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Abstract

Long range space missions, such as Rosetta, re-
quire robust plans of data-acquisition activities and
of the resulting data transfers. In this paper we
revisit the problem of assigning priorities to data
transfers in order to maximize safety margin of on-
board memory. We propose a fast sweep algo-
rithm to verify the feasibility of a given priority as-
signment and we introduce an efficient exact algo-
rithm to assign priorities on a single downlink win-
dow. We prove that the problem is NP-hard for sev-
eral windows, and we propose several randomized
heuristics to tackle the general case. Our experi-
mental results show that the proposed approaches
are able to improve the plans computed for the real
mission by the previously existing method, while
the sweep algorithm yields drastic accelerations.

1 Introduction
Scientific instruments for deep space exploration spacecrafts
become more and more sophisticated and consequently pro-
duce more and more data that must be sent to Earth. Data
management is highly critical as the onboard memory is lim-
ited and communication with Earth is often a bottleneck [Val-
lat et al., 2017; Pérez-Ayúcar et al., 2018].
The Rosetta case is representative of most high profile mis-
sions supported by the Deep Space Network where concur-
rent uploads and downloads make the optimization of data
transfers a critical component. ESA and JPL designed an ef-
ficient algorithm for solving the memory dumping problem of
the Rosetta spacecraft [Chien et al., 2021] in the case where
a data production plan is already designed and the decision
process concerns transfer priorities. Conversely, for the Phi-
lae probe (Rosetta’s lander), the transfer priorities were de-
cided a priori, and the experiments were scheduled in conse-
quence [Simonin et al., 2015]. In both cases, data is produced
into several memory buffers and the goal is to avoid data loss,
which occurs when data is produced into a full buffer. More
precisely, we want to maximize the minimum margin, where
the margin is the percentage of a buffer’s capacity left free, in
order to design robust plans where unexpected changes of the
dump or fill rates can be absorbed by the margins.

In this paper we consider the same case as Rabideau et al.
where the data production plan is known and the problem
consists in planning memory dumps [Rabideau et al., 2017].
This problem is recurrent in space missions, see e.g. [Oddi et
al., 2002a; Oddi et al., 2002b; Righini and Tresoldi, 2010].
Under this assumption, the fill rate of each memory buffer
over the planning horizon is part of the input. Data can only
be dumped when the spacecraft is visible from Earth. This is
materialized by consecutive disjoint downlink windows. Data
dumping is a semi-automatized process. For each downlink
window a priority has to be assigned to each buffer, then, the
transfers follow this priority ordering.

Note that another way to control the dumping process is to
deactivate a buffer at a given time-point. This can only be
done once per buffer per downlink window, and no reactiva-
tion is possible in that window. The buffer then stops data
dumping independently of the buffer priority. However, it
must be underlined that assigning precise times to events is
incompatible with the robustness objective. Indeed, because
fill and dump rates may not be known with precision, a buffer
might be deactivated when its usage differs from what moti-
vated that decision. Such uncertainties might lead to waste of
the bandwidth. Hence, as Rabideau et al., we consider only
decisions on buffer priority because such plans better cope
with uncertainties. We thus tackle the problem of computing
a priority assignment that maximizes the minimum margin.

In Section 2, we define the problem, establish that it is NP-
complete in general, and we give an efficient algorithm to
simulate data transfers given a priority assignment. Then in
Section 3 we provide a polynomial algorithm for a single
downlink window. From this algorithm, we derive a heuristic
for the case with multiple windows in Section 4. Finally, in
Section 5 we report the results of a set of experiments on data
instances from the Rosetta mission and we compare the pro-
posed heuristic with the one actually used during the mission.

2 Overlapping Memory Dumping

In the overlapping Memory Dumping Problem (oMDP), we
are given m downlink windows, where [sj , ej [ stands for the
time interval in which the downlink j is available, and δj for
the dump rate for transfers of downlink j. Moreover, there are
n memory buffers, where Ci stands for the capacity of buffer
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i; ri(j) for the maximum handover usage of buffer i at the
end of downlink window j; and fi : R 7→ R+ for the piece-
wise constant fill rate function of buffer i over time. Let ν be
the number of inflection points over all fill rate functions.

The transfers can be controlled by setting a priority function
over the buffers defining a ranking. Data is transferred in
standard-sized packets. At every step, one of the buffers of
highest priority among those who have at least one packet of
data in memory is selected via round-robin to transfer it.

Let Ui : R 7→ R be the quantity of data on buffer i over time
and gi : R 7→ R be the transfer rate out of buffer i over time.

In between downlink window, all transfer rates are null and
the memory usage growth is the fill function, for every buffer
i. In particular, for any time t preceding the start of the first
downlink s1, we have gi(t) = 0 and Ui(t) =

∫ t

0
fi(x) dx.

During a downlink window with dump rate δ, however, the
effective transfer rate at time t depends on the priority func-
tion P, and on the usages and fill rates at time t.

We consider the decision problem of finding a priority rank-
ing for every downlink, such that the peak usage of any buffer
(given its fill rate functions, and the data transfer system de-
scribed above) is less than its capacity, i.e., without data loss.
The objective function is actually to maximize the minimum
margin, min{M(i) | i ∈ B}, where M(i) is defined as one
minus the ratio between the peak usage and the capacity of
buffer i. However, it can be achieved by binary search using
an algorithm for the decision problem above.

Example 1. Figure 1 shows a plan with two downlinks, both
with dump rate 1, and 3 buffers all of capacity 1. Fill rates are
figured by colored rectangles, e.g., f1(t) = 1

2 for t ∈ [0, 1].
In the first downlink, all buffers have equal priority P1(1) =
P1(2) = P1(3) = 1, in the second, buffer priorities are given
by their index (P1(i) = i, i.e., buffer 3 has the highest priority
then 2 then 1). The resulting buffer usage functions Ui(t) are
displayed in black line. The minimum margin is 1

6 .

2.1 Simulation of a Dumping Plan

As shown by Simonin et al., it is possible to compute the data
transfers efficiently, that is, with a complexity polynomial in
the number of changes in the fill rate functions, as opposed to
the number of packets of data [Simonin et al., 2015]. Here we
use a similar method, and crucially, we show that one does not
need to know the exact priority function to compute the usage
of a given memory buffer over time and that a polynomial
number of time points have to be considered. This algorithm
is denoted Simulation in the remainder of the paper.

Lemma 1. Given the set of buffers of strictly higher priorities
and the set of buffers of equal priority, the usage at any time
of a given buffer can be computed in polynomial time.

Proof. Consider first the problem of computing the instant
transfer rate gi(t) at time t of a buffer i when the usages U(t)
are known. Given a set of buffers Ω, let fΩ(t) =

∑
i∈Ω fi(t)

be the sum of the instant fill rates for buffers in Ω.
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Figure 1: Illustration of Example 1. White areas indicate visibility.

Let Γ be a set of buffers with priority over buffer i. If at least
one buffer in Γ contains some data at time t, no buffer outside
Γ may dump any data. Otherwise, buffers in Γ globally dump
in downlink window j at rate gΓ(t) = min(δj , fΓ(t)) where
δj is the dump rate of the downlink j, which leaves a residual
dump rate of δj − gΓ(t). In example 1, at time t = 5.5, buffer
2 thus dumps at the full residual rate δ2 − f3(t) = 1/3 since
it is not empty, and buffer 1 cannot dump data.

In other words, the set of high-priority buffers takes all the
available bandwidth (up to its total fill rate if they are all
empty) and the exact priority function within Γ is irrelevant
to lower priority buffers.
Now, let gi(t,Ω,∆j(t)) denote the transfer rate from buffer i
if the effective dump rate available to buffers in Ω at time t is
∆j(t) and all buffers in Ω have the same priority as i. It can
be computed recursively as follow:

• ∆j(t) is initialized with the residual rate δj − gΓ(t). If
Ω contains empty buffers, let ` be one with minimum
fill rate. If f`(t) < ∆j(t)/|Ω|, then gi(t,Ω,∆j(t)) =
f`(t). This value can be subtracted to the effective dump
rate and ` be ignored in order to compute, for all i 6= `,
gi(t,Ω, δj) = gi(t,Ω \ {`}, δj − g`(t,Ω, δj)).
• Otherwise, every buffer in Ω could transfer at a rate

greater than or equal to ∆j(t)/|Ω|, and therefore they
transfer at that rate through the round-robin policy.

In Example 1, at time t = 1 and Ω = {1, 2, 3} we initially
have ∆j(t) = 1. Buffer 3 is empty and f3(t) = 1/6 < 1/3,
so we set ∆j(t) = 1 − 1/6 = 5/6 and Ω = {1, 2}. Buffer
2 is empty and f2(t) = 2/5 < 5/12, so we set ∆j(t) =
5/6− 2/5 = 13/30, which is the transfer rate of buffer 1.

Therefore, if we know the usage Ui(t) of each buffer i at time
t, their fill rates fi(t) and the current dump rate δj , we can
compute all the transfer rates at time t by applying the method
above, starting with the batch Ω of buffers of highest prior-
ity, until either all buffers have been explored or the residual
bandwidth at time t is null. This takes O(n log n) time.
Moreover, notice that fill and dump rates are piece-wise con-
stant and hence the transfer rates are also piece-wise constant,
and the usage rates are piece-wise linear. Therefore, we only
need to compute those rates at the inflection points, i.e., when
one of the following events happens: the dump rate changes
or the fill rate of a buffer changes or a buffer becomes empty.
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Changes in dump rates occur when downlink windows starts
and ends, and are thus known in advance as are changes in fill
rates. Moreover, given the fill and dump rates at time t, the
transfer rate of each buffer can be computed as shown above,
and hence it is easy to know when a buffer would become
empty at the current rate. Such “empty buffer” events need to
be inserted only when they are relevant, i.e., when they come
earlier than the next rate-change event. Moreover, at most
n such events can occur before the next rate-change event.
Therefore, there are O(n(ν +m)) events to explore in total.

For each event, the memory usages are updated w.r.t. the pre-
vious event, and dump and fill rates are updated inO(n) time.
The complexity of an iteration is dominated by the computa-
tion of the round-robin dump rate gi for every buffer i. As
explained above, this can be done in O(n log n) by sorting
the buffers and applying the proposed recursion. Moreover,
the Θ(ν +m) events known “a priori” must be sorted, which
costs Θ((ν + m) log(ν + m)) and the worst case time com-
plexity is in O((ν +m)(log(ν +m) + n2 log n)).

2.2 Problem Complexity

We consider here the decision problem PRIORITYALLOC: “Is
there a priority assignment for each downlink window such
that there is no data loss?”.

Theorem 1. The problem PRIORITYALLOC is NP-complete.

Proof. It is in NP by Lemma 1, since verifying that a priority
allocation entails no data loss is polynomial. To show hard-
ness, we use a reduction from PARTITION, which, given a set
A = {a1, . . . , am} of positive reals with

∑m
j=1 aj = 1, asks

if there is a set S ⊆ A such that
∑

aj∈S aj = 1
2 .

We build an instance π(A) of PRIORITYALLOC with m
downlink windows, such that window j has duration aj and
dump rate 2, and m+ 2 buffers 1, . . . ,m+ 2. Buffers m+ 1
and m+ 2 have capacities 3

2 , while buffer j has capacity aj
for j ∈ [1,m]. The fill rates fm+1 and fm+2 are equal to 1 for
a duration 1 before the first downlink window, then they are
equal to 1 during every downlink and null otherwise. More-
over, fj is equal to 2 during window j and is null otherwise.

Any solution of π(A) satisfies the four following properties:

1. Every buffer must be full at the end of the last window.
Indeed, the cumulative amount of data produced is 6
while a most 2 can be dumped. Moreover, the capac-
ities of buffers m+ 1 and m+ 2 add up to 3 and the
capacities of all other buffers add up to 1.

2. Buffer j cannot have priority strictly higher than both
m+ 1 and m+ 2 in window j. Indeed, if j had strict
priority over m+ 1 and m+ 2, then all data produced
on this buffer would be dumped and it would be empty
at t = em, which contradicts Property (1).

3. In window j, for any k < j, the priority of k must be low
enough so that no data is dumped from this buffer. This
is a direct consequence of Property (1) since no more
data will be produced on buffer k.

4. Either m+ 1 or m+ 2 must have a strictly lower prior-
ity than j, and none can be of strictly higher priority in
window j. Indeed, if neither m+ 1 or m+ 2 is ranked
lower than j, then it cannot get more than 1/3 of the
bandwidth. Therefore, it cannot dump more than 2aj/3
in window j and the residual data (4aj/3) exceeds its
capacity. Moreover, if either m+ 1 or m+ 2 has strict
priority over j, it will take the whole bandwidth since
they both contain data at all times. Therefore, buffer j
would not dump any data and hence exceeds its capacity.

Therefore, on window j, there are only two feasible ranking:

1. P(m+ 1) = P(j) > P(m+ 2) ≥ P(k) ∀k ∈ [1, j − 1]

2. P(m+ 2) = P(j) > P(m+ 1) ≥ P(k) ∀k ∈ [1, j − 1]

In the first case, buffers m+ 1 and j share the bandwidth
equally (i.e., the dump rate is 1 for each) and at the end of
window j, the data on buffers j and m+ 2 has increased by
aj . The usage of all other buffers remains the same.

The second case is symmetric, and at the end of window j,
the data on buffers j and m+ 1 has increased by aj .

In other words, there is an equivalence between the choice
among these two rankings and the choice of a partition for
element aj . Therefore, given a solution S of an instance
A of PARTITION, we can build a solution of the instance
π(A) of PRIORITYALLOC where, on window j, the priority
is P(m+ 1) = P(j) > P(m+ 2) > P(k) ∀k ∈ [1, j − 1]
if aj ∈ S and P(m+ 2) = P(j) > P(m+ 1) > P(k) ∀k ∈
[1, j − 1] if aj ∈ S otherwise. It can be verified that this
solution does not exceed any buffer’s capacity.

Consider now a solution of the instance π(A). On each win-
dow j, the usage of exactly one of buffers m+ 1 and m+ 2
grows by aj . Since the final usage of both buffers is 1

2 , they
form an equi-partition of A and we can conclude that the in-
stance A of PARTITION is satisfiable.

This reduction requires m buffers and m downlink windows,
and hence does not preclude that an efficient algorithm exists
if either parameter is fixed. In the next section we show that
the problem is polynomial for a single window.

3 Polynomial Algorithm for a Single Window
Let MΓ≺Ω(i, j) =

(
Ci −maxt∈[ej−1,ej [(Ui(t))

)
/Ci be the

usage margin of i in the interval [ej−1, ej [, with Γ the set of
buffers with priority over i and Ω the set of buffers with same
priority as i. The usage Ui(t) of buffer i at all times t can be
computed efficiently using the algorithm Simulation with a
priority assignment compatible with the definition of Γ and
Ω, since the exact priority within Γ is irrelevant. It follows
that MΓ≺Ω(i, j) can also be computed efficiently.

The four following lemmas lead to a method (Algorithm 1) to
decide if there exists a priority assignment of the buffers such
that given their usage at time ej−1, every buffer has a margin
of at least obj in [ej−1, ej [, with e0 = 0 and sm+1 =∞.
Lemma 2. i=k or k 6∈Ω orM∅≺Ω(i, j)≥M{k}≺Ω\{k}(i, j).
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Algorithm 1: An Algorithm for a Single Window
Algorithm: SINGLEWINDOW

Data: A downlink window j, a target margin obj
Result: Returns ∅ and sets the priority ranking Pj on B for

downlink window j, if there is one that achieves the
target margin. Otherwise, returns a minimal set of
buffers that would exceed the target margin even if all
other buffers were given less priority.

p← 0
B ← {1, . . . , n}
while B 6= ∅ do

Ω← B
1 repeat

Ω′ ← Ω
2 Ω← {i | i ∈ Ω & MB\Ω≺Ω(i, j) ≥ obj}

until Ω′ = Ω
3 if Ω = ∅ then return B
4 foreach i ∈ Ω do Pj(i)← p
5 B ← B \ Ω

p← p+ 1

Proof. If given a strictly higher priority k can only take more
bandwidth, and hence the margin of i can only decrease.

Lemma 3. If M∅≺Ω(i, j) < M , then the priority of i cannot
be the lowest of all buffers in Ω, if the minimum margin is M .

Proof. By lemma 2, the margin can only decrease if any
buffer except i is given more priority.

Lemma 4. If for every i ∈ Ω, we have M∅≺Ω(i, j) < M ,
then there is no solution with margin M or larger.

Proof. By lemma 3, no buffer in Ω can be of lowest priority
among all buffers in Ω, which is a contradiction.

Lemma 5. If i ∈ Ω =⇒ MΓ≺Ω(i, j) ≥ M , then there
is a solution with margin at least M if and only if there is a
solution with margin at least M for the set of buffers Γ.

Proof. “If”: Suppose that there is a solution for Γ with mar-
gin ≥ M . Give the same priority (strictly lower than that of
any buffer in Γ) to all buffers in Ω. Since MΓ≺Ω(i, j) ≥ M
for all i ∈ Ω, this solution extends to a solution of Γ∪Ω with
margin ≥M . “Only if”: Trivial.

Algorithm 1 first tries to determine which buffers can be of
lowest priority. In Loop 1 the margin of all remaining buffers
are computed conditional to all having the lowest priority. By
lemma 3, the buffers whose margin is below obj cannot be
of lowest priority. Therefore, we remove those buffers with
margin less than M from the candidate set for lowest priority
Ω and iterate. If eventually no buffer can have a margin equal
to or larger than M , we can conclude that there is no solution
by lemma 4. Otherwise, in Line 4, we set the priority of the
buffers in Ω, and we can ignore these buffers by lemma 5.

In the worst case, i.e., when the priority has to be a total order
and a single buffer is removed from Ω at each iteration of
Loop 1, Algorithm 1 requires O(n2) calls to Simulation.

Notice that, besides the margin, we can check handover con-
straints (specific bound on the usage of a buffer at the end
of a downlink) with the same method. Moreover, we also
only need to know the sets of buffers of higher and equal
priority. In other words, on the downlink window [sj , ej [,
we can change the test at Line 2 to: MB\Ω≺Ω(i, j) ≥
obj & Ui(ej) ≤ ri(j) and Algorithm 1 remains correct.

4 A Heuristic for Priority Assignment

Algorithm 2: A heuristic for multiple downlinks
Algorithm: Descent
Data: An oMDP instance

X = (C1, . . . , Cn, [s1, e1[, . . . , [sm, em[, f), initial
memory usage U, a step parameter ε

ub← RelaxBandwidth(X)
lb← 0
while lb < ub do

clear handover constraints
1 P, lb← DownlinkCount(X, lb)

M ← Repair(X,P,U, lb+ ε)
if M > lb then lb←M
else ub← lb

return lb

Here we consider the general (NP-complete) problem, with
buffer usage carrying over multiple downlink windows.

We propose a heuristic (Algorithm 2) which implements a
greedy “descent”: a seed priority assignment is computed us-
ing the heuristic DownlinkCount [Rabideau et al., 2017] in
Line 1, and iteratively “repaired” via Algorithm 3 to achieve
a strictly higher target margin (by a step ε = 10−5).

It simulates the current priority assignment until reaching
downlinks j at which the target margin is exceeded. Then,
at line 2 it calls Algorithm 1 to check whether there exists
a priority assignment Pj that achieves the expected margin.
If there is such an assignment, it is run by Simulation at
Line 1 and we advance to downlink window j + 1. If the last
window is reached, an improving solution has been found.
Otherwise, if downlink j does not have a priority assignment
without data loss, Algorithm 1 returns a setB of buffers guar-
anteed to exceed their target margin given the current usage
at the end of downlink j− 1, even if they are given (globally)
the highest priority. Therefore, the only way to avoid data
loss in this downlink is to reduce the residual load for at least
one of these buffers at the end the previous downlink.

In order to avoid branching on the possible ways of reduc-
ing this load, we instead add one randomly chosen handover
constraint at Line 4. We pick a random buffer i in the set B
and we set its maximum handover value ri(j − 1) to the cur-
rent usage Ui(j − 1) to which we subtract the gap we need
to achieve the expected margin: the margin we obtain when
buffer i is given highest priority with all other buffers in B
(that is, M∅≺B(i, j)) minus the expected margin obj. Then
the previous window is solved again with this new constraint:
it “backtracks” by decreasing the current downlink window j
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Algorithm 3: A heuristic to repair a priority assignment
Algorithm: Repair
Data: An oMDP instance

X = (C1, . . . , Cn, [s1, e1[, . . . , [sm, em[, f), priority
assignment P, current usage U, target margin obj

Result: Update the priority assignment P and return the
corresponding margin obj′ > obj, or ∅ if no
improving priority assignment was found

obj′ ← 1
j ← 1
while j ≤ m+ 1 do

1 Simulation([ej−1, ej ], X)

M ← min{Ci−Ui(t)
Ci

| i ∈ {1, . . . , n}, t ∈ [ej−1, ej ]}
if M ≥ obj then

obj′ ← min(M, obj′)
j ← j + 1

else
repeat

2 B ← SINGLEWINDOW({1, . . . , n}, [sj , ej [)
if B 6= ∅ then

if j = 1 then return ∅
3 j ← j − 1

pick a random buffer i ∈ B
4 ri(j)← Ui(ej)− (M∅≺B(i, j)− obj)Ci

until B = ∅

return obj′

at Line 3. If the current downlink window is the first (j = 1),
then no such constraint can be posted and we fail.

Observe that Algorithm 2 converges since at Line 4, one max-
imum handover value strictly decreases. Therefore, eventu-
ally, either the last window will be solved with the expected
margin, or the first window will be proven unsatisfiable (given
the choice of handover constraints).

5 Experimental Evaluation

The software used for the real mission (DALLOC) is a pro-
prietary software. Therefore, we could not directly compare
our method to it and instead we re-implemented the best
heuristic described by Rabideau et al.. This approach re-
lies on a heuristic called DOWNLINKCOUNT (DC for short).
This methods greedily assigns priorities based on when each
buffer would exceed a given target margin. More precisely, it
counts in how many downlinks would occur before exceed-
ing the target if no data is dumped. At each downlink window
j ∈ [1,m], the transfers are computed starting from the cur-
rent usage, and with a dump rate equal to 0. Then a priority
assignment is extracted as defined above, and window j is
simulated using the same procedure but with dump rate δj .
It is important to notice that the choice of target margin can
change the priority assignment. Therefore, in DALLOC, this
heuristic is used within a binary search. The resulting algo-
rithm is denoted ITERATEDLEVELING (IL for short). We do
not compare with two other methods introduced by Rabideau
et al. that were found to be less effective, in particular be-
cause they are not suited to the binary search method (IL).

In this section we first give some evidence that our implemen-
tation using a faster data transfer simulation algorithm is more
efficient than DALLOC’s. Then, we compare REPAIRDES-
CENTwith our implementation of ITERATEDLEVELING, us-
ing the same hardware and common routines.

We used the same data set as Rabideau et al., constituted of
four scenarios (MTP1, MTP2, MTP3 and MTP4), corresponding
to the whole activity sequence of Rosetta divided in four quar-
ters. The whole sequence has over 40,000 data production
events for 16 memory buffers and 324 downlink windows.
Its duration is about three months and a half with a preci-
sion of one second. It turns out that the first three can be
solved to optimality as a simple lower bound matches the
results of our method or DALLOC’s ITERATEDLEVELING.
The last instance (MTP4) is not trivial. However, in order to
get significant results, we generated a synthetic data set. We
first added 48 new buffers, for a total of 64, as follows: For
each memory buffer in the original data set, we created three
“clones” whose capacities and fill rates were multiplied by
a factor drawn uniformly randomly in [0.8, 1.2] and whose
activities were shifted in time drawn uniformly randomly in
[0s, 3600s]. Then, for each value of n in {8, 12, . . . , 36}
we randomly chose n memory buffers, and generated one
instance for a set of time intervals defined by the ends of
two downlink windows x and y. We generated 14160 in-
stances: each one is parameterized by the number of buffers
n and the first and last considered downlinks are multiple of
5 x, y ∈ {0, . . . , 325} such that x+ 10 ≤ y.

5.1 Re-implementation of DOWNLINKCOUNT

Table 1 shows the results published in [Rabideau et al., 2017]
for DOWNLINKCOUNT and the results of our implementa-
tion. We believe that the main difference is the algorithm used
to play the downlinks given a priority assignment. We used
Algorithm Simulation, and we can clearly see a speedup:
even though the hardware may not be equivalent, it cannot
account for the speedup of several orders of magnitude. We
also observe that our version finds downlink plans with higher
margin for MTP1 and MTP2. This is because the results of Ra-
bideau et al. include pre-assigned (high) priorities for some
buffers due to some specific constraints of the actual mission.
We are confident, however, that this implementation is truth-
ful, and at least as effective as the one in DALLOC.

Margin
Avg. CPU

MTP1 MTP2 MTP3 MTP4

DALLOC’s 40.4 46.5 17.8 29.8 14.6
Ours 46.4 68.1 17.8 30.8 0.018

Table 1: New and old implementations of DOWNLINKCOUNT.

5.2 Comparison with the state of the art

Now that we have established that our implementa-
tion is at least as efficient as the one in DALLOC,
we can compare the algorithm proposed in this paper
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(REPAIRDESCENT) with the approach introduced by Ra-
bideau et al. (ITERATEDLEVELING). Table 2 shows the re-
sults of both approaches (denoted respectively RD and IL)
on the original instances. We report the minimum margin (in
percent of the capacity) and the average CPU time. The three
first instances are solved to optimality, witnessed by the sim-
ple upper bound (UB) consisting in allocating the full band-
width to every buffer. Observe, moreover, that our implemen-
tation of DOWNLINKCOUNT also solves MTP1 optimally, but
not MTP2 nor MTP3. This indicates that on MTP1 in particular,
the bottleneck on each downlink window is mainly due to a
single memory buffer. Yet, finding this critical buffer might
not be straightforward (such as in MTP2 and MTP3), since pri-
ority decisions can have an impact far downstream. On MTP4,
however, the bottleneck is likely due to a much more complex
interaction between buffers, and no approach can reach the
upper bound. Our method improve the minimum margin by
4.3 points over the solution found by ITERATEDLEVELING.
CPU times are comparable and very low (under a second for
all instances).

Margin
Avg. CPU

MTP1 MTP2 MTP3 MTP4

UB 46.4 72.5 54.8 53.4
IL 46.4 72.5 54.8 48.5 0.116
RD 46.4 72.5 54.8 52.8 0.088

Table 2: Comparison with the state of the art on real scenarios.

≤ 12 16-20 24-28 ≥ 32

M. CPU M. CPU M. CPU M. CPU
DC 28.7 0.0 -41.5 0.1 -249.3 0.1 -460.7 0.1
IL 47.1 0.3 22.9 0.8 -22.4 1.4 -68.7 2.2
RD 49.6 0.1 27.4 1.1 -15.8 7.5 -60.7 31.3

Table 3: Comparison with the state of the art on synthetic scenarios.

The real scenarios do not give us enough datapoints for a
statistically significant comparison. Therefore we ran these
approaches on the large dataset described above. Table 3
gives an overview of the results. We ignored the instances
for which both REPAIRDESCENT and ITERATEDLEVELING
find the same margin (32% of the data set). For the other sce-
narios we give the average minimum margin and the average
CPU time for these two algorithms (denoted respectively RD
and IL) as well as for the heuristic DOWNLINKCOUNT (DC),
for four classes of instances: those with 12 buffers or fewer,
with less 20 buffers, with 24 to 28 and with 32 buffers or
more. We can see that our algorithm finds more robust trans-
fer plans, by about 2.5 points for the first class, 4.5 points
for the second class, 6.6 for the third and 8 points for last. It
requires, however, much more CPU time on large instances.

These average results on CPU times might be deceiving, how-
ever. Figure 2 shows the average best margin X after Y sec-
onds for the instances with at most 20 buffers and for more
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Figure 2: Comparison with the state of the art on synthetic scenarios.

than 20 buffers. We can see that REPAIRDESCENT is actually
faster than ITERATEDLEVELING to find solutions of similar
quality. In other words, it takes more time to converge be-
cause it continues to optimize the plan for longer. We ran
randomized versions of the algorithms. In the case of DOWN-
LINKCOUNT, each of the m priority decisions randomly uses
a total ordering based on the two versions discussed earlier,
based time or the window of the first data loss. The heuristic
is then called 10000 times. For ITERATEDLEVELING, we
simply use the randomized version of DOWNLINKCOUNT
whereas REPAIRDESCENT is naturally randomized because
handover constraints are chosen randomly. In both cases,
the number of runs per iteration is shown besides the method
name. From these graphs, it is clear that investing more time
via randomization can pay off, however, REPAIRDESCENT is
almost always the best choice.

6 Conclusion

We proposed an efficient algorithm to simulate data transfers
under priorities, and overlapping data production and dump-
ing. Then, we showed that deciding if there is a priority as-
signment without data loss is polynomial for a single down-
link, but NP-complete for multiple downlinks. Finally, we
proposed a heuristic for allocating priorities over multiple
windows based on the exact algorithm for a single window.
This approach significantly outperforms the state of the art
for the overlapping Memory Dumping problem.
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