
mission/science planners are not satisfied with the resulting
schedule. Also, the context-dependent, non-inversible nature
of activity behaviors (e.g. attitude planning), and the large
size of problem instances, makes us lean towards scheduling
approaches that favor early instantiation/grounding and fast
computation via greedy approaches rather than least com-
mitment approaches.

As seen in a previous section, the user has great expres-
sive power to build the behaviors in the mission model.
As an independent component, the scheduler has only very
limited access to the mission model and thus cannot infer
much about preconditions, effects or durations of tasks. This
presents an interesting challenge for the scheduling engine.
Most existing scheduling software relies on extended do-
main knowledge to place activities. In our case, the only way
to ensure that an activity can be inserted in a plan is to insert
it and simulate it.

The scheduling algorithm is not performing optimiza-
tions. For example, it does not try to increase satisfaction
by processing several goals at a time and make sure to pick
opportunities based on maximum global satisfaction. Nev-
ertheless, the scheduler ensures that activities inserted in the
plan never put the plan in a forbidden state. For that, it sim-
ulates every activity before inserting in the plan (unless oth-
erwise explicitly indicated by the user). It also reduces the
windows of opportunities for placing activities by checking
global scheduling conditions. Such a condition is said to be
global when it is not attached to a specific goal or its ac-
tivity instances, but rather to the whole scheduling problem,
meaning it must be enforced every time a change is made to
the schedule in service of any goal. A global constraint may



be set on resources to prevent oversubscription (e.g. energy
or memory) or on activity types such as to prevent parallel
execution of certain activity types (a mutual exclusion con-
straint). We now outline three directions for developing the
scheduler.

More expressive power Practical instances of scheduling
goals, for the Europa Clipper mission for example, some-
times exceed the expressive power of the scheduling eDSL.
For instance, goals involving nested behaviors are not cur-
rently possible to express: combining a cardinality goal and
a coexistence goal to schedule a given number of activities
for each occurrence of an event. That is why the current set
of scheduling constructs is still in development.

Domain control knowledge and performance As we
have seen, the scheduler has limited access to the mission
model and constantly needs to simulate activities, which is
costly computationally. Expanding the domain knowledge
available to the scheduler would be valuable. Currently, the
duration of an activity is either unknown or externally con-
trollable via a parameter. But in practice, some activities
may have a constant duration or a duration that is only a
function of its parameters. The scheduler can use this kind of
information to avoid simulating activities which may bring a
significant performance boost. Ultimately, providing behav-
ioral helpers (i.e. declaring what kind of effect a task has on
a resource) could enable planning capabilities instead of just
scheduling. A user could simply specify what state is desired
and the engine could schedule activities to achieve this state.

Where are my activities? Explainability of sequential
decision-making In the space domain, decision-making
needs to be traced which makes any black-box solvers un-
suited for use. Interpreting the results of a scheduler process-
ing hundreds of states on long scheduling horizons is a chal-
lenge for mission planners. Our goal is to provide explain-
ability features to mission planners and operators. One good
recent example is in the context of task scheduling for Per-
severance, the Mars 2020 rover. Crosscheck (Agrawal, Yela-
manchili, and Chien 2020) has been developed to provide
explanations as to why some activities failed to be scheduled
by analyzing constraint intervals and resource consumption.
We expect that this development will be user-focused, as
to provide explanations to most frequently asked questions
about the produced schedules. For example, these will in-
clude explanations about why a goal has failed to be satisfied
but also about the choices leading to the current start time of
scheduled activities or the usage history of a resource. In the
context of activity scheduling for the Rosetta orbiter (Chien
et al. 2021), the scheduler user interface shows the opportu-
nity windows corresponding to each of the constraints linked
to the failed satisfaction of science campaigns, allowing the
user to gain an understanding as to why the campaign failed
to be scheduled.

Constraint Checking
Aerie provides a mechanism for checking that certain prop-
erties hold true. For example, let’s suppose that a mission
model has two instruments, denoted A and B, that produce

Listing 2: Combined data rate constraint
1 Real.Resource(’/rate/a’)
2 .plus(Real.Resource(’/rate/b’))
3 .lessThan(10)

data. Due to limited bandwidth, the planner may want to
limit the combined data rate of these two instruments. Let’s
say that the two data rates are defined as resources in the mis-
sion model: ”/rate/a” and ”/rate/b” respectively (resources in
Aerie are often named with filepath-like prefixes, to allow
easy grouping of related resources).

Once a planner has set up their plan, they can run a sim-
ulation to observe the effects of the activities in their plan
on resources. They can visually inspect the resources in
the Aerie UI, export them via the GraphQL API to ana-
lyze them elsewhere, or define constraints using Aerie’s con-
straint checking mechanism, and use Aerie to check for vio-
lations of those constraints.

Constraints in Aerie are described using an expression
language embedded in Typescript. In Listing 2, you can see
the definition of a constraint that requires that the sum of
resource ’/rate/a’ and ’/rate/b’ be less than 10. After sim-
ulating, the planner can request a constraints check, which
will cause any temporal regions of the plan that do not sat-
isfy this condition to be highlighted in red on the visualized
timeline.

Aerie’s constraints expression language allows manip-
ulating profiles as values, making it possible to express
complex relationships between resources. A user would
start with a resource profile (e.g. Real.Resource(’/rate/a’)),
and then manipulate it using the provided operations for
adding and multiplying profiles with each other, or with
scalars. A scalar is interpreted to be a constant profile span-
ning the planning horizon. Comparison operators, such as
lessThan, produce boolean-valued profiles, known as “Win-
dows”, which can be combined with other Windows using
boolean operators such as And and Or.

In order to write constraints that refer to activities in the
plan, Aerie provides a ForEach construct in the constraint
language. ForEach allows the user to specify an activity
type, and an associated constraint. This constraint will be
checked separately for each activity of that type in the plan,
and the violations will be accumulated. ForEach constraints
can be nested inside each other, so it is possible to write a
constraint that examines every pair of activities in the plan,
and evaluate whether their timing is acceptable. Inside of a
ForEach constraint, activity parameters are treated as pro-
files and can participate in operations with resources and
scalars alike.

Aerie allows users to upload datasets produced externally
to Aerie, and check constraints against those datasets and
simulation results together in the same constraint.

Since it’s possible for the temporal bounds of externally
produced datasets to not perfectly match the bounds of sim-
ulation results, Aerie constraints can handle ”unknown” val-
ues. This can be useful for checking constraints such as ”At
least one of these two instruments must be in DISABLED



mode at this time”. If the value for one resource is DIS-
ABLED, and the other is ”unknown”, the constraint checker
will still confidently report that the rule is satisfied.

Service-Based Architecture
Aerie is designed to be deployable on a user’s own com-
puter, on a server on premises, and in a cloud environment.
Its components are deployed as services that communicate
with each other over the same GraphQL API that is exposed
to users (more on that in the next section). Services con-
sist of one or more containers (in a standard OCI format),
and a logically isolated database (a typical deployment will
put all service databases in the same PostgreSQL database
cluster). This makes Aerie easily deployable in a cloud en-
vironment. Some Aerie containers, such as the simulation or
scheduler workers, are designed to be horizontally scalable.
For example, a mission expecting to have many users run-
ning simulations concurrently can deploy multiple copies of
the simulation worker container. Simulation requests will be
claimed by the first available worker. If a mission needs to
run more memory-intensive simulations, or store more data,
the simulation workers and database will need to be scaled
vertically by provisioning more memory or disk space.

GraphQL API
Aerie leverages a third-party tool called Hasura (Hasura Inc
2023) to provide an extensive GraphQL API to enable the in-
tegration of Aerie into a mission’s ground data system. The
primary advantage of GraphQL is that it allows the client to
specify exactly what data it needs, which allows more use-
ful data to be fetched with fewer requests, and less network
bandwidth than with other solutions. Hasura is able to in-
spect Aerie’s databases, and generate an API based on se-
lect tables or functions. Hasura can also be configured to
route specific queries to designated Aerie services via http
for operations that require more business logic. Hasura also
provides the ability to filter and sort any query, enabling a
rich client experience, without adding much complexity or
maintenance burden to the Aerie system. Listing 3 provides
an example of a query that uses a Hasura filter to find all Per-
formImaging activities whose imagerMode is HIGH RES.
All Aerie components communicate with each other using
this same API, so external tools can integrate with Aerie just
as directly as its own components do.

User Interface
The user interface for Aerie is designed to support the needs
of any mission planning team. It provides a user-friendly
web-based interface for creating and modifying mission
plans, as well as a means for sharing these plans with other
team members. The interface is flexible and adaptable to dif-
ferent mission scenarios, allowing for the creation of highly
customized views that meet the specific needs of each mis-
sion. For example, one can configure the mission planning
view to visualize activities and resources only applicable to
subsystems of interest (e.g. power, thermal, GNC, etc.).

The UI uses the Aerie GraphQL API to operate on
Aerie data just like any other third-party client, and is not

Listing 3: GraphQL query for high res imaging activities
1 simulated_activity(
2 where: {
3 activity_type_name: {
4 _eq: "PerformImaging"
5 },
6 attributes: {
7 _contains: {
8 arguments: {
9 imagerMode: "HIGH_RES"

10 }
11 }
12 }
13 }
14 ) {
15 start_time,
16 end_time,
17 attributes
18 }

privileged in any way. It takes advantage of modern web
technologies like Svelte for high-performance, lightweight
browser rendering, and web sockets so user interactions are
synchronized. For example changing the start time of an ac-
tivity in a plan on one browser automatically updates the
start time in another browser without needing to refresh the
page. This makes real-time planning in the UI fast and con-
venient.

Additionally, the Aerie UI includes powerful tools for au-
tomatically scheduling and sequencing mission activities. It
provides scheduling capabilities and allow for creating and
editing scheduling goals, as well as running scheduling goals
in the context of a mission plan.

Case Study: Aerie on Europa Clipper
The Europa Clipper mission will be one of the first missions
to use Aerie for planning and sequencing in operations and
is actively using Aerie today to conduct verification and val-
idation (V&V) activities. Slated to launch in October 2024,
Clipper is a flagship-class mission whose primary objective
is to globally characterize Jupiter’s icy moon Europa at a re-
gional scale to assess its habitability. The Clipper spacecraft
hosts a suite of ten instruments including a two-channel ice
penetrating radar, spectrometers, cameras, and in-situ fields
and particles instruments plus a radiation monitoring sys-
tem and the ability to conduct gravity measurements using
its telecommunications subsystem. The sheer number of in-
struments whose observations must be planned, the numer-
ous constraints imposed on planning due to limited space-
craft resources (energy, data storage, etc.) and Jupiter’s harsh
radiation environment, and the lengthy light time delay be-
tween Earth and Jupiter make operations planning complex
and challenging.

Fortunately, Clipper has been leveraging modeling and
simulation via Aerie’s predecessor, APGen, throughout the
project life-cycle to inform the development of the mission
plan, and in some cases, even the spacecraft design (Fergu-
son et al. 2019). As Clipper moves into operations, they will
continue to use modeling and simulation as a central compo-



Figure 1: Aerie UI Mission Plan

nent in their uplink planning architecture, but have chosen to
use Aerie in lieu of APGen for a variety of reasons includ-
ing:
• Aerie has improved support for collaborative and dis-

tributed planning, which is critically important due to the
number of instrument and subsystem teams that must co-
ordinate activities

• Aerie’s UI and eDSLs allow planners with minimal pro-
gramming experience or full knowledge of the inte-
grated set of planning constraints to get involved in plan-
ning. Essentially, Aerie moves the authoring of plan con-
straints closer to the domain experts.

• Aerie supports easier deployment and integration into
the Clipper ground system, which includes many project-
specific applications

• APGen will no longer be maintained as part of AMMOS
and therefore the project would have to incur that cost.

One of the key concepts behind Clipper’s uplink planning
process is the Reference Activity Plan (RAP) (Pinover et al.
2020). The RAP is the authoritative source of activity plans
for the entire mission. An initial version of the RAP will
be generated months prior to entering each mission phase
using software-assisted scheduling, most of which will be
provided by Aerie. Some scheduling particularly focused on
surface coverage optimization will be conducted by a sep-
arate planning system and then imported into Aerie via the
API for viewing alongside the rest of the plan. Ideally, the
resultant schedule will be fairly complete such that only mi-

nor refinements are necessary later in the uplink planning
process.

As each segment of the RAP steps closer to execution,
planners will have the opportunity to refine the RAP us-
ing their choice of software-assisted scheduling or manual
editing (many of the instrument teams expressed a strong
desire to fine tune their activity parameters based on the lat-
est available data from the spacecraft). Individual instrument
and subsystem teams will have the opportunity to branch off
the “master” RAP into a “sandbox” environment where they
can make local changes. Teams will then request for their
changes to be integrated into the “master” RAP. Finally, an
integration team will evaluate the feasibility of the collective
set of change requests and negotiate with teams as needed to
ensure a valid plan. The branching and merging capability
within Aerie is a key enabler for the successful custodian-
ship of Clipper’s RAP.

Clipper has developed models both within and external to
Aerie’s mission model framework. For example, Clipper’s
geometry model, which computes geometric quantities like
spacecraft distance, range, eclipses, etc., is written directly
in Java while its telecom model to determine downlink bit
rates is computed via a completely separate tool. Data from
external models is pushed into the Aerie system via the API
giving planners a unified view of plan data. Planners also
have the ability to check constraints against a combination
of internally and externally computed data.

One of the primary challenges Clipper has experienced
using Aerie is that the expressiveness of the constraint and



Figure 2: Aerie UI Scheduling Goal Editor

scheduling eDSLs have not always been sufficient to de-
scribe the very complicated rules that govern how Clipper
must operate. While the available expressions in each lan-
guage continue to grow, it has become apparent that an in-
terface to describe custom scheduling logic and constraint
evaluation are necessary. The Aerie team is exploring ways
to add these capabilities in the future.

Aerie as an Open Source Project
In an effort to encourage transparency of implementation
and cross-organizational collaboration, Aerie chose to be-
come an open source project. All of Aerie’s source code
and documentation are freely and publicly available on
GitHub.com under a number of repositories within the
NASA-AMMOS organization. Since Aerie’s code base is
public, it can be critiqued by other experts in the commu-
nity, which motivates core developers to write better code
and maintain high quality standards. Given users have in-
stant access to the latest releases and deployments, there is
extra incentive for the project to write clear and complete
documentation so those users can get up and running with
minimal support (and ultimately at a lower cost).

Similarly, because anyone can contribute to Aerie, the
project must clearly define contribution guidelines and in-
structions for new developers to get on-boarded smoothly.
Therefore, Aerie has developed a governance model for
promoting, guiding, reviewing and accepting contributions
from the community. The project follows a fairly liberal con-

tribution model where people and/or organizations who do
the most work will have the most influence on project di-
rection. Technical decision making is primarily conducted
through a “consensus-seeking” approach. In the rare cases
where consensus cannot be reached, decision making au-
thority is delegated to a Technical Steering Committee
(TSC) composed of prominent developers. A Project Man-
agement Committee (PMC) made up of sponsor organi-
zation representatives (i.e. those providing funding to the
project) and key stakeholders who are or will rely on Aerie to
meet a critical need is responsible for maintaining the over-
all project road map and determining project requirements.
As the Aerie community grows and the project evolves, the
governance model will undoubtedly evolve along with it.

In addition to developing and maintaining Aerie’s core
repositories, the project plans to promote a “marketplace”
of extensions, known as the “Aerie Extended Universe”, that
missions can browse and then select extensions to use for
their system. These extensions would primarily be targeted
at the Aerie API or the mission model. For example, an
Aerie command line interface (CLI) utility written in Python
and originally developed by Europa Clipper is available for
the whole community to use to issue standard queries against
the Aerie API. The Aerie project also envisions a set of con-
figurable multi-mission models that users can use to seed
their mission model development. While some extensions
would be maintained and certified by the Aerie core team,
others may be maintained by other community members,
and thus the Aerie team could not guarantee their condi-



tion. Nonetheless, such models and utilities have the ability
to significantly reduce mission ground system development
and operation costs.

Conclusion
We have presented Aerie, our new mission planning,
scheduling, and sequencing software. Aerie’s key contri-
butions are its web-based, collaborative planning environ-
ment, its declarative, goal-based scheduling language, its
constraint checking mechanisms, and its facilities for mis-
sion modeling in Java. We discussed the applications of
Aerie on the Clipper mission, and some of the challenges
being faced there. Lastly, we described the considerations
that went into becoming an open source project.

Acknowledgments
The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004). The authors would like to thank Patrick
Kenneally, Jonathan Castello, Basak Ramaswamy, and the
Aerie Team past and present.

References
Agrawal, J.; Yelamanchili, A.; and Chien, S. 2020. Us-
ing Explainable Scheduling for the Mars 2020 Rover Mis-
sion. In ICAPS 2020 Workshop of Explainable AI Planning
(XAIP).
Chien, S.; Johnston, M.; Policella, N.; Frank, J.; Lenzen, C.;
Giuliano, M.; and Kavelaars, A. 2012. A generalized time-
line representation, services, and interface for automating
space mission operations. In International Conference On
Space Operations (SpaceOps 2012). Stockholm, Sweden.
Chien, S.; Rabideau, G.; Tran, D.; Troesch, M.; Doubleday,
J.; Nespoli, F.; Ayucar, M. P.; Sitja, M. C.; Vallat, C.; Geiger,
B.; Altobelli, N.; Fernandez, M.; Vallejo, F.; Andres, R.; and
Kueppers, M. 2015. In 24th International Joint Conference
on Artificial Intelligence. Buenos Aires, Argentina.
Chien, S. A.; Rabideau, G.; Tran, D. Q.; Troesch, M.; Ne-
spoli, F.; Ayucar, M. P.; Sitja, M. C.; Vallat, C.; Geiger,
B.; Vallejo, F.; Andres, R.; Altobelli, N.; and Kueppers, M.
2021. Activity-Based Scheduling of Science Campaigns for
the Rosetta Orbiter. Journal of Aerospace Information Sys-
tems, 18(10): 711–727.
Deliz, I.; Connell, A.; Joswig, C.; Kanefsky, B.; and Mar-
quez, J. 2022. COCPIT: Collaborative Activity Planning
Software for Mars Perseverance Rover. In 2022 IEEE
Aerospace Conference. Big Sky, MT.
Ferguson, E.; Wissler, S.; Bradley, B.; Maldague, P.; Lud-
winski, J.; and Lawler, C. 2019. The Power of High-Fidelity,
Mission-Level Modeling and Simulation to Influence Space-
craft Design and Operability for Europa Clipper, 195–231.
Springer Nature.
Fratini, S.; and Cesta, A. 2012. The APSI Framework: A
Platform for Timeline Synthesis.

Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Towards an Application Framework for Automated Planning
and Scheduling. In International Symposium on Artificial
Intelligence, Robotics and Automation for Space (ISAIRAS
1997). Tokyo, Japan.
Hasura Inc. 2023. Instant GraphQL on all your data. https:
//hasura.io/. Accessed: 2023-03-28.
Johnston, J.; and Giuliano, M. 2009. MUSE: The Multi-User
Scheduling Environment for Multi-Objective Scheduling of
Space Science Missions. In IJCAI Workshop on Space Ap-
plications of AI. Pasadena, CA.
Knight, R.; Rabideau, G.; and Chien, S. 2001. Extending the
representational power of model-based systems using gener-
alized timelines”. In Proc 6th International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-
SAIRAS). Montreal, Canada.
Lawler, C. R.; Ridenhour, F. L.; Khan, S. A.; Rossomando,
N. M.; and Rothstein-Dowden, A. 2020. Blackbird: Object-
Oriented Planning, Simulation, and Sequencing Framework
Used by Multiple Missions. In 2020 IEEE Aerospace Con-
ference, 1–20.
Maillard, A.; Chien, S. A.; and Wells, C. 2021. Planning the
Coverage of Planets under Geometrical Constraints. Journal
of Aerospace Information Systems, 18:5: 289–306.
Maillard, A.; Jorritsma, M.; and Schaffer, S. 2021. Sail-
ing Towards an Expressive Scheduling Language for Eu-
ropa Clipper. In Knowledge Engineering for Planning and
Scheduling (KEPS), International Conference on Automated
Planning and Scheduling (ICAPS KEPS).
Maldague, P.; Wissler, S. S.; Lenda, M.; and Finnerty, D.
2014. APGEN Scheduling: 15 Years of Experience in Plan-
ning Automation. In Proc SpaceOps 2014.
Marquez, J.; Hillenius, S.; Healy, M.; and Silva-Martinez,
J. 2019. Lessons Learned from International Space Station
Crew Autonomous Scheduling Test. In 11th International
Workshop on Planning and Scheduling for Space (IWPSS).
Berkeley, CA.
Marquez, J.; Ludowise, M.; McCurdy, M.; and Li, J. 2010.
Evolving from Planning and Scheduling to Real-Time Op-
erations Support: Design Challenges. In 40th International
Conference on Environmental Systems. Barcelona, Spain.
Nibler, R.; Mrowka, F.; Wörle, M. T.; Hartung, J.; and
Lenzen, C. 2017. PINTA and TimOnWeb – (more than)
generic user interfaces for various planning problems. In
10th International Workshop on Planning and Scheduling
for Space (IWPSS). Pittsburgh, PA.
Pinover, K.; Ferguson, E.; Bindschadler, D.; and Schimmels,
K. 2020. The Reference Activity Plan: Collaborative, Agile
Planning for NASA’s Europa Clipper Mission. In 2020 IEEE
Aerospace Conference. Big Sky, MT.
Ruffolo, M.; McCauley, P.; and Berman, A. 2017. Activ-
ity Planner: Mission Independent Planning Software. In
10th International Workshop on Planning and Scheduling
for Space (IWPSS). Pittsburgh, PA.
Shao, E.; Byon, A.; Davies, C.; Davis, E.; Knight, R.;
Lewellen, G.; Trowbridge, M.; and Chien, S. 2018. Area



Coverage Planning with 3-axis Steerable, 2D Framing Sen-
sors. In Scheduling and Planning Applications Workshop
, International Conference on Automated Planning and
Scheduling (ICAPS SPARK 2018). Delft, Netherlands.


