
DEMONSTRATING A NEW FLOOD OBSERVING STRATEGY ON THE NOS TESTBED 
 

Ben Smith,1,4, Sujay Kumar2, Louis Nguyen3, Thad Chee3, James Mason4, Steve Chien4, Chad Frost5, 
Ruzbeh Akbar6, Mahta Moghaddam7, Augusto Getirana2, Leigha Capra8, Paul Grogan8 

 
1NASA Earth Science Technology Office; 2NASA Goddard Space Flight Center; 3NASA Langley Research 

Center; 4Jet Propulsion Laboratory, California Institute of Technology; 5NASA Ames Research Center, 
6Massachusetts Institute of Technology, 7University of Southern California; 8Stevens Institute of Technology 

 

ABSTRACT 

A new observing strategy for floods was demonstrated and 
evaluated in a testbed environment. The strategy coordinates 
several observing platforms, including in situ and space 
based, to observe a flood from multiple vantage points and 
dynamically target predicted flood events with high- 
resolution observations. The coordinated observations were 
assimilated back into the model to continuously improve 
forecasts and future observation selection. The demonstration 
shows the potential for coordinated, model-driven observing 
strategies and the feasibility of the NOS Testbed for 
demonstrating and evaluating new observing strategies. 
 

Index Terms— NOS, Floods, Distributed Observations 

1. INTRODUCTION 

New Observing Strategies (NOS) is a thrust area of the 
NASA Advanced Information Systems Technology (AIST) 
program within the Earth Science Technology Office [1]. It 
is developing technologies which will enable coordinated and 
dynamically targeted observations from multiple vantage 
points—including in-situ sensors, science satellites, and 
commercial smallsats—to acquire a more complete and in-
depth picture of Earth system processes. The NOS testbed is 
an environment for developing, evaluating, and 
demonstrating NOS observing concepts and technologies. 

The first demonstration on the NOS Testbed is an 
observing strategy that coordinates several platforms to 
observe a flood from multiple vantage points. A flood model 
triggers high-resolution observations from taskable 
commercial satellites and priority downlink processing of 
flood products from science satellites. The model and triggers 
are further informed by in situ stream gage and soil moisture 
sensors. All the observations are assimilated back into the 
model to improve its forecast for the next observing cycle. 

The observing strategy was demonstrated on the NOS 
testbed in two modes. The first was a faster-than-real-time 
execution using historical data from the Midwest flood of 
March 2019, near Omaha, Nebraska, to simulate 
observations. The faster-than-real-time testbed environment 
facilitates demonstration and experimentation, and the 

historical scenario provides ground truth as a basis for 
evaluation. The second was in real time using interfaces to 
real observing platforms, which shows feasibility of that 
strategy in a more realistic scenario. 

2. OBSERVING STRATEGY AND SCENARIO 

The observing strategy coordinates in situ sensors, science 
satellites, commercial smallsats and a flood forecast 
modeling environment to improve forecasts and acquire more 
detailed observations of flood events. Figure 1 shows the 
information flow. A flood forecast model predicts where and 
when floods are likely to occur. An automated planner 
schedules taskable commercial small satellites to acquire 
high-resolution close-up images of the forecasted event and 
derives surface water extent through a machine learning 
algorithm. Flood forecasts confirmed by stream gauges 
trigger priority downlink and processing of Visible Infrared 
Imaging Radiometer Suite (VIIRS) flood products. The flood 
model assimilates the new observations—surface water 
extent, flood product, soil moisture, and stream gauges—and 
generates a new improved forecast. The observing strategy 
then repeats with the improved forecast. This observing 
strategy improves forecast skill by assimilating coordinated 
observations from multiple vantage points and provides high 
resolution estimates of peak flows. 

Figure 1: New observing strategy for the flood scenario 



3. NOS TESTBED IMPLEMENTATION 

The observing strategy was implemented in the NOS Testbed 
[2], which is a software environment for developing, 
demonstrating, and evaluating new observing strategies and 
technologies. The observing strategy was implemented first 
on the testbed in the “fast” mode for development and 
evaluation, and then in the real-time “slow” mode. 

3.1 Testbed architecture 

The testbed consists of two types of coordinating software 
“nodes”: technology nodes implement the observing strategy, 
and observation nodes that are proxies for platforms, which 
can be a simulated or interface to real observing data.  

The technology nodes for the flood observing strategy 
include the flood forecast model, a federated scheduler for 
dynamically tasking satellite observations, a ground station 
as a service capability that schedules and processes priority 
VIIRS products, upscaling of in situ soil moisture sensors, 
and trigger processing of stream gauge data. 

Observing nodes are how the testbed interfaces to the 
observing platforms. For the flood scenario, these are the in-
situ soil moisture sensors, in-situ stream gauges, the VIIRS 
products, and commercial smallsats. For the historical 
demonstration, the observing nodes returned archived 
observations. For the real-time experiment, the observing 
nodes interfaced with actual data sources. 

The nodes communicate with each other over the NOS 
testbed message broker to implement the observing strategy. 
The architecture also provides management capabilities such 
as starting and stopping execution runs and setting the clock 
speed. 

 
Figure 2: NOS Testbed Architecture 

3.2 Flood forecast model 

The forecast model node generates forecasts of where 
flooding is expected over the next several days. Locations 
where flooding is expected to be particularly high are called 
triggers. These are locations and times where the forecast 
exceeds the seasonally expected baseline by a pre-specified 
threshold with high confidence. The model sends these 
triggers to the planning node to schedule high resolution 
close-up observations of those locations and times. Surface 

water extent is derived from the high-resolution images and 
assimilated back into the model, along with other satellite and 
in situ observations. The model then generates an improved 
forecast for the next set of observations. 

The implementation is enabled by the NASA Land 
Information System (LIS) [3]. Within LIS, the Noah-MP land 
surface model and the HyMAP river routing model [4] are 
driven by observation-informed surface meteorology to 
generate ensemble flood forecasts. 

The forecasts are converted to triggers. The forecasted 
water extent and depth in each grid cell is compared to the 
expected distribution as derived from a climatology baseline. 
Values above the 90% threshold are flagged as triggers. 
Triggers can be augmented with a confidence value based on 
the number of forecast ensemble member that agree the 
forecast will be above the threshold. 

3.3  Federated planner for dynamic satellite tasking 

The planning node schedules taskable commercial smallsats 
to acquire high-resolution close-up images of the forecasted 
flood peaks. The node builds on prior work on directing 
satellite measurements based on alerts to track flooding [5] 
and volcanic activity [6]. The triggers indicate the expected 
times and locations of flood peaks and the estimated utility of 
acquiring that observation. The utility is the severity, as 
estimated by how far it exceeds the expected threshold. There 
are typically more triggers than can be observed. This may be 
due to factors such as the satellite not being in position, 
committed to another customer, and cost constraints. The 
planner considers several satellites and schedules a set of 
observations that maximizes the utility while meeting the 
constraints as shown in Figure 3. 

Satellites may not always fulfill an observation request. It 
may get ‘bumped’ in favor of a higher priority observation, 
or there may be operational conflicts (clouds, faults, etc.). 
The federated planner reasons about this possibility [7]. It 
models the probability that a request will be satisfied based 
on expected contention for a given observation. It weights the 
requests accordingly to maximize utility (e.g., prefer higher 
utility observations that are most likely to be satisfied).  

For the demonstration scenario, the taskable smallsats were 
simulated Planet Skysat satellites. These acquire optical 
panchromatic images at 0.86 m resolution and can be pointed 

Figure 3: Planned observations (yellow) are selected 
from the forecasted triggers (teal) to maximize utility 
while meeting constraints and considering contention. 



off nadir [8].  Historical SkySat images were not available for 
the period of the flood event, so the observations were 
simulated with lower resolution Dove imagery but using 
SkySat pointing and overflight specifications. Surface water 
extent is derived from the images as shown in Figure 4 and 
sent to the model for assimilation. 

3.4 Upscaled in situ soil moisture measurements 

The soil moisture node monitors in situ sensors and upscales 
them to a gridded product so it can be assimilated into the 
land surface model of the NASA Land Information System 
(LIS). Antecedent soil moisture is an important factor for 
flood forecasts (intuitively, water soaks into dry soils but runs 
off saturated soils).  

The in situ soil moisture data are obtained from hourly U.S. 
Climate Reference Network (USCRN) [9] sensors located 
throughout the Mississippi Basin. In situ sensors provide very 
high temporal and spatial resolution data with sparse 
coverage that complement remote sensing products that are 
coarser and less frequent but have wider extent. 

The node upscales the in situ point data to a 100m gridded 
product. A Random Forest regression algorithm combines the 
point data with ancillary data such as texture, topography, 
precipitation, and temperature to estimate the maximum 
likelihood values for each grid cell [10]. The node sends daily 
upscaled products to the modeling node for assimilation. 

This approach shows how in situ sensing data can inform 
forecast models as part of a coordinated observing strategy.  
A similar approach could be used for other in situ sensors. 

3.5 In Situ stream gauge alerts 

This node monitors USGS National Water Information 
System (NWIS) stream gauges [11] and sends trigger alerts 
when it detects flows above a climatology baseline. USGS 
has a dense network of in situ sensors across the US river 
network that provides data in real time. The node monitors 
this feed at 15-minute intervals looking for gauges that are 
above the statistically expected values. The threshold is a 
configurable parameter and is set by default to trigger on 
values above the 75% confidence interval. The triggers are 
sent to the ground station node to trigger priority flood 
product downlink and processing. 

3.6 Ground station as a service: low-latency products 

Surface water extent products from the VIIRS instrument 
provide daily data over a 3000 km-wide swath at 375 meter 
resolution. Latencies can be reduced from 3 hours to 20 
minutes by downlinking direct broadcast signals through a 
commercial ground station and immediately processing the 
data in the cloud [12]. Lower latencies allow the product to 
be assimilated sooner into the model so that targeted 
observations are selected with the most recent information. 

The low-latency product generation is triggered only when 
floods are expected to minimize resource costs. The flood 
forecast triggers scheduling of a future overpass downlink on 
an Amazon Web Services (AWS) ground station. If in situ 

stream gauges confirm flood conditions immediately before 
the pass, it is executed. Otherwise, it is canceled at no cost. 
The data is processed in the cloud to generate the standard 
flood product. 

Event-triggered priority processing is a capability that 
could be relevant to other observing strategies where low 
latency data are important for assimilation and forecasting 
(e.g., weather), and for targeted observations in rapidly 
evolving phenomena where the most up to date information 
is critical to selecting high value observations. 

4. HISTORICAL AND REAL-TIME SCENARIOS 

The observing strategy was implemented first on the testbed 
in “fast” mode using historical data to simulate observations 
and running faster than real time to facilitate development, 
evaluation and demonstration. The scenario used remote 
sensing and in situ data from a flood of the US Midwest that 
occurred in March of 2019. The historical data provided 
ground truth for evaluation. Using simulated observations 
simplifies implementation and allows for future platforms. 

The strategy was then implemented in “slow” mode: 
running in real time with interfaces to real platforms. The 
observation nodes for the in situ sensors interfaced with 
online data feeds for existing sensor networks. The low-
latency node downlinked direct broadcast data from VIIRS 
through an AWS ground station and processed the data in the 
cloud. The planning node requested observations from 
SkySat using their public tasking interface. For 
demonstration purposes, a focusing element was added to 
restrict the system to a particular region (a lat/lon box) and 
limit the number of observations. 

The system ran for several weeks in late Fall. The model 
predicted a flood event near the Texas coast and acquired an 
image. Though it was too cloudy to extract surface water 
extent, it did demonstrate the system working. The weather 
turned dry and cold before we could acquire more images. 

5. ANALYSIS OF RESULTS 

The observing strategy was evaluated experimentally in the 
NOS Testbed against the historical flood scenario. The 
scenario began March 14. Each simulated day the model 
forecast floods for the next four days and requested new 
observations. Assimilating those observations improved the 
accuracy of the next four-day forecast by 30% for a one-day 

Figure 4: Surface water extent (R, white) is derived from the 
dynamically targeted high-resolution image (L). Raw image courtesy 
Planet labs. 



lead and 15% for a four-day lead (Figure 5). The forecast skill 
was determined by comparing it to the historical ground truth, 
which was available to analysts but not to the NOS system. 
The model skill improvement was determined by comparing 
the forecast with NOS observations to a baseline forecast run 
made without those observations. 

The NOS Testbed enabled this evaluation approach 
through its ability to execute different observing strategies 
(baseline and NOS) under the same conditions, and 
knowledge of historical ground truth. The same approach 
could be taken to evaluate other concepts and component 
technologies and shows feasibility of the NOS Testbed for 
evaluating observing strategies. 

6. CONCLUSIONS 

This is a first demonstration of a new observing strategy in 
the NOS Testbed. The strategy coordinates several observing 
platforms—science satellites, commercial smallsats, and in 
situ sensors—to create a more comprehensive picture of a 
flood event. A forecast model predicts when flood events will 
occur, which triggers high resolution observations of flood 
peaks as well as priority downlink processing of flood 
products. The coordinated observations improve the model 
forecast skill as well as providing targeted observations from 
multiple vantage points.  This demonstrated feasibility of the 
NOS testbed for developing, demonstrating, and evaluating 
new observing strategies and the potential for coordinated, 
model-driven observing strategies. 
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Figure 5: Skill improvement of a four-day forecast, 
started on March 15, that assimilated NOS observations 
vs a baseline that omits them. Assimilating NOS 
observations improved one-day lead skill by 30%.  


