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ABSTRACT 
 
Deep Space missions can benefit from onboard image 
analysis.  We demonstrate deep learning inference to 
facilitate future mission adoption of said algorithms.  
Traditional space flight hardware provides modest compute 
when compared to today’s laptop and desktop computers. 
New generations of commercial off the shelf (COTS) 
processors designed for embedded applications, such as the 
Qualcomm Snapdragon and Movidius Myriad X, deliver 
significant compute in small Size Weight and Power (SWaP) 
packaging and offer direct hardware acceleration for deep 
neural networks. We deploy neural network models on these 
processors hosted by Hewlett Packard Enterprise’s 
Spaceborne Computer-2 onboard the International Space 
Station (ISS). We benchmark a variety of algorithms trained 
on imagery from Earth or Mars, as well as some standard 
deep learning models for image classification. 
 
Index Terms— Deep Learning, Edge Processing, Space 
Applications, Machine Learning, Artificial Intelligence, 
COTS embedded processors 
 
1. INTRODUCTION 
 
Deep space missions have limited contact with ground 
operations teams1, making it hard to account for execution 
variation.  Onboard autonomy can address this, but traditional 
space flight hardware has very limited capabilities. A new 
generation of processors, such as the Qualcomm Snapdragon 
855 [1] and Intel Movidius Myriad X [2], enable onboard 
inference by supporting neural networks directly in hardware 
[3]. This technology promises more powerful edge 

 
1 Due to limited numbers of Earth-based ground communications stations and geometric constraints. Surface missions 
typically are commanded daily or every several days and orbiters are typically commanded weekly. 

computing. 
      We benchmark deep learning models trained on imagery 
from Earth and Mars on Snapdragon and Movidius Myriad X 
processors onboard the ISS. Hosting of these processors is 
enabled by Spaceborne Computer-2 (SBC-2) by Hewlett 
Packard Enterprise [4]. Previously, these models have been 
deployed on the ground.  The ISS deployment is a step 
towards running such models on a satellite, a Lunar outpost 
or a Mars Rover, to enable onboard data analysis, targeted 
downloads, commanding of space assets, and onboard 
science interpretation. 

2. PROCESSORS AND DEPLOYMENT 
 

The Qualcomm Snapdragon 855 has multiple subsystems, 
including a CPU cluster with 8 ARM cores, an Adreno GPU, 
a Digital Signal Processor (DSP), and an AI Processor (AIP), 
sometimes referred to as the Neural Processing Unit (NPU). 
The NPU can be used to select the right component for a 
given task. The ARM and GPU support floating point 
numbers, while the DSP/NPU support fixed-point only. 
Snapdragon processors have been used in vehicles, drones, 
and even the Mars Ingenuity Helicopter [5]. 
      The Myriad X Visual Processing Unit (VPU) features a 
Neural Compute Engine, which is a dedicated hardware 
accelerator for performing inference with neural networks, as 
well as cores for accelerating computer vision algorithms. 
The VPU is programmable using Ubotica’s CVAI Toolkit™. 
Half precision floating point is supported. The previous 
generation VPU, the Myriad 2, flew on the PhiSat-1, a 
CubeSat mission from the European Space Agency [3]. 
      Two Snapdragon 855 handheld development boards and 
two Movidius Myriad X Processors were integrated with the 



 

HPE SBC-2, which was launched as part of the ISS resupply 
mission Cygnus NG-15 on February 20th, 2021. Uplinks are 
possible periodically to load new software. 

3. MODELS AND BENCHMARKS 
 
We benchmark deep learning models for image classification, 
image segmentation, and spectral super-resolution. 
 
3.1. Mars HiRISENet and Mars MSLNets 
 
The Mars imagery classifiers we benchmark include Mars 
HiRISENet and two Mars MSLNet Convolutional Neural 
Networks (CNNs). HiRISENet is used to classify images 
collected by the High Resolution Imaging Experiment 
(HiRISE) instrument onboard the Mars Reconnaissance 
Orbiter (MRO). MRO is used to study Martian surface 
features. HiRISENet is trained on classes that include dunes, 
craters, the debris from volcanic eruptions, and features 
formed by sublimating CO2 [6]. In the future, a similar model 
could enable data analysis onboard an orbiter. 
 

 

Figure 1: Example Mars HiRISE Classes [6] 
 
      Table 1: Mars HiRISE Classifier Benchmarks 

 Errors  Inference Time Energy 

Linux Reference - 56.9 ms                      2.3 J*          

Snapdragon CPU 0 87.8 ms 0.5 J 

Snapdragon GPU 1 (0.1%) 16.3 ms 0.051 J 

Snapdragon DSP 15 (0.8%) 7.6 ms 0.016 J 

Snapdragon NPU 15 (0.8 %) 7.6 ms 0.014 J 

Myriad X 2 (0.1%) 16.2 ms 0.032 J 

 
      MSLNet1 and 2 are used to classify images collected by 
the Mast Camera (Mastcam) and the Mars Hand Lens Imager 
(MAHLI) instruments mounted on Mars Science Laboratory 
(MSL) Curiosity rover. Mastcam is a two-instrument suite 

with left and right-eye cameras, and MAHLI is a single 
focusable camera located at the end of the rover's robotic arm. 
MSLNet1 is trained on classes including rocks, sand, sun, 
wheel tracks, and wheels [6]. If MSLNet1 predicts “other 
rover parts”, the image will be passed through MSLNet2 for 
finer grained classification [7]. Running these classifiers 
directly onboard the rover could improve data collection and 
enable autonomous tasking. 
      These Mars classifiers were built with transfer learning 
from AlexNet [8]. Test images were 227x227 pixels. HiRISE 
images were grayscale, and MSL images were RGB. Models 
that are run on the Snapdragon DSP/NPU must be quantized 
(fixed point), and on the Myriad X, must be transformed to 
half precision floating point, which can lead to a classification 
discrepancy. Models are quantized using a separate validation 
dataset and discrepancies are reported on a held-out test set. 
      Benchmarking results are similar for all three classifiers; 
for brevity, we display only results for HiRISENet. Table 1 
shows errors and power relative to a Linux run on the test 
laptop: MacOS 2019, 2.4GHz, 8-core, 3.1W idle, 94W max 
(*energy includes monitor and other externals). Inference 
time and energy consumption shown are per image. On the 
test laptop, the time reported is walltime. These low SWaP 
processors have only small errors, with up to 10x speed 
improvement. 
 
3.2. Mars NavCam Image Segmentation 
 
We also deploy an image segmentation model trained on 
imagery from the MSL rover’s Navigation Cameras 
(NavCam) [9]. This model was developed to support MSL 
Rover Planners for hazard assessment and slip analysis, but 
could also be run onboard. The model was built using a 
DeepLabv3 architecture [10]. 
      Table 2 shows the quantization discrepancy errors and 
inference times per image (images were 513x513 pixels). The 
errors on the Snapdragon DSP are relatively high. We were 
not able to pre-quantize the model and used run-time 
quantization, which increases the network initialization time, 
peak memory usage, and the model file size, as well as 
affecting quantization discrepancy. We do not show Myriad 
results, as the model had incompatible layers. 

 

 
Figure 2: Mars MSL NavCam Imagery and Label 

 



 

Table 2: Mars NavCam Image Segmentation Benchmarks 
 % missed pixels Inference Time  

Linux Reference - 1,886 ms 

Snapdragon CPU 0.0 % 6,235 ms 

Snapdragon GPU 0.4 % 2,233 ms 

Snapdragon DSP 9.3 % 192 ms 

 
3.3. UAVSAR Flood Mapping 

 
In addition to models trained on Mars, we test earth-based 
models for image segmentation and super resolution. We 
demonstrate a model trained to perform pixel-wise binary 
classification of UAV polarimetric L-band SAR imagery, to 
predict areas that have been flooded. This model was trained 
on imagery of Houston, TX, USA, after flooding by 
Hurricane Harvey [11]. The net architecture follows a UNET 
[12] structure. These models could be used for onboard alert 
generation or surveillance. Table 3 gives quantization errors 
and timing; a subset of these results has been shown in ref 
[13], we add Linux, NPU, and Myriad benchmarks. Image 
patches were 64x64 pixels. A run time of 1.3 image 
patches/second is needed to meet real time, and this is met by 
all platforms. All error rates are small. 
 

Table 3: UAVSAR Flood Mapping Benchmarks 
 % missed pixels # patches / sec  

Linux Reference - 25 

Snapdragon CPU 0 % 20 

Snapdragon GPU 0 % 162 

Snapdragon DSP/NPU 0.4 % 391 

Myriad X 0.7 % 167 

 
3.4. Super Resolution for Spectroscopy 
 
The models benchmarked above performed image 
classification or segmentation. Here, we look at a model for 
super resolution. Earth and planetary scientists use high-
resolution spectral measurements for rock and mineral 
identification. This data tends to be sparse, compared with 
lower resolution data. A Deep Gaussian Conditional Model 
was created to infer high-resolution measurements from low-
resolution ones [14]. It was trained to predict the Airborne 
Visible Infrared Imaging Spectrometer Next Generation 
(AVIRIS-NG) hyperspectral output from the 5-band 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) inputs. For this model, inference on the 

Snapdragon DSP/AIP is twice as slow as running on the 
Snapdragon CPU (45 vs 21 ms per input). This is most likely 
due to the small size of the model and single-pixel nature. 
 
3.5. Standard Deep Learning Models 

 
Transfer learning from pre-trained models is often used for 
model development. We benchmark some standard Keras 
[15] deep learning classification models, which may help 
with model selection for edge processing. All models were 
pre-trained on ImageNet [16], which has 1,000 different 
classes, and contains internet imagery. For testing, we use 
Imagenette [17], which is a much smaller dataset, containing 
only 10 classes. For brevity, in Table 4, we show 
classification discrepancy and timing using the Snapdragon 
NPU for a variety of standard models. 
 
Table 4: Standard Deep Learning Models: Snapdragon NPU    

 Errors Inference Time # Parameters 

MobileNet 100% 60 ms 4,253,864 

InceptionResNetV2 16% 56 ms 55,873,736 

Xception 11% 53 ms 22,910,480 

VGG19 4% 31 ms 143,667,240 

InceptionV3 4% 27 ms 23,851,784 

VGG16 2% 27 ms 138,357,544 

ResNet50 6% 10 ms  25,636,712 

 
The quantization discrepancy of MobileNet is very high; the 
structure of the net gives greater fluctuation ranges, which 
may make it not easily quantize-able [18]. Number of model 
parameters does not predict run time. 
 

4. FUTURE WORK AND CONCLUSIONS 
 
We have demonstrated the Myriad X and Snapdragon COTS 
processors for faster and lower power deep learning in space 
on the ISS. The Snapdragon DSP/AIP provides speed 
improvements over the CPU in all cases except the single-
pixel network. Errors were low, except when using a run-time 
quantized network, as in NavCam. We continue to 
benchmark new applications, and are running memory 
checkers to quantify radiation effects on the processors. We 
also plan to benchmark results using Qualcomm’s efficiency 
toolkit [19], which may improve network quantization. We 
have shown fast and accurate inference with these COTS 
processors and hope this will be a step towards a new era of 
powerful onboard autonomy with edge processing. 
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