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Abstract

Dynamic Targeting (DT) is a concept that enables a space-
craft to exploit data gathered from on-board instruments to
plan in advance the activities of these or other instruments
with the intention of maximizing the science return.
The work presented in this paper aims to further extend the
capabilities of DT, including two variants with and without
target-pointing planning. The latter is currently being tested
on the OPS-SAT Flatsat before being deployed on the actual
spacecraft, marking a significant milestone in the application
of DT technology. The pointing variant will be tested in the
future on spacecraft with faster slewing capabilities or larger
observation windows.

Introduction
As the number of satellites and their capabilities increase,
there is a growing demand for more efficient operations to
maximize the scientific return. To address this challenge,
Dynamic Targeting (DT) has emerged as a promising ap-
proach.

DT enables the decision-making process to be performed
on-board, utilizing in-situ data collected by on-board instru-
ments to assess whether the conditions are appropriate to use
an instrument and to determine the optimal time for sam-
pling. This technique has the potential to enhance scientific
output in two distinct ways. Firstly, it allows for prompt re-
sponse to serendipitous events without the need to wait for
ground-based instructions. Secondly, it reduces the amount
of limited resources such as energy and bandwidth wasted,
which may occur in conventional approaches where random
sampling is conducted even under inappropriate instrument
usage conditions.

The use of DT is expected to become more widespread
in the future, benefiting from more powerful on-board com-
puting capabilities. In this paper, we present an improved
version of DT which aims to address some limitations of
previous efforts. The MIRE experiment was proposed and
approved to test the algorithm on-board ESA’s OPS-SAT
Cubesat by acquiring DT-targeted images of clouds using
a utility function and user-defined constraints. We finally
present early results of our investigations, highlighting the
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benefits and limitations of this approach, and discussing fu-
ture research directions.

Previous Work
Previous work has been developed in the area of cloud detec-
tion to decrease on-board storage and bandwidth(Thompson
et al. 2014), including a one year long experiment with in-
telligent targeting on-board the GOSAT-2 satellite(Suto et al.
2021).

Efforts to capture images of volcanoes and wildfires
through the Earth Observation Autonomy (EOA) project
aimed at a more challenging approach in which the on-
board system would be capable of imaging, image analy-
sis, operations scheduling, and re-imaging within a realis-
tic flight software and hardware (Chien and Troesch 2015).
A combination of CASPER (Chien et al. 2000) and Eagle
Eye (Knight, Donnellan, and Green 2013) solvers was used
for the planning and scheduling part in a time window be-
tween 5-8 minutes. Recent work has focused on developing
more agile cloud-imaging scenarios for spacecraft endowed
with a dedicated lookahead instrument that provides early
information on upcoming science targets. The spacecraft is
capable of quickly iterating in a matter of seconds between
lookahead data acquisition and dynamically targeting the se-
lected targets. To this end, greedy and graph search algo-
rithms have been used to choose from a range of targets and
maximize the scientific output. These algorithms have been
demonstrated in a simulator (Candela et al. 2022) and mis-
sion concept (Swope et al. 2021).

DT Approach
The work in this paper focuses on a reactive scenario in
which the spacecraft needs to react in seconds to serendip-
itous events while not having a lookahead instrument: DT
uses the primary instrument and autonomous re-pointing to
swap between lookahead and science data sampling, those
significantly increasing the number of mission scenarios that
could benefit from it. It also allows to reconfigure the instru-
ment depending on the activity using it.

The following sections present first the mission scenario
that will be used as reference to test DT, followed by a de-
scription of the DT technical details.



MIRE - A DT experiment on the OPS-SAT
Cubesat

The forthcoming version of dynamic targeting (DT) will un-
dergo testing on-board the European Space Agency’s (ESA)
OPS-SAT (ESA accessed on 2023-03), a 3U cubesat aimed
at testing innovative operational technologies in orbit. OPS-
SAT, illustrated in Figure 1, represents an ideal platform for
DT testing purposes, given its robustness, powerful comput-
ing capabilities, and flexibility in programming languages.

Figure 1: OPS-SAT Payload. Image courtesy of ESA

OPS-SAT is endowed with a dedicated High Performance
Computer for experiments consisting of an Altera Cyclone
V SoC with a 800 MHz ARM dual-core Cortex-A9 proces-
sor, 1GB DDR3 RAM and 256MB ECC RAM. Its payload
includes a camera with a resolution of up to 80x80m/pixel
as primary instrument, S-Band and X-Band communications
and an Attitude Determination Control System (ADCS) con-
sisting of gyros, accelerometers, magnetometers, reaction
wheels, magnetorquers and a Star Tracker. The processing
unit runs Linux and supports applications written in multi-
ple languages such as C++, Python and Java, those greatly
simplifying the transition from the laboratory to the space
environment.

Experiment Description
An experiment called MIRE (dynaMIc taRgeting Exper-
iment) has been designed to acquire targeted images of
clouds utilizing DT in OPS-SAT. The overall experiment se-
quence is presented in Algorithm 1. MIRE was submitted
and approved on January 2023.

Algorithm 1: MIRE Experiment

1: for n iterations do
2: Capture a NADIR lookahead-image
3: Identify the clouds in (a region of) the image
4: Select the top n clouds as targets according to a utility

function and a number of constraints defined by the
user

5: Take a snap of each target
6: end for

Specifically, MIRE involves a sequence of iterations dur-
ing which the system captures a NADIR lookahead-image,
identifies clouds in the image, selects the top-ranked n
clouds as targets based on a utility function and user-defined
constraints, and takes a snapshot of each target. The perfor-
mance of the DT algorithm will be evaluated based on the
efficiency of the target selection process and the utility value
of the acquired images. This experiment is expected to pro-
vide valuable insights into the capabilities and limitations of
DT in space environments and its potential for enhancing
operational capabilities for future space missions.

A number of constraints had to be incorporated in the mis-
sion approach and DT itself to comply with OPS-SAT char-
acteristics:
• Payload: OPS-SAT does not have a lookahead instru-

ment. In consequence, MIRE uses its camera also to
gather lookahead data.

• Time constraints: OPS-SAT has a South-North Sun-
Synchronous circular orbit at 490km altitude, 97.5° in-
clination. Its camera can take images with a size of 105
Km along track pointing at NADIR (in an estimated time
of 2 seconds using BMP format). Hence, OPS-SAT takes
under 14 seconds to move through the length of an image
(see Figure 2). Considering that the Attitude Determina-
tion and Control Subsystem (ADCS) can take minutes
to perform slew maneuvers in the range of 15 degrees,
re-pointing to gather lookahead data or to capture cen-
tered target images is not feasible1. However, in our test
we would need the ADCS to be able to re-point from
the lookahead position to the target position (typically
nearby NADIR) in few seconds.

• Considering a time window for each iteration equivalent
to the time to traverse the area covered by the camera
pointing at NADIR and the on-board computational ca-
pabilities available, DT had to be carefully designed to
balance computational time and science acquisition time.

Figure 2: Time window for each lookahead/science gather-
ing iteration

Gathering Lookahead Information
The first step of the loop consist of gathering lookahead
information to decide which clouds to target. DT allows

1Information about temporal performance of OPS-SAT subsys-
tems provided by the OPS-SAT team at ESOC



to perform slew manoeuvers, e.g. to point forward on the
track direction for those spacecraft that do not have a dedi-
cated instrument. However, this is not an option for this test
with OPS-SAT due to the ADCS performance as mentioned
above, effectively forcing our mission to focus on a con-
stant NADIR pointing. This fact combined with the lack of
a dedicated instrument limits the available lookahead data to
NADIR images.

Maintaining a high cadence of observations and targeting
cycles is of utmost importance for most spacecraft, and this
is especially true for OPS-SAT considering the 14 seconds
per cycle cadence. To achieve it, it is necessary to optimize
the dynamic targeting (DT) algorithm and reduce the pro-
cessing time of the target detection/classification process,
which is the primary computational time consumer in DT.
To accelerate this process, two measures have been imple-
mented.

The first measure consist of down-sampling the image res-
olution. This technique can reduce significantly the process-
ing and observation time as a consequence of the reduction
in the number of pixels and low level details in the image.

The second measure involves the extraction of a percent-
age of the image from the top as lookahead data. The per-
centage of the image to be extracted must be carefully se-
lected, as a smaller value decreases the area in which science
targets can be detected (and therefore the processing time),
increasing the time available to perform the actual scientific
observations.

This approach ensures that the lookahead step is opti-
mized to achieve the desired high cadence of observations
and targeting cycles while maintaining the required level of
scientific output.

Cloud Detection
Considering that the primary objective of this study is to
demonstrate dynamic targeting rather than cloud classifi-
cation, a rudimentary threshold-based cloud detection ap-
proach was chosen for its simplicity and expeditious devel-
opment. However, it is worth noting that this methodology
may encounter challenges in detecting clouds in low-light
images (see Figure 3), while also exhibiting a propensity to
produce false positives in bright images. While such errors
are tolerable within the scope of this project and may be
mitigated by carefully selecting favorable study areas, they
would not be suitable for a rigorous scientific endeavor. The
Algorithm 2 summarizes the key steps.

Figure 3: False negative in dark image

Algorithm 2: Cloud Detection

1: Convert the image to grayscale
2: Apply a Gaussian blur to the image to reduce noise
3: Apply thresholding to the image to convert it into a bi-

nary image
4: Apply morphology operations to remove small objects

and fill gaps
5: Find white-coloured contours in the binary image
6: Calculate rewards for all the contours
7: Sort contours in decreasing order of rewards
8: Get the centroids of the n highest-reward contours
9: Return the contours

The algorithm uses the OpenCV2 library. It first converts
the image to grayscale. Next, it applies a Gaussian blur to
the image to reduce noise and thresholding to the image to
convert it into a binary image. It then applies morphology
operations to remove small objects, fill gaps and find con-
tours in the binary image. For each contour found, the func-
tion calculates a reward and sorts the contours in decreasing
order of rewards. It then gets the centroids of the n largest
contours (n being a user-defined parameter), saves the im-
age and return the centroids.

Dynamic Targeting
The final stage of the iteration entails the selection of the
targets to be sampled and subsequently capturing an image
of each of them.

The algorithm first calculates a path between the centroids
provided by the cloud classificator while satisfying a number
of constraints, including:

• Each target is visited at most once: This constraint is ac-
tually mission-dependent. Its relaxation to allow multiple
observations is subject to future work.

• The total cost derived from performing all the observa-
tions must be within a maximum boundary. It is calcu-
lated by a cost function that typically models a resource
utilization such as energy. In case multiple plans satisfy
the cost constraint, the plan with lower cost is selected.
That captures the general desire to preserve resources for
future observations.

• There is one starting node (the current spacecraft atti-
tude) and one final node (spacecraft attitude to image
the final target) which are different, that is, the spacecraft
doesn’t need to re-point to its original attitude.

This problem can be formulated as an optimization prob-
lem with the objective of maximizing the total utility value
of a sequence of targets, subject to a budget constraint.
Specifically, the problem seeks to find a subset of targets that
maximizes the sum of their associated utility values while
maintaining the total cost of visiting the targets below a pre-
determined threshold.

Formally, let T = t1, t2, ..., tn be the set of n targets,
where each target ti has a known utility value ui. The trav-
eler seeks to find a subset S ⊆ T of targets to visit that



maximizes the total utility value of the sequence:

futility = max
s1,s2,...,sn

n∑
i=1

uisi

subject to a budget constraint:

fcost =

n∑
i=1

cisi ≤ C

where si is a binary variable that takes the value 1 if target
ti is visited and 0 otherwise, ci is the cost of visiting target
ti, and C is the total budget constraint.

We call this problem the ”Dynamic Pointing Target Selec-
tion Problem” or ”DP-TSP”2.

The problem of selecting which targets to acquire can be
modelled as a complete graph3 where the nodes are the tar-
gets, each with a utility value, and the edges represent the
cost to go from one node to another.

DP-TSP resembles the n-cities Open Travel Salesman
Problem or n-OSTP(Chieng and Wahid 2014). The utility
function, not considered in the n-OSTP problem, is captured
in the Prize Collecting TSP or PCTSP(Balas 2007). It is im-
portant to note that, unlike in these TSP variants, the posi-
tion of the traveler changes in DP-TSP after every observa-
tion and the extent of this change is directly influenced by
the time required for the previous observation. Additionally,
the plan in DP-TSP does not affect the spacecraft position,
which is fully defined by its orbital properties, but instead
specifies the attitude at which the spacecraft should point
and the time range during which the pointing should occur.

Unlike in classical TSP, which static nature allows the
problem to be solved with well studied algorithms such
as integer linear programming or evolutionary algorithms,
solving DP-TSP requires algorithms that can handle the dy-
namic nature of the problem. This can be challenging since
the optimal solution at one point in time may not be op-
timal at a later time due to changes in the cost between
nodes. Considering that the classical TSP can be solved in
O(n4) using Christofides Algorithm(Neoh et al. 2020), DP-
TSP would require O(n4T ), where n is the number of nodes,
and T is the number of time steps. This time complexity
arises from computing the minimum cost for each combi-
nation of a node, time step, and subset of nodes visited so
far. Therefore, DP-TSP can become computationally infea-
sible for large instances with many nodes and time steps.
In practice, heuristics and approximation algorithms can be
used to find near-optimal solutions.

We have tested a relaxed version of DP-TSP considering
as cost function the accumulated slew angle and fixing the
spacecraft position under the premise that the impact of its
position change is negligible given the limited time window

2The name emphasizes that the selection of pointing targets
is a dynamic process. The inclusion of ”TSP” in the name also
highlights the similarity to the classic Traveling Salesman Problem
(TSP)

3The graph is complete because each pair of targets are con-
nected (by a single node). This is not the case in the classical TSP
problem in which two cities might not be connected.

to perform all the observations, modelling it with integer
programming. However, the small area of observations con-
sidered in MIRE also means that the benefit of minimizing
the accumulated slew angle has little benefit. On the con-
trary, the computational time spent could be better used to
take more observations. As a result, the OPS-SAT variant
of DT forgoes the use of TSP target-planning capabilities
and instead employs a simpler approach where targets are
arranged based on their latitude. Notice that this is a particu-
larity of the OPS-SAT scenario, while the more generic DP-
TSP problem is subject of on-going work. Moreover, given
that the time required for slewing maneuvers in OPS-SAT
exceeds the time window available for observations (below 4
seconds), another relaxation of the problem requires to con-
sider the spacecraft permanently pointing at NADIR. While
these two relaxations represent an important departure of the
generic DP-TSP problem, the resulting scenario is still rel-
evant to test the capability of DT, namely to dynamically
select on-board the next set of targets to be sampled.

In consequence, the OPS-SAT variant of DT doesn’t use
the TSP target-planning capabilities in favor of a more sim-
ple approach in which the targets are simply ordered by their
latitude

Figure 4 illustrates the sequence of images obtained dur-
ing a simulation of DT using the Consumer Test Tool (CTT)
simulator provided with the OPS-SAT framework. It shall be
highlighted that CTT is configured so that it provides ran-
dom images without taking into account the impact of the
spacecraft attitude on the camera’s field of view.

Figure 4: Sequence of images captured with DT executed in
OPS-SAT CTT simulator

Interfacing with OPS-SAT
There are two ways of developing software for OPS-SAT.
The first method involves using the NanoSat Mission Oper-
ations Framework (NMF) SDK, which is written in Java and
provides high level libraries to access most of the platform
functionalities. The second method involves developing cus-
tomized software using a C++ library, which interfaces with
the payload systems.

MIRE’s layer interfacing with OPS-SAT has been devel-
oped in Java using NMF, while the core DT layer is written
in Python. A high level view of its architecture is presented
in Figure 5.

MIRE implementation follows two key principles. The
first is to encapsulate and isolate the DT algorithm from



Figure 5: MIRE Architecture

spacecraft (S/C) details, ensuring that it can be easily reused
in other platforms. The second is to enable users to fine-
tune the DT algorithm without requiring modifications to the
code. The main loop of the application is presented in Algo-
rithm 3, which involves loading user parameters, resetting
ADCS attitude, choosing the slew strategy (either pointing
to the targets or permanently to NADIR), capturing a looka-
head image, calling the DT algorithm to obtain a ”tour” of
targets, initiating pointing for each target and finally taking
a picture. The main loop repeats for a number of iterations
specified by the user and exits after storing all images in a
designated folder to be retrieved by Ground for later analy-
sis.

MIRE’s OPS-SAT layer interfaces with three spacecraft
subsystems: the GPS to gain information about the space-
craft attitude, the ADCS for slew maneuvers (if pointing is
enabled) and the camera to take images. As the code is fully
autonomous, we didn’t use the ACTION paradigm provided
in NMF to implement behaviours as there were no appar-
ent benefit. Instead, MIRE directly command and query the
subsystems via NMF services.

Algorithm 3: MIRE Main loop

1: Load User Parameters
2: for n iterations do
3: Reset ADCS Attitude
4: Point to NADIR and take lookahead image
5: Call DT and obtain ”tour” of targets
6: for each target do
7: Initiate pointing
8: (optional) Wait for target alignment
9: Take Picture and Store in designated folder

10: end for
11: end for

Initial Results
We conducted tests on various combinations of two param-
eters: the percentage of the lookahead image used for tar-
get identification and the application of image compression.
Each configuration was run multiple times to obtain average
durations and eliminate sporadic outliers. The goal of these

simulations is to gain insight into the time consumption dis-
tribution of the key DT steps. While the absolute values are
not relevant due to the use of a non-representative platform4,
the results provide valuable knowledge for advancing to the
next phase, which involves testing in the FlatSat and deploy-
ing in OPS-SAT.

As depicted in Figure 6, the classification step requires
most of the planning time, followed by image compression,
while sorting the targets by latitude has negligible duration.

Figure 6: Time consumption for target detection, classifi-
cation, and prioritization using four combinations of looka-
head image percentage and image compression

Although image compression may not yield significant
improvements in computing time for small observation win-
dows, it offers a notable advantage (approximately 30%)
when the number of potential targets increases, as demon-
strated when processing the entire image. This is attributed
to the reduction in the number of pixels that require process-
ing and the elimination of small-sized targets that would oth-
erwise need to be filtered out at a later stage in the detection
process. Our experiments indicate an average reduction of
over 90% in the number of targets detected by the algorithm.
Figure 7 provides a visual representation of this effect.

With respect to the target selection and path planning step,
its execution time is expected to increase from the current
O(nlog(n)) to O(n4T ) (if TSP is used as discussed pre-
viously) for scenarios in which we can plan the spacecraft
pointing maneuvers. This step has the highest temporal com-
plexity of all the steps in the planning side and need to be
carefully analyzed for each mission. In case the spacecraft
has a dedicated lookahead instrument and can perform plan-
ning and instrument sampling in parallel, the planning step
can take as much time as the observation time while keeping
100% coverage of the terrain. The opposite case in which
there is no lookahead instrument and/or planning and ob-
servations need to be interleaved, requires to consider the
time balance between each step. Consider the scenario il-
lustrated in Figure 8 where the planning time grows at a
quadratic rate O(n4) while the observation time grows lin-

4The experiment was executed on an Ubuntu 22.04.2 LTS Vir-
tual Machine, deployed on VirtualBox on a Windows 10 operat-
ing system. The Virtual Machine was configured with 32GB of
RAM and allocated two cores of the 11th Gen Intel(R) Core(TM)
i9-11950H @ 2.60GHz.



Figure 7: Impact of compression in noise reduction and tar-
get detection. The uncompressed image at a resolution of
2048x1944 result in 141 targets detected while the com-
pressed one with a resolution of 256x248 results in 8 targets

early with respect to the number of targets5. If there are 24
targets, we will require an overall window of almost 10 min-
utes for the entire cycle, with the planning step consuming
more time than the observations. If the available time win-
dow is smaller than 10 minutes, the maximum number of tar-
gets should be limited so that computation time is not wasted
planning observations that cannot be satisfied.

Figure 8: Planning/Observation time ratio for different tem-
poral windows

In the particular case of the OPS-SAT scenario, the plan-
ning step only accounts for a small fraction of the total
time during each lookahead/science cycle, ranging from
1% to 6%, as shown in Figure 9. The remaining time is
consumed interfacing with various OPS-SAT subsystems
(namely GPS, ADCS, and Camera). However, this ratio
is expected to be re-balanced in the operational environ-
ment, with the computationally-intensive Python code slow-
ing down due to the flight processor while the subsystem

5In this example assumes a constant factor of 1 millisecond to
evaluate each node and 10 seconds to slew and take an image of
each target

operations remain at similar values as their performance is
limited by hardware rather than computer capability.

Figure 9: Overall time requirement during an interation
lookahead/science

Conclusions And Future Work
This paper presents an Enhanced Dynamic Targeting (DT)
solution for the OPS-SAT CubeSat, which aims to address
the limitations of previous work by enabling planning and
sampling of multiple targets for each lookahead cycle and
a customizable lookahead/science time window. The MIRE
experiment was proposed and approved to test the algo-
rithm on-board OPS-SAT by acquiring DT-targeted images
of clouds using a utility function and user-defined con-
straints. DT trials with the OPS-SAT simulator have been
completed with satisfactory results and is currently in the
process of being tested in the FlatSat. At the same time,
the DT configuration with active pointing using a slew cost
function is also ready and waiting to identify an adequate
platform to be tested.

The limitations of the OPS-SAT platform, namely the
ADCS performance and the lack of a dedicated lookahead
instrument prevented us from deploying and testing addi-
tional capabilities such as parallel lookahead and scientific
data sampling or a full-fledge on-board planner/scheduler to
choose the targets and optimize the pointing maneuvers.

While some capabilities designed specifically for OPS-
SAT, such as target detection on a sub-region of the
lookahead image for performance enhancement, may seem
domain-specific, others like image down-sampling prior to
processing could be applied to other spacecraft.

Furthermore, deploying and testing DT on OPS-SAT will
provide valuable insights into its capabilities in space en-
vironments and potential for enhancing operational capa-
bilities. MIRE represents the first deployment of DT in a
spacecraft, paving the way for future tests on more advanced
spacecraft. Additionally, we expect to demonstrate that DT
can improve a mission’s scientific return in a simple and
cost-effective manner.

Future work in DT generalization has already begun, fo-
cusing on multi-target planning for the DP-TSP problem,
defining reward functions that consider inter-dependency
between observations, and multi-agent DT. These areas hold



great promise for enhancing the capabilities of DT and ex-
panding its potential applications.
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