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Abstract

The Surface Deformation and Change Mission Architec-
ture Study (SDC) aims at designing the next synthetic aper-
ture radar mission to measure geophysical properties of the
Earth’s land surfaces, focusing on surface deformation and
disruptive change. Multiple mission architectures are eval-
uated in a rigorous selection process. One step of this pro-
cess is the generation of realistic mission schedules that are
used to compute the science performance of each architec-
ture. For that purpose, we adapt and use CLASP, an auto-
mated scheduling software used in the design and operations
of many missions. We describe the specific constraints linked
with the SDC study. We highlight the challenges with using
automated scheduling software to create explainable plans
that the science team can understand and trust. We also de-
tail current and planned changes to the scheduling software
for that purpose.

Introduction
NASA has recently launched the Surface Deformation and
Change Mission Architecture Study (SDC) to address the
research and applications community’s needs in the United
States over the next few decades. The SDC mission is being
developed to gather data on global surface displacement and
disruptions with a precision of up to one millimeter. These
measurements will be useful to both scientific communities
interested in estimating global biomass and soil moisture
and emergency responders dealing with geohazards.

In the past, two surveys had recommended missions using
synthetic aperture radar (SAR) to measure geophysical prop-
erties of land surfaces. The 2007 survey recommendation led
to the development of the NASA-ISRO SAR (NISAR) mis-
sion, which is close to launching. The 2017 Decadal Sur-
vey recognized the importance of continuing these measure-
ments beyond NISAR, with an emphasis on surface defor-
mation and disruptive surface change. Surface Deformation
and Change observables were defined as a top priority for the
next decade (National Academies of Sciences, Engineering,
and Medicine 2018). However, unlike in 2007, the 2017 sur-
vey only prescribed the observations without providing any
guidance on the mission’s underlying architecture or instru-
ment suite and concept of operations.

Copyright © 2022, All rights reserved.

The goal of the SDC mission study is the evaluation of
mission architectures that would support SDC observables
and provide the most value to the diverse science and appli-
cations communities it serves.

There is a systematic process that the architecture team
has derived for defining and evaluating mission architec-
tures (Horst et al. 2021). After an initial brainstorming pe-
riod that involved identifying desired capabilities and mis-
sion architecture classes that might deliver those capabilities
the team went through an iterative process that considers a
broad number of architectures at a very cursory level, to be
followed by a narrowing of the candidate architectures and
more detailed analysis on the remaining architectures during
the second phase of the study. In each case, the criteria for
selection or rejection is a cost-benefit analysis of the cost of
the mission compared to the science value it delivers.

One component of the process is the evaluation of the
Science performance of the architecture. The SDC Science
Performance Model consists of a set of tools that calcu-
late spatially-varying measurement uncertainties for a given
set of point target locations on the surface of the Earth.
The model takes into account instrument parameters and
orbital calculations combined with a mission plan, infor-
mation about global conditions of the Earth’s surface (e.g.,
terrain type, snow and vegetation cover, topography), and
time-dependent models that represent propagation delays
through the troposphere and ionosphere. The tool combines
all the aforementioned information to calculate seasonal er-
ror statistics for a set of targets, which can then be combined
into long-term performance estimates for a given architec-
ture.

Our goal has been to produce the mission plans for each
architecture so they can be used to compute the Science per-
formance of each architecture. For this work, we build on
top of CLASP, an existing mission scheduling software that
has been used multiple times for mission design and mission
operations.

In the remainder of this paper, we describe the base soft-
ware and its algorithms as well as the specific constraints
of the scenarios for the SDC study. We describe the life-
cycle of a scenario and how we translate the intent of the
Science team into inputs for our software. Another section
addresses the interpretation of the produced mission plans,
which are the result of thousands of automated decisions.



We focus on the inherent difficulty of this process and the
approaches we have put into practice to help, highlighting
the need for decision-making software to provide some level
of explainability.

CLASP
CLASP (Knight and Chien 2006) is a long-range scheduler
for space-based or aerial instruments that can be modelled
as pushbrooms, that is 1-dimensional line sensors dragged
across the surface of the body being observed. It addresses
the problem of choosing the orientation (if steering is possi-
ble) and on/off times of a pushbroom instrument or collec-
tion of pushbroom instruments such that the schedule covers
as many target points as possible, without oversubscribing
memory and energy. Orientation and timing of observations
are derived from geometric computations that CLASP per-
forms using the SPICE ephemeris toolkit (Acton Jr 1996).
Inputs of CLASP notably include (1) campaign files describ-
ing desired geographical areas to be observed along with re-
quired instrument mode and geometric and temporal con-
straints. Each campaign is assigned a priority which deter-
mines the order in which resources (steering capability, en-
ergy, memory) will be allocated to it; (2) constellation defi-
nition which can be made of one or more spacecraft, each of
which has one or more body-mounted instruments with spe-
cific swaths modeled as pushbroom sensors. Geometry of
the sensors are parameterized by minimum and maximum
look angles as angles rotated about the velocity vector of the
spacecraft from the nadir look vector, looking 90 degrees
off of velocity. Figure 2 shows how we go from a visibil-
ity, computed during the discretization phase, to an obser-
vation by choosing a roll angle and a sensor (there might
be several sensors/modes with different swaths). The dis-
cretization approach is shown schematically in Figure 1. Af-
ter discretization, an algorithm goes through all target points
in priority order and greedily schedules observations in a
non-chronological manner, propagating constraints at each
insertion in the schedule. A more thorough description of
the combinatorial coverage problem as well as algorithms to
solve it are described in (Maillard, Chien, and Wells 2021).

Using automated planning and scheduling tools for mis-
sion design is not novel, such as in the study for the Pluto
Fast Flyby (Sherwood et al. 1997) or more recently D-
SHIELD (Nag et al. 2020) for constellations. (Sipps and
Magruder 2023) developed a constellation analysis tool that
uses a scheduling algorithm called envelope grid-point ap-
proach (EGPA). Their constellation design approach has a
greater focus on orbit design and optimization and does not
appear to currently incorporate resource constraints (data
volume, energy, etc.). In (Schaffer et al. 2016) or (Do et al.
2013), the authors use a systematic approach and auto-
mated scheduling tools to explore the space of possible con-
figurations and outline the design which would yield the
best science return. CLASP has been used for scheduling
science observations in recent missions involving instru-
ments mounted on the ISS such as the Orbiting Carbon
Observatory-3 (Yelamanchili et al. 2021a), EMIT (Yelaman-
chili et al. 2021b), and ECOSTRESS (Yelamanchili et al.
2019) missions. It was previously used in the operations of

the Intelligent Payload Experiment Cubesat Mission (Dou-
bleday et al. 2015), in the mission design and operations of
the NASA-ISRO Synthetic Aperture Radar Mission (Dou-
bleday 2016), in coverage analysis for the Europa Clipper
and Jupiter Icy Moons Explorer (Troesch, Chien, and Fer-
guson 2017), and was proposed for operations of the Ther-
mal Emission Imaging System on the Mars Odyssey space-
craft (Rabideau et al. 2010).

Each mission has some desired behaviors, inputs, and out-
puts that are not directly available in the base CLASP soft-
ware. Fortunately, CLASP has been designed to be adapted
to these mission-specific needs. For SDC, we added several
algorithmic layers to (1) reduce slewing (2) allow interfero-
metric observations and other combinations of observations
(3) allow energy modeling (4) perform latency analyses. We
detail those in the following sections.

Lifecycle of a scenario

As mentioned before, the SDC project as a whole has a pro-
cess for selecting and evaluating architectures. We will now
see how we process an architecture at the mission planning
level. First, we receive an architecture definition for the case,
such as seen in Table 1. As described in another section, we
automated the generation of inputs for CLASP from these
definitions. What is not shown in Table 1 is the science intent
or campaign definitions, that is the sets of polygons and as-
sociated illumination and temporal constraints that we want
to observe. We built a base set of campaigns from the set
of science campaigns currently baselined for NISAR and
for the sake of being able to compare the outputs of all the
cases, we usually only modify this base set of campaigns in
two ways: (1) scale up the desired number of observations
to fit the increased capacity of a constellation (compared to
one NISAR spacecraft) (2) add specific campaigns fitting a
scenario (e.g. disaster areas, formation-flying requirements
for a given campaign). These requirements tied to a specific
scenario sometimes require new software development, ei-
ther new scheduling algorithms or new output plots. Then
the case can be run on a planning horizon corresponding to
the repeat cycle of the base spacecraft (10 or 12 days) and
outputs are examined. When new algorithms are developed,
particular attention is given to the correctness of the behav-
ior. Observation plans containing hundreds of observations
are examined in Google Earth with the science team. We
also look at various specialized plots for coverage, duty cy-
cle, slewing, and campaign satisfaction. In a coming section,
we describe how this step can be difficult and how we man-
age it. Then the science performance tool is run on the case
and the results get an external evaluation from the science
team. For cases that are downselected, we want to get more
details and thus the case is run again with slight variations
and adjustments.

Scheduling algorithms for SDC

We developed several additions to the base scheduling algo-
rithm of CLASP.



Figure 1: Schematic view of the discretization process in CLASP. (1) A grid of point is projected onto the body and intersected
with target polygons which result in sets of target points. (2) The footprint of the instrument onboard the spacecraft is projected
onto the body and intersected with the target points. (3) This footprint is time-discretized in fixed increments. The resulting
polygon is intersected with the target points and called a visibility. Visibilities that do not contain any targets are discarded.

Name # of s/c orbit configuration revisit
time (days)

elevation beamwidth
of each s/c (deg)

swath start look
angle of each s/c (deg) steerable duty cycle

constraint
L1A 1 NISAR 12 12 30 No No
L2A 2 NISAR, 6-days apart 12 12 30 No No
L4A 4 Sentinel-1, 3 days apart 12 12 30 No No
L6A 6 NISAR, 2-days apart 12 2 30, 32, 34, 36, 38, 40 Yes, 0.04 deg/sec No
L5A 5 L5A, 2-days apart 10 3 30, 32.4, 34.8, 37.2,39.6 Yes, 0.04 deg/sec No
L4C 4 Inclined, 3-days apart 12 3 30,33,36,39 Yes, 0.04 deg/sec No
L12C 12 NISAR, 1-day apart 12 3 30, 30, 30, 33, 33, 33, 36, 36, 36, 39, 39, 39 Yes, 0.04 deg/sec 15%
L12D 12 NISAR, 1-day apart 12 2 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40 Yes, 0.04 deg/sec 15%
L4B 4 NISAR, 3 days apart 12 3 30, 33, 36, 39 Yes, 0.04 deg/sec No
L9A 3 NISAR, 4-days apart 12 4 30, 34, 38 Yes, 0.04 deg/sec No
L6F 2 Inclined, 6-day apart 12 6 30, 36 No No
L6C 2 Sentinel-1, 6-day apart 12 12 30 No No
L18A 6 NISAR, 2-days apart 12 3 30, 30, 33, 36, 36, 39 Yes, 0.04 deg/sec 15%
L8A 8 NISAR, 6-hours apart 12 1.5 30, 31.5, 33, 34.5, 36, 37.5, 39, 40.5 Yes, 0.04 deg/sec No
L8D 8 NISAR, 6-hours apart 12 2 30, 32, 32, 34, 36, 38, 38, 40 Yes, 0.04 deg/sec No
L8E2 8 NISAR, 6-hours apart 12 2 30, 32, 32, 34, 36, 38, 38, 40 Yes, 0.04 deg/sec 18%

L6C2 6

2 formation-flying
constellations
of 3 s/c each
(1 mothership + 2 co-flyers)

12 12 for mothership
and 4 for co-flyers

30 for motherships
30 and 34 for co-flyers Yes for co-flyers 20% for mothership

Table 1: Evaluated architectures.

Reduce slewing via a multipass algorithm

In several architectures, the spacecraft are steerable, see Ta-
ble 1. We have seen that the base algorithm of CLASP goes
through targets by priority order and schedules observation
in a non-chronological way. It does not try to actively mini-
mize slewing but considers it is a constrained resource. This
combination can lead to the spacecraft slewing a lot between
targets (see top plot of Figure 3) which, as we cannot take
observations while slewing, results in a suboptimal use of
possible observation time. To remedy this, a multipass algo-
rithm was developed and the the space of slewing angle has
been discretized. Each spacecraft is assigned a set of look
angles it can slew to (instead of a continuous range) and a
preferred angle (a lane in other words). During both passes,
the algorithm goes through all targets, as the original algo-
rithm, but during the first pass, it can only schedule observa-
tions in the preferred lane of each spacecraft. The spacecraft
are only allowed to slew during the second pass. Thus if a
spacecraft slews, it means there were no more targets in its

lane at that time. That may be the case if an area that has a
lot of overflights has already been observed enough or along
coastlines. It can be seen in Figure 3 that this mechanism
significantly reduces the number of slews and increases the
amount of time spent observing target areas.

Interferometric and combined observations
The CLASP algorithm schedules observations one at a time
with the implicit assumption that the reward is linear with
the number of observation realized up to the repetitivity
specified by the user. In the context of interferometric SAR,
the reward might be obtained only when we can assemble
two observations taken at different times. There is a general
assumption that observations produced during one planning
horizon can be paired with observations produced during an-
other planning horizon to ultimately produce interferometric
pairs. But in some cases, we want to produce complete in-
terferometric pairs from observations within the same plan-
ning horizon. We augmented the CLASP algorithm with a
mechanism that schedules observations in pairs for certain



Figure 2: How CLASP produces an observation from a vis-
ibility by choosing a roll angle at a particular timestep. Roll
angle is a decision variable at each timestep. CLASP uses
a least-commitment strategy to assign this variable by using
a timeline with propagation which ensures the constraint is
never violated.

campaigns. This requires more search and backtracking than
previously because for a given target, it is necessary to find
two observations taken in the same orbital conditions that
would both satisfy constraints.

Later, we added a capability to schedule simultaneous ob-
servations for the case of formation-flying spacecraft. In this
configuration, three spacecraft: a mothership, a leader, and
a follower are offset by tens of seconds and are able to ob-
serve the same point on the ground (by offsetting the pitch
of the leader and follower spacecraft). In this context, the
reward for a certain campaign is only obtained when simul-
taneous observations are taken of the same target. In the
focused mode, the three spacecraft must observe the same
point on the ground at the same time. In extended mode, the
instrument on the mothership is off and the leader and fol-
lower are observing the ground targets side-by-side. Figure 6
shows a pass over South America where a formation-flying
constellation is observing campaigns with different mode re-
quirements.

Latency analysis
Urgent response in case of disaster is another use case for the
architecture evaluation in the SDC study. After a disaster has
happened, we want to be able to use the spacecraft to image
the affected area as soon as possible and as much as possible.

Figure 3: Roll angle as a function of time for one spacecraft
member of a 6-spacecraft constellation on a 12-day planning
horizon. Top: without 2-pass algorithm. Bottom: with 2-pass
algorithm. 10-fold decrease in number of slews

Figure 4: Latency analysis for two architectures. Lower val-
ues are better. Top: 1 full-swath spacecraft. Bottom: 6 1/6-
swath steerable spacecraft.

To compare the capacities of architectures in terms of ur-
gent response, we designed a latency analysis. We generate
a pseudo-random latitude/longitude point p in the landmass



where the disaster is supposed to happen. Then we generate
a pseudo-random time t in the planning horizon to represent
the time at which the disaster occurs. Then we compute the
latency, which is the duration between t and the start time
of the next opportunity to image the disaster target p for any
spacecraft of the constellation. We do this thousands of times
and we average the results geographically. Figure 4 shows
the comparison between two architectures of equal imag-
ing capability (in terms of swath) but with different numbers
of spacecraft. Unsurprisingly, by having six steerable space-
craft spread over the planning horizon instead of one, we are
able to significantly reduce the latency for imaging disaster
sites.

Automated generation of scheduling inputs
and figures

Due to SDC intending to analyze and compare different sce-
narios, we decided early on to develop some infrastructure
around the existing CLASP software to make it easier to
construct, run, and analyze the results of new scenarios. We
created some pre-processing code that takes in a declarative
definition of a scenario (number of spacecraft, the relation-
ships between their orbits, campaigns, etc.) and generates in-
puts to CLASP that would normally be written or generated
manually (orbit files, spacecraft and sensor definitions, etc.).
In order to specify the consteallations to CLASP, we need to
have ephemeris for each of the individual spacecraft. Using
SPICE (Acton Jr 1996) we generate offset ephemeris from
base orbits (e.g. NISAR or L5A or Sentinel-1 in Table 1) that
are generated at undisclosed location (for review). We also
created some post-processing code that takes data outputted
by CLASP and automatically produces data visualizations
that we and the science team can examine. (see Figure 5 for
more information)

Having this automation around CLASP has allowed us to
more rapidly run and analyze the results of different scenar-
ios and iterate as we found changes that we wanted to make
to the scenarios and as new architectures were proposed.

Explainability and dialogue between mission
planning and science teams

Why it is difficult
When generating and presenting mission plans for various
scenarios we found it important to produce plans that are
correct and that the science team could understand and trust.
Since the mission plans would be used to make decisions
about which architectures to study and eventually select, en-
suring that the mission plans are correct is important in or-
der to make sure that those decisions are properly informed.
Since the science team will be relying on the mission plans
being correct, it is important that we ensure that the results
are explainable and trustworthy.

In generating mission plans, we would occasionally no-
tice unexpected and problematic effects in the results (gaps
in coverage, spacecraft slewing too often, etc.). In such cases
we attempt to identify the cause of the effect with it typi-
cally falling into one of three types: (1) bugs in the schedul-
ing software, (2) problems with the scheduling inputs, and

(3) differences between the science team’s intent and what
was implemented in the scheduling software and inputs. For
software bugs it proved to be important to both find and fix
the bug and to also do verification to prove to the science
team that the bug was fixed and thus that the new results
were trustworthy. For problems with the scheduling inputs
we find and correct the defect, and if it was not an effect
we had seen previously we would show and explain to the
science team how the defect caused the unexpected effect.
For differences between science team intent and scheduling
inputs, we would discuss the results with the science team
in order to identify the difference in intent and correct the
scheduling inputs or software to align with those intents.

We also found that communicating to the science team
how the scheduling software made the scheduling decisions
that it did to be difficult. The underlying greedy scheduling
algorithm in CLASP has impacts due to it’s greedy deci-
sions that can be clear to people with a background in AI
planning and scheduling algorithms or sequential decision
algorithms, but can be difficult for others to understand and
intuit. In particular, the strict campaign priority scheme that
the greedy algorithm follows can yield unintuitive coverage
effects.

When attempting to explain coverage effects in a particu-
lar mission plan, there are two types of constraints that dif-
fer in how difficult they are to explain: (1) local constraints
and (2) global constraints. Some scheduling constraints like
slewing have effects that are mostly local in time and thus
some of their effects can often be explained by examining a
particular segment of the mission plan that is clearly effected
by the constraint. Such local effects can result in some global
patterns (ex. characteristic gaps in coverage) that can be ex-
plained by showing such an example case and building up
to a more global explanation (see Figure 6 for an example).
However, the effects of more global constraints such as en-
ergy and duty cycle can be more difficult to explain, often
requiring us to detail how CLASP’s greedy algorithm would
impact which geographic areas are scheduled first (and thus
have more energy and duty cycle available). Additionally,
this can be further complicated when there are multiple con-
straints that are interacting with each other.

Another complicating factor is that the relationship be-
tween the orbital parameters and the ground track can be
unintuitive. There are some heuristics that can be used to
reason about what the ground track will be like based on
the orbital parameters, but once you want to start reasoning
about coverage achieved by the sensors on a global scale it
can be more difficult. For example, when we are examining
the coverage for a scenario we often try to reason about how
much coverage we should get over different ranges of lati-
tude. For most architectures, at the Equator there are some
small overlaps between the swaths of the spacecraft (when
pointed at their preferred lanes). At more extreme latitudes
the swaths of the spacecraft in the constellation start to over-
lap with each other more, and in cases like L6A (see Table
1) allow us to achieve 1 observation at all longitudes without
needing to observe with all 6 spacecraft. However, reasoning
about how much overlap to expect at intermediate latitudes
is non-trivial.



Figure 5: Diagram of the architecture and data flow of the SDC CLASP adaptation. Notice that the pre-processing stage
generates the many different inputs that CLASP needs, including using CSPICE to generate new orbits based on template
orbits. Both CLASP and CSPICE are existing tools that we leveraged, though with CLASP we made changes to it to support
new scheduling algorithms that we needed.

Figure 6: An example of a descending pass over South
America for the L6C2 architecture where the constellation
switches repeatedly between focused and extended mode
(shown by the swaths overlapping and the two neighboring
swaths respectively), which results in observation time lost
due to slewing. Repeated occurrences of overflights like this
lead to a noticeable pattern of coverage gaps over a 12 day
period.

When defining which geographic areas that we want the
spacecraft to observe, we have to assign each such cam-
paign a priority level, specify how many observations we
want of the area over our planning horizon, and specify a
radar mode to observe the area with. Many of the scenar-
ios we are running have a considerable number of different
campaigns, some of which overlap geographically while re-
quiring different radar modes. In such geographic areas, the
priorities of the campaigns will determine which radar mode
will be prioritized, with the other mode(s) allowed to be used

Figure 7: Examples of 12 days of the ground track for two
different orbits. Top: Ground track of NISAR’s reference or-
bit. Bottom: Ground track of the ISS’ orbit.

if there are remaining visibilities that can be allocated to
cover the area in that mode. Additionally we often have cam-
paigns that ask for more than one observation or even ”as
many observations as possible” (the latter encoded as a very
large number). In those cases, the exact priority ordering of
campaigns is important, as if campaigns that request a lot of
observations are made higher priority than other campaigns
they can result in those lower priority campaigns getting too
few observations.

Use cases of explainability and solutions
Slewing In a previous section, we have seen how a two-
pass algorithm has reduced the number of slews that the



Figure 8: Energy diagrams. Green line is the maximum ca-
pacity of the batteries. Blue line is the minimum handover
level of energy. Grey line: energy timeline simulated before
scheduling observations. The energy is increasing thanks to
solar panels. The dips are due to eclipses. Black line: energy
timeline simulated at the end of the scheduling process. It
can be seen that the minimum handover level of energy has
been reached and it is probable that no other observation can
be inserted in the plan without violating this constraint.

spacecraft perform in a mission plan. CLASP models the
slewing of spacecraft as a resource timeline. The timeline
maintains the minimum and maximum attainable slewing at
each timestep. At the beginning of the planning horizon, the
schedule is empty and thus there is no constraint on the time-
line. Adding an observation to the schedule corresponds to
constraining the slewing angle for the duration of the ob-
servation. Then, attainable angles are propagated outwards
from the observation into the future and the past, taking into
account the slew rate. This least-commitment approach is
similar to approaches of iteratively reducing the domain of
decision variables in constraint satisfaction. This algorith-
mic approach has obvious advantages during scheduling but
is hard to explain when trying to relate it with what is seen
in the observation plan. This is why we developed diagrams
showing the current pointing (see Figure 3) as well as show-
ing the angle bounds for each timestep. While the observa-
tion plans do not explicitly show slewing periods, we can
follow them on these diagrams if necessary.

Aggregation of campaign definitions A campaign con-
sists of a set of polygons (or points) associated with a in-
strument mode, a priority, and illumination and temporal
constraints. Each campaign is defined in a Keyhole Markup
Language (KML) file. As there might be tens of these cam-
paigns covering the globe, it was difficult to get a clear
global picture as one would have to look at each individual
KML file.

In a previous section we discussed the explainability chal-
lenges with large complex campaign sets. In order to make
understanding such campaign sets easier we developed soft-
ware that can aggregate all target polygons and campaigns
into one KML file which you can examine to see the geo-
graphic relationships between the campaigns.

In scenarios with one or more resource constraints, there
is usually a point during the scheduling process when the
scheduler cannot insert more observations without violat-
ing a resource constraint. It can then be difficult to under-
stand why some areas have not been observed without hav-
ing a good understanding of the campaigns and their relative
priorities. In the case that an area is starved for coverage,
the campaign(s) that are using up the resource are certainly
higher priority, but are not necessarily geographically close
if the resource is global in effect (such as energy). Schedul-
ing an observation can impact the ability to schedule obser-
vations both before and after it. To help in reasoning about
such cases we developed an output spreadsheet that lists all
of the campaign definitions which allows us to quickly see
how the campaigns’ priorities relate to one another.

Future work
Targetpoint scheduling failure reason heatmaps
Currently CLASP tracks some information internally on
why particular targetpoints have failed to be scheduled.
When attempting to schedule observations for a targetpoint
CLASP will check if a particular observation violates any
scheduling constraints (ex. data volume, illumination con-
straints, duty cycle, etc.) and if that observation violates a
constraint then the corresponding lookup table “constraint
bucket” for that targetpoint will be incremented. Currently
CLASP does not produce any output product to allow for
analyzing this “failure reasons” information for explainabil-
ity purposes. We would like to add the capability for CLASP
to export this information so that we can generate geo-
graphic heatmaps showing where targetpoints are failing to
be scheduled for each different type of failed constraint. This
would help us to examine cases where we see unexpected
coverage gaps in order to find out why the coverage gaps
exist. For an example, see Figure 9. Similar work aimed at
providing explainations for scheduling failures to the user
has been done for Crosscheck (Agrawal, Yelamanchili, and
Chien 2020), the explainability module for the automated
scheduler of the Mars 2020 rover mission.

Slewing heatmaps
In order to help with explainability related to slewing, we
would like to generate heatmaps of geographically where the
spacecraft are slewing. This would be able to help us identify
and demonstrate to the science team which neighboring sets
of campaigns are causing potential coverage to be lost be-
cause we are requiring the spacecraft to slew between them
when overflying one after the other (for example when tran-
sitioning between focused and extended configurations for
architecture L6C2).

Observation plan by scheduling order
Currently CLASP does not provide any information on the
order in which it scheduled observations. We can reason
based on campaign priorities to figure out when an obser-
vation was scheduled (relative to observations of other cam-
paigns), but this can be unituitive to the science team when
there are a lot of different campaigns (some with overlapping



Figure 9: Heatmap showing targetpoints that were not fully
satisfied due to a duty cycle constraint. Larger values indi-
cate more times that a targetpoint had an overflight that was
not scheduled because it would violate a spacecraft’s duty
cycle constraint.

areas) and this does not help us to reason about scheduling
order within a particular priority level. It would be helpful
to have CLASP produce an output product that detailed the
order in which the observations in the schedule were sched-
uled, as it would allow us to see how exactly the schedule
was constructed. Additionally it would be able to serve as a
visual aid in explaining the scheduling algorithm.

Opportunity analyses
In order to help make reasoning about the scheduling algo-
rithm easier, we could produce a “scheduling story” by cre-
ating coverage heatmaps starting with all observation oppor-
tunities and progressively filtering down with our constraints
until we arrive at the final schedule. This would allow us to
more clearly demonstrate the effects of particular constraints
and help to give a clearer upper bound on how much cov-
erage we should expect to get for a given scenario. For an
example of an opportunity analysis, see Figure 10.

Conclusion
In this paper, we have presented the use of automated
scheduling software in a mission design framework aimed
at designing a next-generation Synthetic Aperture Radar
mission. From the specifications we received from the sci-
ence team, we semi-automated the generation of inputs that
are fed into an adaptation of the CLASP scheduling soft-
ware. Observation plans are produced for evaluation by the
mission planning and science teams. Special cases required
the development of ad-hoc scheduling algorithms, for re-
ducing slewing or scheduling interferometric observations.
We have emphasized the challenges of explaining schedules

Figure 10: An opportunity analysis for a off-nadir pointing
spacecraft in a sun-synchronous orbit over a 12 day hori-
zon. Top left: Coverage achieved with all visibilities without
considering constraints. Top right: Coverage achieved when
accounting for a solar zenith angle constraint. Bottom: Cov-
erage achieved when accounting for both the solar zenith
angle constraint and a duty cycle constraint. Going from the
top left to top right maps you can see that the missing cov-
erage in the upper latitudes is due entirely to the solar zenith
angle constraint (with the banding in the middle latitudes be-
ing due to the sensor pointing off-nadir). Going from the top
right to the bottom map you can see that the spotty coverage
is due to the duty cycle constraint.

produced by the aggregation of thousands of sequential non-
chronological decisions. We have shown the current and fu-
ture outputs and visualizations we used to inform the de-
cision process and ensure that the implemented behaviors
were the intended ones.

We have seen that while automated scheduling software
can produce plans that fulfil the science needs of the mis-
sion, producing them in a way that the science team can un-
derstand and trust is vital to the software’s use in mission
design. We have also seen that there are approaches to allow
for explainability that are achievable and result in mission
plans that are a reliable and trustworthy contribution to the
mission design process.
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