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ABSTRACT

Recent developments in New Space companies have led to a
dramatic increase in capabilities in Earth Observation. These
advances in edge computing, low latency communications,
and many new on orbit assets represent a unique opportu-
nity for Earth Observation. NASA’s New Observation Sys-
tem (NOS) program aims to leverage these new capabilities
to achieve global reach of science events such as volcanic
eruption, wildfires, flooding, not by wide swath instruments
but rather by intelligent, directed sensing, onboard analysis,
and dissemination of knowledge rather than data using low la-
tency communications links. We describe ongoing efforts to
deploy NOS capabilities to the CogniSAT-6/HAMMER satel-
lite launched in March 2024, with a currently projected flight
demonstration of late summer or early fall 2024.

Index Terms— New Observation Systems, Sensorweb,
New Space, Edge Computing, Intersatellite link

1. INTRODUCTION

NASA’s Earth Science Technology Office is spearheading
the New Observing Strategies (NOS) program, to enable dra-
matic new science observations at reduced cost by leveraging
multiple air, space, ground, and marine sensors in coordi-
nation [1]. This program highlights the synergies between
multiple emerging technologies including but not limited to:
spacecraft and observation asset autonomy (can be space
but also air, ground, marine, . . . ), instrument and spacecraft
miniaturization, edge computing, and science modeling.

Prior sensorweb efforts have focused on leveraging the
Earth Observing One (EO-1) Mission from 2004-2017 [2]
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and have included applications to track volcanic activity [3],
flooding [4], wildfires [5], and other applications. Addition-
ally, EO-1, even with extremely limited onboard processing,
demonstrated onboard thermal detection [6] , flooding [7],
and cryosphere (including cloud screening) [8] and other ap-
plications such as unsupervised learning [9]. EO-1 sensor-
webs demonstrated the efficacy of sensorwebs for: (1) vol-
cano monitoring [3] demonstrating an over 30% hit rate for
capturing active thermal signatures over an order of magni-
tude increase of blind monitoring and (2) flooding [4] using
global coverage moderate resolution MODIS to target narrow
field of view but high spatial resolution EO-1, Worldview,
Geo-Eye and others enabled a doubling of temporal coverage
with high spatial resolution sensors.

More recent efforts to demonstrate a NOS sensorweb have
included modeling to demonstrate tracking of flooding events
[10]. This NOS testbed effort included demonstrations using
Planet Dove, Skysat, and Capella SAR measurements. More
recent large-scale demonstrations have leveraged the Planet
Dove and Skysat constellations to track volcanic activity[11]
(also using the ECOSTRESS instrument onboard ISS) and
flooding worldwide [12].

Significant growth of extremely capable commercial
Earth Observing satellites enable unique NOS capabilities.

• Edge computing Commercial companies are embrac-
ing space edge computing including specialized hard-
ware (e.g. Intel Myriad and other neuromorphic com-
puting and FPGA) and “conventional” processing for
LEO spacecraft is becoming quite capable (e.g. 1-3
GHz CPUs are quite commonplace). Space edge com-
puting enables onboard processing and analysis of ac-
quired data and even tasking [13, 14] - reducing re-
sponse latency.

• Satellite Communications Link Many new commercial
constellations support modest data rate, near continu-
ous access, low latency communications using com-
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mercial space communications constellations (whether
in LEO, MEO, or GEO) offering the ability to link to-
gether assets with near constant (albeit low data rate)
communications. This ”anytime” communications link
reduces response latency.

• Platform Proliferation Leveraging reduces launch and
platform costs, the existence of many medium and
large scale commercial Earth Observation constella-
tions means more revisits further reducing response
times.

We advance sensorweb/NOS technologies by executing
flight demonstrations building upon prior work and leverages
these new developments.

Leveraging prior work in deploying onboard processing
[15] and machine learning applications [16] to commercial
edge processors (including Snapdragon, Intel Myriad, and
NVIDIA), we seek to deploy such applications on the Intel
Myriad X processor integrated on a Ubotica CogniSAT-XE2
processing board flying on the CogniSAT-6 (CS-6)spacecraft
[17] that launched on Transporter 10 in March 2024.

Such demonstration will significantly advance prior
flights such as IPEX Cubesat which demonstrated a range of
onboard processing and analysis in space on both the ATMEL
ARM processor and the Overa Gumstix payload processor
[18] [19]. More recent work has included flight of advanced
machine learning on ESA’s OPS-SAT [20], flight of CNN’s
on Intel Myriad Neuromorphic hardware on ESA’s Φ-Sat-1
[21], flight of generative AI for de-noising on ESA’s OPS-
SAT and even few shot machine learning training onboard
D-Orbit’s ION SCV004 satellite [22, 23].

2. NOS APPLICATIONS

We are currently developing deep learning and spectral anal-
ysis onboard processing algorithms for a range of science ap-
plications.

• Deep learning applications include: cloud screening,
surface water extent (for flooding an hydrological ap-
plications), algal bloom/ocean color, and land use.
Thermal analysis (volcano, wildfire) - with understood
limitations without a higher wavelength (e.g. TIR)

• Spectral signature detection approaches includes spec-
tral angle mapper, match filters, and spectral unmix-
ing both using deep learning [16] and traditional means
such as SMACC [24]

3. OPERATIONAL SCENARIO AND PROJECT
STATUS

The NOS flight demonstration is in implementation for flight
on the CogniSAT-6/HAMMER [17] spacecraft operated by

Fig. 1. Sensorweb/NOS enables cross-cues from spacecraft
to spacecraft. Edge computing used for onboard observation
analysis. Inter-satellite link enables low latency communica-
tions to ground stations.

Ubotica/Open Cosmos that launched in March 2024. CS-6
has several capabilities that make it well suited for the NOS
flight. First, it hosts a visible range 0.4-0.9 micron hyperspec-
tral instrument with a nominal 19km x 19km acquisition at
approximately 5m per pixel. Second it hosts an Intel Myriad
X for onboard computing. Third, it has an intersatellite link
to enable for rapid dissemination of notifications and compact
summary products.

The specific NOS demonstration scenario will be as fol-
lows (see Figure 1).

• CogniSAT-6 overflight and image acquisition

• Onboard analysis of said image using Intel Myriad
computation

• Generation of alert if said analysis warrants. Rapid
downlink of said alert via inter-satellite communica-
tions link to ground.

• Ground receipt of said alert and used to trigger tasking
of of followup observations. Current plans are to task
Planet Skysat [25], task ECOSTRESS [26] if thermal
detection. We are also investigating potential tasking
of the EMIT instrument [27].

• Acquisition of followup imagery (e.g. Planet Skysat
sub 1m per pixel visible imagery)

• Downlink and receipt of both CogniSAT-6 and Planet
Skysat imagery

• Retrieval of relevant Planet Dove imagery

We are also investigating the use of other satellites as either
the initiator or as the responding satellite.



4. PROJECT STATUS AND CONCLUSIONS

As this article goes to press in early May 2024, a first set of
onboard image analysis applications have been developed and
are in testing for flight validation.

The current focus is on a core set of applications as indi-
cated below.

• Machine learned convolutional neural networks (CNN)
leveraging the Intel Myriad hardware onboard CS-6.
For these we are using the U-Net [28] model architec-
tures. These learned models target cloud detection, sur-
face water extent (flooding), and land surface type (e.g.
city, forest, water, desert,...) classification.

• Spectral analysis includes common methods like spec-
tral angle mapper (SAM), match filters (MF), and the
Reed-Xiaoli (RX) anomaly detector; as well as spectral
unmixing using deep learning [29].

The development and testing process begins with training
of deep learning models on MacOS laptops. These models are
then deployed to Myriad X Neural Compute Stick(s) for fur-
ther testing. These models are then tested on a flatsat testbed
at Ubotica before final upload and use onboard CogniSAT-6.

Because CogniSAT-6 data is limited due to its recent
(March 2024) launch we leverage Planet Dove Planetscope
data and data from the Open Cosmos Menut satellite. From
the Dove datasets we use the red, green, blue and near infrared
spectral bands to approximate the CogniSAT-6 Hyperscape
sensor data data. As Dove is global daily coverage we have
access to a large amount of data and are currently using a
dataset of hundreds of scenes. From the MENUT dataset
we are using the red, green, blue, and near infra-red spectral
bands and currently have access to 180 scenes. These spec-
tral bands are then mapped to the CogniSAT-6 Hyperspectral
visible range instrument as indicated in Table 1.

For machine learning training runs we restrict to datasets
of 50-100 relevant images to keep training times manageable.
We are working also to get CogniSAT-6 test data.

For the above leading applications, as this article goes to
press in May 2024, we are currently in laptop and Myriad X
compute stick testing. We are targeting transition to flatsat
testing in the June-July 2024 timeframe and targeting flight
onboard CogniSAT-6 in late summer - early fall 2024 time-
frame.

This paper has described the planned in space test of on-
board data analysis using artificial intelligence/machine learn-
ing and other methods leveraging edge computing onboard
the CogniSAT-6 spacecraft launched in March 2024. Onboard
analysis algorithms for multiple applications are in develop-
ment and have moved from laptop/workstation testing to Myr-
iad compute stick testing as of May 2024. These applications
are expected to proceed to flatsat testing in a few months with
anticipated in flight testing late summer or early fall 2024.

Spectral Band Dove-C Dove-R Menut CS-6
Blue 455−515 431−452 457.5−522.5 485

Green 500−590 547−585 542.5−577.5 560

Red 590−670 650−682 650.0−680.0 664

NIR 780−860 846−888 784.5−899.5 830

Table 1. Red, green, blue and near-infrared bands used by on-
board analysis - machine learned classifiers and spectral clas-
sifiers. Band ranges or center points indicated in nm.
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