
Dynamic Targeting of Satellite Observations Incorporating Slewing
Costs and Complex Observation Utility*

Akseli Kangaslahti1, Alberto Candela2, Jason Swope2, Qing Yue2, Steve Chien2

Abstract— Maximizing the utility of limited Earth observing
satellite resources is a difficult ongoing problem. Dynamic Tar-
geting is an approach to this challenge that intelligently plans
and executes primary sensor observations based on information
from a lookahead sensor. However, current implementations
have failed to account for realistic satellite operational con-
straints and have used static utility for repeat observations of
the same target. To address these limitations, we implement
a more general Dynamic Targeting framework that comprises
a physics-based slew model, a dynamic model of observation
utility, and an algorithm for gathering high-utility observations.
To demonstrate this framework, we also supply complex dy-
namic utility models that are applicable to many missions and
new algorithms for intelligently scheduling observations with
slewing restrictions and changing utility, including a greedy
algorithm and a depth-first search algorithm. To evaluate these
algorithms, we test their performance across simulated runs
through two datasets and compare to the performance of an
algorithm representative of most scheduling algorithms aboard
Earth science missions today as well as an intractable upper
bound. We show that our algorithms have great potential to
improve science return from Earth science missions.

I. INTRODUCTION

One challenge in remote sensing is making the most of a
limited number of observations. This problem is applicable
to many missions as the utility of satellites in general is
often limited by operational constraints, including swath,
revisit rate, and battery power. Dynamic Targeting (DT) is a
method for intelligent observation scheduling that leverages
information from a lookahead sensor to identify targets ahead
of time for the primary sensor of a satellite to observe. The
lookahead sensor views the ground below the future orbit
path of the satellite. Then, a planning algorithm or model
is used to select target points for the primary sensor to
observe once the satellite passes over that point. This way, the
satellite’s resources are efficiently allocated and more targets
of high value are observed. Fig. 1 illustrates this concept [1].

The DT concept is applicable to many Earth science
missions and its vast potential to increase the efficiency of
observations has already been demonstrated (e.g., [1]). As

©2024 California Institute of Technology. Government sponsorship ac-
knowledged

*The research was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration (80NM0018D0004). This work was supported by the
Earth Science and Technology Office (ESTO), NASA.

1A. Kangaslahti is with the University of Michigan, Ann Arbor, Ann Ar-
bor, MI 48109, USA and the Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA 91011, USA. akanga@umich.edu

2A. Candela, J. Swope, Q. Yue, and S. Chien are with the Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA
91011, USA. {alberto.candela.garza, jason.swope,
qing.yue, steve.a.chien}@jpl.nasa.gov

Fig. 1. Dynamic Targeting uses information from a lookahead sensor to
intelligently plan primary sensor observations (adapted from [1]).

such, we expect DT to become very common amongst future
Earth science missions [2]. However, current DT systems
are not yet fully generalizable, as they fail to account for
operational constraints and they do not change the utility of
targets that have already been observed, which is unrealistic.
To address this, we have designed a new, more general DT
framework that accounts for many operational constraints
including slewing capability, calculates utility changes for
repeat observations, and runs a DT algorithm to intelli-
gently schedule observations. Our slew model calculates
the reachable set of observations during each cycle based
on physical satellite constraints that are set to match those
of a given mission. We supply complex example dynamic
utility models that either increase or decrease utility near
observation targets that already been observed, depending on
the specific application. This combination of limited slewing
capability and dynamic utility introduces a difficult problem
of efficiently searching for a high-utility observation path. To
tackle this problem, we demonstrate algorithms for our new,
general Dynamic Targeting framework, including a greedy
algorithm and a bounded depth-first search algorithm. We
demonstrate this framework and the performance of our
algorithms with a simulation study using two datasets from
the Smart Ice Cloud Sensing (SMICES) project [3], [4].
However, our framework remains general enough to replace
our proposed utility models and algorithms if desired.

II. PRIOR WORK

One prior approach to more efficient data collection was
rapid screening for clouds and subsequent compression and
removal of cloud data in order to reduce data volume [5].

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



This was demonstrated in real-time onboard the Airborne
Visible-Infrared Imaging Spectrometer - Next Generation
(AVIRIS-NG) instrument [5]. Another method for onboard
observation data analysis and filtering to specifically re-
duce transmission bandwidth has also been demonstrated
[6]. Other approaches have used intelligent targeting for
agile instruments on Earth-observing missions. For exam-
ple, the imaging order scheduling algorithm used for the
now decommissioned FORMOSA-2 satellite used weather
conditions and forecasts to generate a nominal observa-
tion schedule that could then be adjusted during execution
[7]. Furthermore, a feasibility study presented by Beaumet,
Verfaillie, and Charmeau [8] demonstrated in theory how
an online algorithm for an agile Earth-observing satellite
could combine a lookahead camera for cloud detection and a
primary instrument for observations to better satisfy mission
objectives. Additionally, a method for mission planning with
cloud avoidance using a cloud-detecting sensor has been
demonstrated in simulation [9]. Intelligent targeting has also
been used aboard the Thermal and Near Infrared Sensor
for Carbon Observation Fourier-Transform Spectrometer-
2 (TANSO-FTS-2) for avoiding observations blocked by
cloud cover [10], which resulted in an increase in clear-
sky observation scenes by a factor of 1.8. Additionally, the
Autonomous Sciencecraft Software (ASE) that flew aboard
the Earth Observing-1 (EO-1) satellite used information from
previous observations to schedule subsequent observations
[11]. However, these subsequent observations were during
the next orbital cycle, roughly 90 minutes later, while DT
aims to direct observations during one overpass, only a few
minutes or less later. A greedy scheduling algorithm for
redirecting observations of satellites within the same over-
pass based on previous observations that were just acquired
was also demonstrated [12]. DT specifically has previously
been demonstrated in simulation for cloud avoidance [13]
and storm hunting [2]. Additionally, DT algorithms have
been developed and tested in simulation studies for deep
convective ice storm hunting in the SMICES project [3],
[4]. However, these projects all assumed infinite slewing
capabilities. Other theoretical DT work has represented slew-
ing limitations by only allowing the position of the primary
sensor to be adjusted by a certain spatial distance along each
slewing axis between timesteps [14]. In comparison, our new
physics-based slew model calculates slewing ranges on each
cycle based on the primary sensor position and the physical
constraints of the satellite, which is more realistic. Our work
is also the only project that has accounted for changes in
target utilities depending on which targets have previously
been observed, which, along with limited slewing capability,
introduces a difficult utility maximization problem.

III. DATASETS

In our experiments, we use two datasets containing storm
cloud data intended for the SMICES project, which aims to
study deep convective ice storms [3]. One of these datasets
is a tropical dataset from the Caribbean with 15 km/pixel
resolution and the other is a nontropical dataset from the At-

Fig. 2. A sample portion of the tropical dataset [3], [4]. Cloud classes 0-4
shown in increasingly bright colors.

lantic Coast of the United States with 1 km/pixel resolution.
These datasets are known to contain deep convective storms
and are generated using a Weather Research and Forecasting
(WRF) Digital Twin Simulation, as described in [4]. In this
process, clustering is used to generate ground truth labels for
the WRF brightness temperature data in each pixel based on
hidden variables including ice water path, particle size, and
cloud top height [4]. These labels are cloud classes from 0
to 4 (inclusive) of increasing interest and value.

Then, we train one random decision forest classifier on
the WRF data and the corresponding ground truth labels for
each of our two datasets [3], [4]. We use roughly a third of
each dataset for this training, leaving the rest for parameter
selection and testing. These classifiers are used to classify
pixels in the remaining portions of the datasets. This is done
to simulate classification error that would occur on a real
mission. In our case, these classifiers performed at an overall
classification accuracy of 72% for the tropical dataset and
73% for the nontropical dataset, compared to the ground truth
labels. We account for classification error when evaluating
the performance of our algorithms by always granting the
utility associated with the ground truth cloud class rather
than the classified cloud class. Although we only use these
two datasets in our experiments, our framework is general
enough to use any dataset of similar format.

IV. UTILITY MODELS
We have implemented two example utility models to

demonstrate the capabilities of our new DT framework, both
of which involve utility that changes based on observation
locations. Although we only use these utility models in our
experiments, our framework is general enough to schedule
intelligent observations based on any model of utility.

In both models, we use a utility function of 4C , where C is
the class of the pixel (C ∈ {0,1,2,3,4} in our case), to assign
the original utility of each pixel before any observations are
made. This is to ensure that even observations of the lowest
possible value have positive utility while the observations of
the highest possible value have substantially greater utility
than other observations. On each cycle, a penalty propor-
tional to distance from nadir is calculated to discourage
lower quality off-nadir observations. Our framework permits
substitution of this utility function if desired.

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



Fig. 3. The effect of an observation on nearby utility under the increasing
utility model. In all three parts of the figure, brighter colors indicate higher
utility targets. The ring that appears on the left side of all three parts is
caused by off-nadir penalties. This ring also represents the overall slewing
range of the primary sensor. During the first point in time (top), a target
is observed, as indicated by the red dot. During subsequent points in time
(middle, bottom), the compounding Gaussian kernel causes the utility of
that target and nearby targets to increase as the satellite flies to the right.

The first utility model we use increases utility near targets
that have already been observed. In this model, each point in
the dataset is associated with a utility multiplier that starts
at 1. First, an upper bound is set on the utility multiplier.
Once an observation is made, a Gaussian kernel is used
to increase the utility multiplier of that target and targets
nearby. This increase compounds on every cycle until the
target is observed again. If the same target is observed
more than once, a Gaussian kernel is used to decrease the
utility multipliers of that target and nearby targets after
each repeat observation. Then, the utility multipliers of that
target and nearby targets begin compounding again. The
utility multiplier of targets located in multiple compounding
Gaussian kernels will be compounded by all kernels but may
never increase past the upper bound on the utility multiplier.
Figure 3 illustrates how this utility model works.

The purpose of this utility model is to encourage repeat ob-
servations of spatially similar targets, especially from varying
points in time and, implicitly, varying viewing geometries.
This model is appropriate for any Earth science application
with similar desired behavior, including some storm hunting
applications in which tracking the changes of a storm as the
satellite passes over it is important.

The second utility model that we use decreases utility near
targets that have already been observed. In this model, each
point in the dataset is associated with a utility multiplier that
starts at 1. A lower bound is set on the utility multiplier.
Once an observation is made, a Gaussian kernel is used
to sharply decrease the utility multiplier of that target and
targets nearby. Once utility multipliers decrease, they start
to recover, compounding back to but never over 1. If a

target is observed more than once, a Gaussian kernel is
used to sharply decrease the utility multipliers of that target
and nearby targets each additional time it is observed,
after which the utility multipliers of that target and nearby
targets begin compounding again. The utility multiplier of
targets located in multiple compounding Gaussian kernels
will be compounded by all kernels but may never increase
past 1. The purpose of this utility model is to discourage
repeat observations of spatially similar targets, especially
from similar points in time and, implicitly, similar viewing
geometries. This model is appropriate for any Earth science
application with similar desired behavior, including many
oceanic studies, in which observation targets do not change
very much in the time that the satellite passes over them.
Some storm hunting applications in which observing many
different points in a storm is more important than tracking the
same points may also benefit from using this utility model.

V. MODELING OPERATIONAL CONSTRAINTS

Our DT framework is capable of accounting for several
physical satellite operational constraints. First, the orbit alti-
tude, the maximum off-nadir angle of the pointable primary
sensor, and the off-nadir angle of the lookahead sensor are
used to determine a radius, in kilometers, for the ranges of
the lookahead sensor and the primary sensor. These values,
in addition to the cycle time, the spatial resolution of the
data, and the orbit velocity of the satellite, are then used
to determine how many pixels the satellite flies over in
one cycle. The spatial resolution of the data is assumed to
be equal to the spatial footprint of the primary instrument.
In practice, if the lookahead sensor generates data at a
spatial resolution that is different from the spatial footprint
of the primary sensor, an additional data downsampling or
upsampling step could be incorporated to meet this assump-
tion. Furthermore, the initial state of charge, the power
consumption per observation, and the power recharge per
cycle are used to model the state of charge and determine
whether an observation is possible during each cycle. Finally,
the slewing capabilities of the primary sensor of the satellite
are used to calculate a reachable set of observation targets
during each cycle. We assume that the satellite is a rigid
body. Slewing capabilities are inputted to our slew model
as a constant angular acceleration/deceleration rate that the
control moment gyroscopes (CMGs) aboard the satellite
produce as well as a maximum angular velocity for the roll
and pitch axes. To calculate the reachable set of observations
during a cycle, we first compute the maximum angular
distance that can be slewed along each axis based on the
previously mentioned slewing parameters and the cycle time.
Then, we project that angular distance to a physical distance
on the ground based on the orbit altitude of the satellite
and the current primary sensor position. Reachable targets
are any pixels that fall within the allowed physical distance
from the previous target along both axes. The roll and
pitch axes are treated as independently of each other when
calculating reachable sets of observation targets and yaw is
assumed to remain constant at 0. Our experiments are based

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



on slewing capabilities of a small Earth observing satellite.
Computational and processing times are also subtracted from
slewing time when appropriate while calculating reachable
sets of observation targets. Computational time is reserved
for utility calculations and for running the DT planning algo-
rithm. Processing time is reserved for observation acquisition
and processing whenever an observation is collected by the
primary sensor.

Many of the values for these operational constraints that
we use in our testing are realistic for satellites in low Earth
orbit that use CMGs [3], [15], [16]. These values, along with
other parameters held constant during testing, are outlined in
a later section in Table I.

VI. ALGORITHMS

We present two algorithms for observation scheduling in
this DT framework, a greedy algorithm and a bounded depth-
first search algorithm. We also provide a nadir only algorithm
for a lower bound on performance and a separate calculation
of an upper bound on performance.

A. Nadir Only (NO)

This algorithm simply observes the point at nadir when-
ever there is power available, resulting in observations that
are indifferent to the data. This provides a lower bound
on performance and is representative of the scheduling
algorithms of most current Earth science missions [2].

B. Greedy (G)

This algorithm schedules the locally optimal action during
each cycle. Before the algorithm is run, the power allocated
for the current cycle is calculated by decreasing the amount
of power currently available. This adjustment is proportional
to the ratio of the total raw (before any multipliers or off-
nadir penalties) utility within the reachable set of targets
to the total raw utility within the combined primary sensor
and lookahead range. This is to ensure that more power
is used when the available utility is high compared to the
utility coming up in the near future. The adjustment is also
proportional to the ratio of the amount of raw utility in
the entire primary sensor range to the mean amount of raw
utility in the maximum primary sensor range during previous
cycles. This is to ensure that more power is used when the
nearby utility is high compared to previous cycles. Then, the
greedy algorithm selects a locally optimal action. If enough
power has been allocated for an observation or battery is at
max capacity, an observation is made at the highest utility
point within the reachability range of the current cycle.
Otherwise, the primary sensor is slewed as far as possible
towards the highest utility target within the radius of the
primary sensor without making an observation in order to
capture high-utility observations in the coming cycles. Both
of these possible actions are rest-to-rest maneuvers. This
achieves an O(n2) runtime complexity for each cycle, where
n is the diameter of the entire primary sensor range in pixels.

C. Depth-First Search (DFS)

First, power allocation is adjusted similarly to the greedy
algorithm described in the previous subsection. However,
the adjustment is proportional to the ratio of the amount
of raw utility within the entire primary sensor range (as
opposed to the reachable set of targets for the current
cycle) to the total raw utility within the combined primary
sensor and lookahead range. This is to account for the
extended range of slewing capabilities when slewing through
multiple timesteps, which this search algorithm is capable of
planning. Next, this algorithm calculates the best observation
path it can find for a certain number of cycles into the
future, schedules the first observation in that path, then re-
evaluates once the observation is made. If no observations
are scheduled in the best path found, then the primary sensor
slews and stabilizes after the first cycle, then re-evaluates.
The observation path is calculated using a recursive depth-
first search algorithm. The desired search depth in cycles, t,
and the desired search breadth, k, are inputs to the algorithm.
First, a lower bound on utility is calculated by simulating the
greedy algorithm described in the subsection above t cycles
into the future. Next, the first recursive call is made. The
recursive call calculates an upper bound on utility using an
algorithm similar to the upper bound algorithm described in
the next subsection. Then, for each whole number of cycles
c such that 1 ≤ c ≤ the number of remaining cycles to
plan, the reachable set is calculated with c cycles of slewing
time with the processing and computational time subtracted
if there is enough power allocated for an observation. At
this point, the optimal strategy would be to make a recursive
call where each of the O(n2) pixels in the reachable set are
selected for observation in a separate branch, where n is
the diameter, in pixels, of the entire primary sensor range.
However, this has a very slow O((tn2)t) runtime complexity.
Instead, we partition the reachable set into k partitions and
make k recursive calls, one for observing the highest utility
point within each partition. The lower bound on utility
is updated whenever a path is found with higher utility
than the lower bound. This achieves an O(n2(kt)t) runtime
complexity, which is preferred to the optimal strategy not
only because it is faster but also because a greater portion
of the O(n2(kt)t) runtime complexity is controlled by user
preference of search thoroughness (k and t), while the
O((tn2)t) runtime complexity for the optimal strategy is in
large part controlled by the spatial footprint of the instrument
(which is proportional to n). This affords more power to the
search parameters, making this algorithm suitable to a wider
range of spatial footprints and thus a wider range of missions.

D. Upper Bound (UB)

We also provide an upper bound algorithm for putting
performance into perspective. However, with changing utility
and limited slewing capabilities, a tight upper bound is diffi-
cult to calculate efficiently. Note that upper bound algorithms
should be specific to the utility model. For both of our utility
models, we start by calculating the maximum number of
observations that can be made during the entire simulation

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



Fig. 4. The reachable range of the primary sensor for a rest-to-rest
maneuver with one cycle of slewing time and no computational time
reserved, shown in 15 km/pixel resolution. The small red circle shows nadir,
which is the starting location of the primary sensor. The yellow area shows
the positions that the primary sensor could slew to within one cycle, in the
satellite reference frame. The blue area shows the entire range of locations
that the primary sensor is capable of slewing to given the 15◦ maximum
off-nadir angle of the primary sensor, in the satellite reference frame. The
right edge of the purple area represents the end of the lookahead range.

given power constraints, o. In the case of our increasing
utility model, we compound the multipliers of all targets in
the combined primary sensor and lookahead range with the
maximum compounding factor during each cycle and add the
utility of the highest utility target in the entire primary sensor
range to a set of possible observations. At the end, we sum
the utility of the o highest utility observations to calculate
the upper bound. In the case of our decreasing utility model,
we leave all utility multipliers at 1 (their maximum value)
throughout the simulation. On each cycle, we add the utility
of the highest utility target within the primary sensor range
to a set of possible observations. Finally, we sum the utility
of the o highest utility observations to find the upper bound.

VII. EXPERIMENTS AND RESULTS

All parameters other than the dataset, the utility model,
and the algorithm were kept constant during our experiments.
These common parameters are shown in Table I. Fig. 4 shows
the slewing capabilities of the satellite during our testing.

Before testing our algorithms, we reserved about another
third of each dataset for parameter selection for the depth-
first search algorithm, leaving the final third for testing. We
swept through search depth and breadth values of 1-14 for
a combination of the two that achieves good performance
and a maximum runtime that is tractable given the cycle
time. This could be emulated on a real mission by trying a
few different depth and breadth parameters when the satellite
is first launched into orbit, or by running this parameter
sweep on a sample dataset for the mission before launch.
We ran a parameter sweep for every combination of our
two utility models and our two datasets. Table II shows
the parameters that our sweeps yielded. We also record the
maximum cycle runtime during this parameter sweep and
reserve that portion of the cycle time for computation during
testing. This results in less slewing time and thus a more
limited reachable set for the primary sensor when the DT
algorithm is more computationally expensive. We do this
for the greedy algorithm as well but omit the maximum
cycle runtimes from this report because they are minimal

in comparison to the depth-first search algorithm. Table III
shows these maximum cycle runtimes for the depth-first
search algorithm. Note that all testing was performed using
Python, so all runtimes are subject to some variation.

The performance of each algorithm on the test data sets
are shown in Table IV and Table V. All runtimes include the
algorithm runtime and other time that needs to be reserved
for computation during each cycle, including utility calcula-
tions for each target. Recall that all testing was performed
using Python, so all runtimes are subject to some variation.
Additionally, recall that the maximum per-cycle runtimes
from Table III are subtracted from the amount of time that
the primary sensor is allowed to slew during each cycle. The
initial power was set to 0% at the beginning of all tests.

In general, our testing shows that the greedy algorithm
performs far better than the nadir only algorithm that is
representative of the algorithms aboard most current Earth
science missions [2] and the depth-first search algorithm
further improves on the performance of the greedy algorithm.
Specifically, the greedy algorithm improves on the perfor-
mance of the nadir only algorithm by an average of 65%
across both utility models in the tropical dataset and 58%
in the nontropical dataset. The depth-first search algorithm
further improves on the performance of the greedy algorithm
by an average of 9.1% across both utility models in the
tropical dataset and 5.2% in the nontropical dataset. In the
tropical dataset test with decreasing utility, the depth-first
search algorithm accrues 78% of the upper bound utility.
However, this algorithm only accrues 36% or less of the
upper bound utility in all other tests. We believe that this is
because utility is far more difficult to bound in the increasing
utility case due to the great potential of utility increase in
that utility model. Utility may also be harder to bound in the
nontropical dataset because the finer spatial resolution means
there are more observation options to consider when bound-
ing. Additionally, the nadir only algorithm accrues equal
utility across utility models in each dataset. This is because
with the operational constraints that we set, every observation
is outside of the range of the increasing or decreasing effect
of the previous observation. We also observe that searches
that are more thorough and tests on the nontropical dataset,
which has a finer spatial resolution, correspond to increased
runtimes, as expected. Finally, we observe that less utility
is accrued in the nontropical dataset overall, which is likely
due to differences in data volume across the two datasets.

VIII. CONCLUSIONS

Making the most of a limited number of satellite ob-
servations is a difficult and important problem. Dynamic
Targeting is an approach to this challenge that leverages
information from a lookahead sensor to schedule valuable
observations for the primary sensor of the satellite. We gen-
eralize this concept with a framework capable of accounting
for slewing constraints and dynamic utility models. We also
implement and evaluate scheduling algorithms, including a
greedy algorithm and a depth-first search algorithm, that take
these conditions into account. Through this work, we have

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



TABLE I
COMMON RUNTIME PARAMETERS ACROSS TESTING

Parameter Value Description
Primary Sensor 15◦ Max off-nadir angle for primary

Range sensor, from SMICES [3]
Lookahead Sensor 45◦ Off-nadir angle for lookahead

Range sensor, from SMICES [3]
Power Recharge 1%/cycle Rate at which battery power

Rate increases
Power Discharge 2%/ Rate at which battery power

Rate observation decreases during cycles when
an observation is made

Gaussian Kernel 75 km × Size of Gaussian kernel
Size 75 km used in utility models

Gaussian Kernel 15 km Standard deviation of Gaussian
Standard Deviation kernel used in utility models

Angular 1.08◦/s2 The angular acceleration
Acceleration of slewing along the pitch axis.
(Pitch Axis) The value we use is realistic

for small satellites [15]
Angular 1.08◦/s2 The angular acceleration

Acceleration of slewing along the roll axis.
(Roll Axis) The value we use is realistic

for small satellites [15]
Maximum Angular 5.40◦/s The maximum angular

Velocity (Pitch velocity of slewing
Axis) along the pitch axis.

The value we use is realistic
for small satellites [15]

Maximum Angular 5.40◦/s The maximum angular
Velocity (Roll velocity of slewing

Axis) along the roll axis.
The value we use is realistic

for small satellites [15]
Cycle Time 4 s Amount of time allocated

for each cycle
Processing Time 0.1 s Amount of time allocated

for observation acquisition
and processing

Satellite Orbit 7.5 km/s Velocity of satellite
Velocity orbit. The value we use is

realistic for satellites in low
Earth orbit [16]

Satellite Orbit 800 km Altitude of satellite
Altitude orbit. The value we use is

realistic for satellites in low
Earth orbit [16]

Maximum Utility 4 Maximum value of the
Factor utility multiplier in the

increasing utility case, or
the reciprocal of the minimum

utility multiplier in the
decreasing utility case

Maximum 20% Penalty for an observation
Off-Nadir as far off-nadir
Penalty as possible

TABLE II
PARAMETER SELECTION RESULTS

Dataset Utility Model Depth Breadth
Tropical Increasing 2 5
Tropical Decreasing 6 2

Nontropical Increasing 2 3
Nontropical Decreasing 4 2

TABLE III
MAXIMUM CYCLE RUNTIMES DURING PARAMETER SELECTION

Dataset Utility Model Maximum Runtime (ms)
Tropical Increasing 81.7
Tropical Decreasing 425

Nontropical Increasing 928
Nontropical Decreasing 1340

TABLE IV
UTILITY ACCRUED BY EACH ALGORITHM ON THE TEST DATASETS

Tropical Tropical Nontropical Nontropical
Dataset, Dataset, Dataset, Dataset,

Increasing Decreasing Increasing Decreasing
Utility Utility Utility Utility

NO 24851 24851 3383 3383
G 43462 38470 5433 5284

DFS 47274 42131 5706 5565
UB 183105 53745 50928 15371

improved the state of the DT concept by accounting for more
realistic satellite operational constraints and utility models,
thus bringing it closer to deployment on real missions.

IX. FUTURE WORK

In future work, we aim to try more approaches to schedul-
ing the best observations possible. These approaches include
more search algorithms such as a beam search and a Monte
Carlo tree search. We also plan to implement a reinforcement
learning approach to scheduling observations. Furthermore,
one inefficiency is that the maximum runtimes are far greater
than the mean runtimes for our depth-first search algorithm.
This means that a lot of time that could be spent slewing
is often being wasted because the algorithm finishes running
in much less time than it is allotted. We intend to address
this inefficiency by spending any surplus computational time
considering other paths to see if we can beat the original
path. Additionally, we are working on developing algorithms
for tighter upper bounds on utility, especially for our in-
creasing utility model. We also aim to further generalize this
framework to DT with 3D data that accounts for altitude as
well. Finally, there are currently projects in development that
would fly our DT software on real low Earth orbit satellites.

TABLE V
MEAN RUNTIME FOR EACH ALGORITHM ON THE TEST DATASETS

(MS/CYCLE)

Tropical Tropical Nontropical Nontropical
Dataset, Dataset, Dataset, Dataset,

Increasing Decreasing Increasing Decreasing
Utility Utility Utility Utility

NO 0.198 0.191 15.1 15.1
G 0.672 0.640 46.9 45.1

DFS 9.37 56.6 246 126
UB 0.224 0.221 9.26 7.31

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 



REFERENCES

[1] A. Candela, J. Swope, and S. Chien, “Dynamic Targeting to
Improve Earth Science Missions,” Journal of Aerospace Information
Systems, vol. 20, no. 11, pp. 679–689, 2023. [Online]. Available:
https://doi.org/10.2514/1.I011233

[2] A. Candela, J. Swope, S. Chien, H. Su, and P. Tavallali,
“Dynamic Targeting for Improved Tracking of Storm Features,”
in International Geoscience and Remote Sensing Symposium
(IGARSS 2022), Kuala Lumpur, Malaysia, July 2022. [Online].
Available: https://ai.jpl.nasa.gov/public/documents/papers/IGARSS-
2022-Candela-DT.pdf

[3] J. Swope, S. Chien, X. Bosch-Lluis, Q. Yue, P. Tavallali,
M. Ogut, I. Ramos, P. Kangaslahti, W. Deal, and C. Cooke,
“Using Intelligent Targeting to increase the science return
of a Smart Ice Storm Hunting Radar,” in International
Workshop on Planning & Scheduling for Space (IWPSS), July
2021. [Online]. Available: https://ai.jpl.nasa.gov/public/papers/Swope-
SMICES-targeting-IWPSS-2021.pdf

[4] S. Chien, J. Swope, Q. Yue, J. Lluis-Bosch, and W. Deal, “Using a
Digital Twin Weather Research and Forecasting (WRF) Model for
Machine Learning of Deep Convective Ice Storms,” in Proceedings of
the Fall Meeting of the American Geophysical Union. Washington,
DC, USA: American Geophysical Union, 2021. [Online]. Available:
https://agu.confex.com/agu/fm21/meetingapp.cgi/Paper/804752

[5] D. R. Thompson, R. O. Green, D. Keymeulen, S. K. Lundeen,
Y. Mouradi, D. C. Nunes, R. Castaño, and S. A. Chien, “Rapid Spectral
Cloud Screening Onboard Aircraft and Spacecraft,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 52, no. 11, pp. 6779–6792,
2014.

[6] C. Schwartz, I. Sander, R. Jordão, F. Bruhn, M. Persson, J. Ekblad,
and C. Fuglesang, “On-board satellite data processing to achieve smart
information collection,” in Optics, Photonics and Digital Technologies
for Imaging Applications VII, P. Schelkens and T. Kozacki, Eds., vol.
12138, International Society for Optics and Photonics. SPIE, 2022,
p. 121380I. [Online]. Available: https://doi.org/10.1117/12.2620955

[7] D.-Y. Liao and Y.-T. Yang, “Satellite imaging order scheduling with
stochastic weather condition forecast,” in 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, 2005, pp. 2524–
2529 Vol. 3.

[8] G. Beaumet, G. Verfaillie, and M.-C. Charmeau, “FEASIBILITY
OF AUTONOMOUS DECISION MAKING ON BOARD
AN AGILE EARTH-OBSERVING SATELLITE,” Computational
Intelligence, vol. 27, no. 1, pp. 123–139, 2011. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8640.2010.00375.x

[9] C. Zhang, L. Yuan, M. Xie, S. Zhang, and J. Li,
“Autonomous mission planning of earth observation satellite
based on onboard cloud detection,” Advances in Space
Research, vol. 70, no. 8, pp. 2178–2194, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0273117722005816

[10] H. Suto, F. Kataoka, N. Kikuchi, R. O. Knuteson, A. Butz,
M. Haun, H. Buijs, K. Shiomi, H. Imai, and A. Kuze, “Thermal
and near-infrared sensor for carbon observation Fourier transform
spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing
SATellite-2 (GOSAT-2) during its first year in orbit,” Atmospheric
Measurement Techniques, vol. 14, no. 3, pp. 2013–2039, 2021.
[Online]. Available: https://amt.copernicus.org/articles/14/2013/2021/

[11] S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano,
A. Davis, D. Mandl, S. Frye, B. Trout, S. Shulman, and D. Boyer,
“Using Autonomy Flight Software to Improve Science Return on
Earth Observing One,” Journal of Aerospace Computing, Information,
and Communication, vol. 2, no. 4, pp. 196–216, 2005. [Online].
Available: https://doi.org/10.2514/1.12923

[12] S. Chien and M. Troesch, “Heuristic Onboard Pointing
Re-scheduling for an Earth Observing Spacecraft,” in
International Workshop on Planning & Scheduling for Space
(IWPSS), Buenos Aires, Argentina, 2015. [Online]. Available:
https://ai.jpl.nasa.gov/public/papers/chien iwpss2015 heuristic.pdf

[13] A. Candela, J. Swope, and S. Chien, “Dynamic Targeting
for Cloud Avoidance to Improve Science of Space
Missions,” in 16th Symposium on Advanced Space Tech-
nologies in Robotics and Automation, June 2022. [Online].
Available: https://ai.jpl.nasa.gov/public/documents/papers/Candela-
DT-ASTRA-2022.pdf

[14] Z. Hasnain, J. Mason, J. Swope, J. Vander Hook, and
S. Chien, “Agile Spacecraft Imaging Algorithm Comparison
for Earth Science,” in International Workshop on Planning &
Scheduling for Space (IWPSS), July 2021. [Online]. Available:
ai.jpl.nasa.gov/public/papers/Hasnain IWPSS2021 paper 13.pdf

[15] V. Lappas, W. Steyn, and C. Underwood, “Attitude control
for small satellites using control moment gyros,” Acta
Astronautica, vol. 51, no. 1, pp. 101–111, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094576502000899

[16] The European Space Agency. (2020, Mar) Types of Orbits.
Online. Accessed August 26, 2023. [Online]. Available:
www.esa.int/Enabling Support/Space Transportation/Types of orbits

Itai Zilberstein
Appears in Proc. of 2024 IEEE Intl. Conference on Robotics and Automation, Yokohama, Japan. 


