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Smart Ice Cloud Sensing (SMICES) is a small-sat concept in which a radar intel-

ligently targets ice-storms based on information collected by a lookahead radiometer.

Often space observations are performed by continuously collecting data from an

instrument aimed at nadir (e.g. directly below the space platform). However, if the

platform has the ability to assess science utility of features that will be overflown, an

intelligent measurement scheme can improve science return. In the case of SMICES,

power constraints and the rarity of storms means that with blind nadir targeting

SMICES would collect a limited amount of ice storm radar data. The work proposed

acquires measurements to maximize acquired high interest storms while concurrently

collecting a background sampling of all features. This is accomplished through two

steps: storm classification and dynamic targeting. For classification we describe

multi-step use of Machine Learning and Digital Twin of Earth’s atmosphere to create

a classifier. We discuss an autonomous data labelling pipeline used to train five

different models to identify storms in tropical and non-tropical regions and assess the

results and impact of expected noise. For dynamic targeting six algorithms ranging

from “blind” to more selective are described and evaluated on their improvement

over "blind" targeting.
∗Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
†Engineering Fellow, Senior Research Scientist, and Group Supervisor, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak

Grove Dr, Pasadena, CA 91109, USA
‡Senior Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109,

USA
§Senior Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109,

USA
¶Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
‖Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

∗∗Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
††Senior Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
‡‡© 2024 All rights reserved
§§Departmental Staff Engineer, Northrop Grumman, Falls Church, VA
¶¶RF/Microwave Design Engineer, Northrop Grumman, Redondo Beach, CA

1



Appears in Journal of Aerospace Information Systems (JAIS), 2024. https://doi.org/10.2514/1.I011318

I. Introduction
High altitude ice clouds, covering more than 50% of the Earth’s surface, are often produced from high-impact deep

convection events [1], and are strong modulators of Earth’s weather and climate [2, 3]. High altitude ice clouds play

a significant role in the Earth’s energy balance and hydrologic cycle through their effects on radiative feedback and

precipitation, and therefore crucial for life on Earth.

Smart Ice Cloud Sensing (SMICES) is a small-sat concept designed to increase our knowledge of the phenomena by

collecting data on the vertical resolution of the ice cloud particles. This information has never been analyzed through

a global satellite. Instead, only in-situ ice particle size data has been available. Therefore SMICES will be able to

provide an innovative path towards the quantification of how ice cloud radiative effects impact convective storm intensity,

size, and track as well as constraining climate model simulations of ice cloud feedbacks and associated hydrological

processes, contributing to reducing uncertainties of climate predictions.

This paper focuses on the classification and targeting systems of the SMICES mission. We describe the use of

unsupervised machine learning, digital twin (Global Weather Research and Forecasting (GWRF) model), and supervised

machine learning to address the challenge of developing a radiometer-based classifier for deep convective ice storms.

The knowledge gained from this classification is then used to improve the targeting system of SMICES. Current targeting

systems for satellite imaging consist of continuously targeting nadir. If the instrument cannot be on for the entire

duration of the orbit, it is randomly turned off to meet the energy restraints. This method ensures that the data collected

will be either the ground-track of the satellite, or a random subsample of that. It also only takes images at nadir, which is

the angle that returns the best data. This approach fails to address the problem that some parts of the sky are more

intriguing than others. Smart targeting can be used to guide an instrument to focus its analysis on the more interesting

areas of the sky as the instrument flies over.

The goal of SMICES is to analyze clouds, specifically deep convective storms. Deep convective storms are extremely

rare even though global cloud coverage can span roughly 2/3 of Earth [4]. While SMICES would be able to collect data

on some storms using general image targeting techniques, its performance can be improved with development in the

pathing of its scientific instrument. SMICES intends on utilizing the knowledge gained from its cloud classification to

allow its planning algorithms to target the most scientifically interesting clouds along its path. Additionally, because the

radar uses a lot of energy, SMICES will only be able to capture data for about 20% of the time. These constraints lead to

the need for active targeting, which will allow the mission to maximize its scientific return by selecting which clouds are

analyzed.

The remainder of this paper is organized as follows. In Section 2 we review related work. In Section 3 we provide

context on the classification problem and an overview of the classifiers and data that will be used. Section 4 describes

the tropical and non-tropical datasets and an automatic labelling system we establish. Section 5 and 6 explain the

different classifiers utilized and how they were set up for this experiment. Section 7 reviews the results of each classifier
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on both datasets. Section 8 explores the impact of noise on the accuracy of the classifiers. Section 9 provides context on

the smart targeting problem. Section 10 and 11 introduce the algorithms developed and explain how they were set up for

the experiment. Section 12 reviews the results of the algorithms. Section 13 discusses the improvement smart targeting

provides when classification errors are taken into consideration. Finally, Section 14 and 15 outline future work and

summarize our conclusions.

II. Related Work

A. Classification

There are many examples in the literature of using supervised learning for cloud classification. Artificial neural

networks and support vector machines (SVMs) have been used to classify clouds in RGB imagery from a ground-based

camera, using the pixel values as model inputs [5]. In other work, summary features from nearby pixel regions have

been used as classifier inputs. This includes textural or statistical features as inputs to a k-nearest neighbor (k-NN)

classifier [6] [7] and artificial neural network and SVM classifiers [7]. In addition, convolutional neural networks

(CNNs) operating over image patches have been used on RGB imagery [8]. A method named bag of micro-structures

(similar to bag-of-words in text), represented the imagery with a weighted histogram of micro-structures and passed this

into an SVM classifier [9]. Other work has involved ground-based infrared (IR) imagery, using structure features in

combination with the rectangle method, which uses upper and lower significant bounds, for cloud classification [10].

In our work, we use supervised learning for storm classification at the pixel level, focusing on higher altitude clouds.

This differs from cloud classification because we are only interested in identifying the small subset of clouds that are

storms. Instead of IR or EO imagery from a ground-based camera, we use simulated radiometer data from a satellite.

In addition, we use a digital twin in combination with sparse labeling and unsupervised clustering to facilitate label

generation.

Prior work has explored the use of unsupervised learning to cluster cloud data. Clustering has been explored using

three-dimensional histograms applied to multi-spectral satellite imagery, using the visible, IR, and water-vapor channels

[11]. Later work improved upon this by introducing textural parameters and processing larger datasets at different times

[12]. Another work attempted to reproduce the class clusters using Probabilistic Self-organizing Maps [13].

Our clustering approach differs from the above work, in that we use simulated science parameters from a digital twin

to do clustering, as opposed to using features derived from imagery. To the best of our knowledge, there is currently no

other work with digital twins being used for the purpose of facilitating label generation in cloud imagery.

B. Targeting

We focus on the targeting of clouds to guide the radar through the storms. Prior work has addressed storm targeting

over a global dataset through various dynamic targeting algorithms [14][15].

3



Appears in Journal of Aerospace Information Systems (JAIS), 2024. https://doi.org/10.2514/1.I011318

Similar work has also been conducted on the inverse problem of cloud avoidance. Cloud screening onboard aircraft

has worked to help cut out swaths of data compromised by cloud cover to reduce the amount of downlinked information

[16]. This work has been demonstrated on both AVIRIS and EMIT data at NASA Jet Propulsion Laboratory [17]. While

SMICES is trying to collect the most useful data, its algorithms are designed to control the data collection process

instead of discard invalid portions of previously collected data.

Other implemented cloud avoidance work has been completed on TANSO-FTS-2 where intelligent targeting is

utilized to minimize the amount of cloud coverage captured in its images [18]. Other work that focuses on developing

algorithms to achieve cloud avoidance is being done at NASA Jet Propulsion Laboratory where a greedy and a graph

search based algorithm has been developed to select the most clear sections of sky during a flyover [19]. Further cloud

avoidance work has been implemented over a global dataset to more accurately assess the potential benefits of dynamic

targeting [20] This work is more similar to SMICES as its goal is to target its instrument at more scientifically relevant

features during flight. However, the algorithms differ in their actual targets. Storms are significantly rarer than clear

sky and are composed of different types of clouds. SMICES prioritizes two different types of clouds through its flight

in contrast to the single feature of clear sky addressed in cloud avoidance. Previous work has explored the SMICES

targeting algorithms without considering the impact of classification error [21].

C. Onboard Processing

Previous work has demonstrated the efficiency of the various classifiers and targeting algorithms discussed in this

paper. They were tested on traditional flight hardware and more powerful processors in various environments including

the International Space Station [22][23]. The testing proved that on a RAD750 [24] (onboard processor on the Mars

Reconnaissance Orbiter and Mars Perseverance Rover) the algorithms ran fast enough for use in flight.

III. Classification Background
The SMICES classification problem is to correctly classify storms utilizing the information that the on-board

radiometer collects. To achieve this the classifier needs to be able to correctly identify five different cloud types: clear

sky, thin cirrus, cirrus, rainy anvil, and convection core. The different cloud types have varying levels of scientific

significance, with their rankings demonstrated in Figure 1. The convection core and rainy anvil clouds are both

considered storms. With respect to the SMICES targeting algorithms, only the rainy anvil and convection core clouds

are actively targeted. Therefore, it is extremely important for the classifiers to be able to distinguish between the rainy

anvil, the convection core and the three non-storm cloud types. An accurate classification of these cloud types has been

shown to enable a gain of capturing convection core clouds by a factor of 24 and rainy anvil clouds by a factor of 2 [21].

We first use clustering and human experts to label the digital twin / GWRF data. The digital twin datasets include

three scientific variables of ice water path (IWP), median particle size (𝜇𝑚), and median cloud top height (m), as
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Fig. 1 Cloud types shown in order of increasing interest

well as the eight bands of radiance collected by the SMICES radiometer. These three scientific variables are used to

automatically generate labels for the data with the help of scientists as explained in Section 4B. This avoids the need to

manually label the data.

We then use these labels with the digital twin (simulated) radiometer data to train the classifiers. During testing, the

classifiers will only have access to the radiance values since those are the only data available in an operational setting.

A set of classifiers were trained and tested on two separate regional datasets: a tropical dataset over the Caribbean,

and a non-tropical dataset of the Atlantic Coast of the United States. The physics of a given cloud type can differ

depending on whether it is in a tropical or non-tropical region. For example, there is ice in the deep convective core in

non-tropical regions but not in tropical regions, and this affects the radiance values. Thus, we train separate classifiers

for each dataset. These classifiers include a random decision forest (RDF), support vector machine (SVM), Gaussian

Naïve Bayes, feed forward artificial neural network (ANN), and convolutional neural network (CNN). In an operational

setting, we would select the model that corresponds to the geographical region the satellite is over.
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IV. Data

A. Datasets

Two regional datasets were used in this work: a tropical and non-tropical dataset. Both datasets were created through

the Global Weather Research and Forecasting (GWRF) model [25]. The GWRF is a state-of-the-art physics-based

weather model. It is used to create computationally expensive datasets that we use as a digital twin to real climate data.

In our case the model generated the brightness temperatures for different cloud types along the bands of Tb250+0.0,

Tb310+2.5, Tb380-0.8, Tb380-1.8, Tb380-3.3, Tb380-6.2, Tb380-9.5, and Tb670+0.0, as well as the scientific variables

of ice water path, median particle size, and median cloud top height.

The tropical dataset is located in the Caribbean. This dataset contains 13 images that are 119x208 pixels with a pixel

size of 15km for a spatial extent of 1,785km x 3,120km. Each image is a snapshot of the same area in one-hour intervals.

The non-tropical dataset is located in the Atlantic Coast of the United States. The data contains 29 image cutouts that

are 1998x270 pixels with a pixel size of 1.33km for a spatial extent of 2,657km x 359km. The dataset combines to form

three images over the same area in 12-hour time intervals. Each larger image is constructed of 10 image cutouts stacked

vertically. The total size of a full image is 1998x2700 pixels with a spatial extent of 2,657km x 3,591km. The last cutout

of the third time interval was incomplete and therefore left out of this study. Therefore, we only have 29 image cutouts.

The same cloud types in the tropical vs. non-tropical datasets do not necessarily correspond to similar scientific

features or radiance values. Because of this, as well as the large difference in resolution (pixel size of 15km vs. 1km),

we treat the tropical and non-tropical datasets independently in this work.

B. Data Labelling

Manually labelling our data was not a feasible option given the extremely large number of pixels, and the difficulty

in identifying the cloud type based only on radiance values. We used a digital twin of the radiometer to solve this

problem. The digital twin helps in two ways. It gives us access to scientific variables that are not directly measurable in

nature and also allows us to generate a large amount of storm data for training and evaluation.

The scientific variables of ice water path, median particle size, and median cloud top height are significant because

they give us a way to map a pixel’s values to a specific cloud type. Unlike the radiance values, the scientists are able

to map these scientific variables to the five cloud types they identified. While this solves the mapping problem, an

automated method needed to be developed due to the large number of pixels

The approach to automate the labelling is as follows. First, we cluster the data into representative clusters based on

the scientific variables. Then we can map each cluster center to the cloud type that it corresponds to. Each cluster’s

mapping serves as the label for every pixel within that cluster.

K-means was utilized as our clustering method. This approach requires us to identify the proper number of clusters

to accurately represent our dataset before mapping the clusters to the specific cloud types. A failure to accurately
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represent our data will cause a poor classification of pixels. The proper number of clusters is determined by analyzing if

the number of clusters selected maximizes the within cluster coherence and the between cluster separation. A silhouette

score was used to calculate the effectiveness of the number of clusters over the data.

A silhouette score, which ranges from -1 to 1, gives a measure of the cluster’s fit. A score of 1 means the clusters are

well distinguished, a score of 0 means the clusters are indifferent, and a score of -1 means that the clusters are incorrect.

The equation used to obtain this score is: ((𝑏 − 𝑎)/𝑚𝑎𝑥(𝑎, 𝑏)) where a represents the intra-cluster distance (average

distance between each point within a cluster) and b represents the average nearest cluster distance (average distance

between the instances of the next closest cluster). Clustering was performed separately for the tropical and non-tropical

datasets.

Fig. 2 Silhouette scores over the tropical dataset

As shown in Figure 2, there are three local maximums at 5, 9, and 16 clusters in the tropical dataset. It is possible to

map multiple clusters from K-means to one cloud type if multiple clusters have similar scientific values. The difference

between the silhouette scores of the local maximum at five clusters (.675) is only .06 away from the silhouette score at

16 clusters (.735), which is an insignificant increase. We chose to use five clusters due to the high silhouette score and

the easier mapping to the five alluded cloud types.

Silhouette scores were also calculated for a random sample taken from the non-tropical dataset. The scores for all of

the clustering values were over .97, which suggests a very good clustering for the dataset. We chose to continue to use a

5 cluster K-means for the non-tropical dataset for its high silhouette score and easy mapping to the original cloud labels.

The scientists assigned each cluster to its respective label based on the mean and standard deviation of its centroid.

Overall, the clusters gradually increased in IWP and median particle size while decreasing in median cloud top height.

The only exception to this rule was the cluster with all values set to 0, which we assign to the clear sky class. This

relationship between the clusters was used by the scientists to identify the labels. In general, a higher IWP and median

particle size while having lower median cloud top height correlates to a stronger storm cloud. These mappings for the
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Fig. 3 Cluster values mapped to their labels on the tropical dataset

tropical dataset are demonstrated in Figure 3.

V. Classifiers
The ground truth values for each cloud class are taken to be the labels assigned through the clustering method

described above. Now that we have labels, we can train the classifiers to predict the cloud class using only data available

in orbit: the radiometer data. During training, the classifiers see both the radiometer data and the class labels, and at test

time, see only the radiometer data. The classifiers operate at the single pixel level; given a radiometer measurement at a

given pixel, what is the cloud class at that pixel. Thus, our current classifiers do not take into account neighboring pixel

values. Classifier performance was evaluated using 5-fold cross-validation, and testing was performed on a separate

held-out test set.

For this study we explored the following classifiers: random decision forest (RDF), support vector machine (SVM),

Gaussian Naïve Bayesian, a feed forward artificial neural network (ANN), and a convolutional neural network (CNN).

An important factor in the classifier configuration is how balanced the different classes within the datasets are. The

classes are heavily skewed away from the most important cloud type, the convection core, in both the tropical and

non-tropical datasets.

Table 1 displays the distribution of cloud type in the tropical and non-tropical dataset. The two most important

classes, convection core and rainy anvil, only make up around 32% of the dataset. Therefore, if we only classified

every pixel as clear sky, thin cirrus, or cirrus we would be able to attain a 68% accuracy, although we would miss the

important classes. The class distribution of the non-tropical dataset (Table 1) is significantly more skewed towards

clear than the tropical dataset. About 80% of this dataset is non-storm clouds. To help the classifiers overcome these

unbalanced datasets, the random forest and support vector machine classifiers are trained with weights adjusted for the

class imbalance. When it is noted that the weights are equalized, we are stating that the weights have been rebalanced so
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Clear Sky Thin Cirrus Cirrus Rainy Anvil Convection
Core

Full Dataset 23.8% 14.0% 29.2% 32.0% 1.0%
Train Dataset 24.1% 13.6% 30.0% 31.3% 1.0%
Test Dataset 22.9% 15.7% 26.3% 34.2% 0.9%

(a) Distributions over the Tropical Dataset

Clear Sky Thin Cirrus Cirrus Rainy Anvil Convection
Core

Full Dataset 60.2% 10.4% 9.6% 15.9% 3.8%
Train Dataset 59.3% 8.2% 11.1% 17.5% 3.8%
Test Dataset 62.2% 15.4% 6.2% 12.4% 3.8%

(b) Distributions over the Non-Tropical Dataset

Table 1 Cloud type distribution over the tropical and non-tropical datasets and their respective train and test
datasets

that every class is weighted equally.

VI. Classification Experimental Design
Separate classifiers were trained for tropical and non-tropical regions, using the data corresponding to that region.

For the tropical dataset the first ten images were used as a training and validation set. The remaining three images then

served as the test set. The test and validation set for the non-tropical dataset was created from the first two time steps.

These two timesteps are comprised of the first 20 image cutouts in the dataset. The remaining 9 image cutouts that

makeup the final image was used as the test set. The distribution of the cloud classes in each training and test dataset is

shown in Table 1. We did not build classifiers using a combined dataset due to the different pixel sizes of each dataset

and physical differences found in tropical and non-tropical clouds.

The classifiers are evaluated on their performance by analyzing their accuracy over the three cloud classes of

non-storm (clear, thin cirrus, and cirrus), rainy anvil, and convection core. The classifiers were trained in two separate

methods:

1) Trained on the original five-class labelling created through K-means. These classifiers output a five-class labelling

of the clouds which is converted into the three-class accuracy

2) Trained on three-class labelled data. This data is created by mapping the five-class labels into the three-classes

before training. These classifiers output a three-class labelling of the clouds.

The performance of each classifier will be presented over the three-class problem of identifying non-storm clouds

(clear, thin cirrus, or cirrus), rainy anvil clouds, and convection core clouds. The simplification from five to three classes

is due to SMICES only actively targeting rainy anvil and convection core clouds, with a preference for convection core.

Therefore, the meaningful distinctions are between those three classes. However, not all misclassifications are equal. A
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

44,226
88.38%

5,751
11.49%

63
0.13%

Rainy Anvil 3,858
16.55%

19,043
81.70%

408
1.75%

Convection Core 109
12.02%

584
64.39%

214
23.59%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

41,339
92.39%

3,361
7.51%

45
0.10%

Rainy Anvil 6,816
23.83%

21,365
74.68%

426
1.49%

Convection Core 114
12.61%

574
63.50%

216
23.89%

(b) 3 class labelled data

Table 2 Confusion Matrices of the RDF classifier on the tropical dataset, max depth 14, number of trees 32,
weights equalized by class

misclassification of a non-storm cloud as rainy anvil or convection core cloud could trigger the use of radar power for a

non-desired target. This would be more costly than a misclassification between a convection core and rainy anvil cloud

since the radar would still be collecting scientifically significant data. The performance will also be discussed in the

context to the two class problem of non-storm clouds (clear, thin cirrus, and cirrus), and storm clouds (rainy anvil and

convection core). This analysis highlights how many significant misclassifications are being made by each classifier.

VII. Classifier Results

A. Random Decision Forest (RDF)

We use scikit-learn’s implementation of the Random Forest Classifier in this work [26]. We found that 32 trees and

a maximum depth of 14 was optimal based on the training and validation sets.

One challenge with the storm datasets is their unbalanced nature. Storms are quite rare in the sky, and the center of

storms (convection core clouds) are even rarer. Therefore, the classifier is going to be more prone to classifying clouds

as non-storm clouds, since that is the most dominant class. To solve this, the weights have been adjusted in the RDF so

that every class is weighted equally.

Table 2 shows the RDF performance when trained on five-class labelled data and three-class labelled data with

weights equalized. The most notable difference is the drop in performance in the rainy anvil class and increase in
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,539,649
89.61%

246,916
6.25%

163,505
4.14%

Rainy Anvil 254,077
46.25%

196,388
35.75%

98,939
18.01%

Convection Core 273,330
76.85%

38,958
10.95%

43,378
12.20%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,404,214
91.51%

215,619
5.80%

100,153
2.69%

Rainy Anvil 433,653
51.12%

341,693
40.28%

72,887
8.59%

Convection Core 228,807
79.75%

44,321
15.45%

13,793
4.81%

(b) 3 class labelled data

Table 3 Confusion Matrix of the RDF classifier on the non-tropical dataset, max depth 14, number of trees 32,
weights equalized

accuracy of the non-storm class for the three-class classifier when compared to the five-class classifier. Overall the

three-class classifier returns roughly 7% lower accuracy in the rainy anvil class and an improvement of 4% in the

non-storm class. The accuracy of convection core clouds was effectively unchanged. Despite the poor classification of

convection core clouds, the classifiers were able to distinguish roughly 76% and 83% of the storm clouds correctly in

the three-class and five-class classifiers respectively. Another metric to factor in is the precision for storm clouds. This

metric is calculated by dividing the total number of pixels correctly classified as storm clouds (true positives) by the total

number pixels classified as storm clouds (true and false positives). In this metric the three-class classifier outperformed

the 5-class classifier with a precision of 87% and 78% respectively. This is largely due to the 4% improvement in

classification of non-storm clouds by the three-class classifier. The improvement leads to less false positives than the

five-class classifier even though the number of true positives actually decreased. The three-class classifier is better able

to differentiate storm clouds and non-storm clouds as shown by the higher precision. Even though its accuracy on storm

clouds is lower, for the purpose of SMICES the three-class classifier performs better on the tropical dataset.

The non-tropical dataset proved to be significantly more difficult to classify than the tropical dataset. Overall, the

accuracy for the storm cloud classes (rainy anvil and convection core) decreased by about 2x. The non-storm class

accuracy was relatively unchanged when compared to the tropical dataset for both classifiers. Overall, both the five-class

and three-class classifier performed poorly, however, the three-class classifier identified roughly 5% of the convection
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

44,821
82.22%

9,552
17.52%

139
0.25%

Rainy Anvil 3,199
16.87%

15,418
81.31%

344
1.81%

Convection Core 173
22.09%

408
52.11%

202
25.80%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

45,560
83.08%

9,124
16.64%

152
0.28%

Rainy Anvil 2,487
13.27%

15,899
84.85%

351
1.87%

Convection Core 146
21.38%

349
51.10%

188
27.53%

(b) 3 class labelled data

Table 4 Confusion Matrix of the linear SVC classifier on the tropical dataset, weights balanced

core clouds correctly compared to 12% in the five-class classifier, but did classify rainy anvil clouds roughly 5% better

(Table 3). Both classifiers identified storm clouds at roughly the same accuracy of 42%. While this is not good, it

is 2x more accurate than a random selection of pixels. The precision of the classifiers on identifying storm clouds

also decreased with the three-class classifier performing better. The three-class and five-class classifiers generated a

precision of 60% and 48% respectively.

Overall, training the RDF on five-class and three-class non-tropical data had different effects than the tropical dataset.

While the three-class classifier outperformed in accuracy for non-storm, underperformed in accuracy for rainy anvil

pixels, and tied in accuracy for convection core pixels in the tropical dataset, it underperformed the five-class classifier

in accuracy of convection core pixels and rainy anvil pixels while outperforming in accuracy for non-storm pixels in

the non-tropical dataset. Despite the changes in accuracy, the precision of the three-class classifier on storm clouds

outperformed the five-class classifier in both datasets.

B. Support Vector Machine (SVM)

The support vector machine used was the linear support vector classifier (linear SVC) from Scikit Learn. This

classifier is suggested if the dataset contains greater than tens of thousands of data points by Scikit Learn. The linear

SVC is effectively an support vector machine with a linear kernel.

Table 4 demonstrates the accuracy of the SVM classifiers with a linear kernel with the tropical dataset. The
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,464,133
89.15%

307,787
7.92%

113,775
2.93%

Rainy Anvil 403,130
57.14%

253,696
35.96%

48,740
6.91%

Convection Core 199,433
75.58%

40,114
15.20%

24,332
9.22%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,438,367
88.72%

262,381
6.77%

174,655
4.51%

Rainy Anvil 354,782
61.06%

162,209
27.92%

64,088
11.03%

Convection Core 273,907
68.71%

57,672
14.47%

67,079
16.83%

(b) 3 class labelled data

Table 5 Confusion Matrix of the linear SVC classifier on the non-tropical dataset, weights balanced

three-class SVM outperformed its five-class counterpart in every class by 1-3%. The higher performing classifier

performed well in the non-storm and rainy anvil class, returning 83% and 85% accuracy respectively, and poorly in

the convection core class, returning 27% accuracy. When looking at the non-storm and storm accuracies, the three

class SVM achieves a good distinction with an 83% accuracy in non-storm and an 84% accuracy in storms. The SVM

classifiers performed similarly in precision as well with the three-class and five-class classifiers scoring 64% and 63%

respectively.

The three-class classifier performed similarly to the five class random decision forest. The SVM classified the

convection core class 4% higher and the rainy anvil class 3% higher than the five-class RDF. However, it also misclassified

convection core clouds as non-storm clouds 9% more than the random decision forest. When comparing the non-storm

and storm accuracies, the three-class SVM is 3% more accurate than the five-class random decision forest in storms, but

5% less accurate in non-storms. The RDF significantly outperforms the SVM classifier in precision with its highest

precision of 87% compared to the best SVM precision of 64%. This is due to the SVM having a lower accuracy in

non-storm clouds, which increases false positives. The RDF classifier outperformed the SVM on the tropical dataset

due to a higher storm cloud precision.

The SVM classifier performed worse in the storm classes on the non-tropical dataset than it did on the tropical

dataset. Both the five-class and three-class classifiers accurately identified 89% of the non-storm clouds, but their

classification for the storm class classification were 38% and 36% respectively. While both classifiers achieved a similar

13
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

47,188
74.76%

15,715
24.90%

217
0.34%

Rainy Anvil 736
7.45%

8,926
90.33%

220
2.23%

Convection Core 269
21.45%

737
58.77%

248
19.78%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

35,553
86.66%

5,381
13.12%

91
0.22%

Rainy Anvil 12,426
39.35%

18,886
59.81%

266
0.84%

Convection Core 214
12.95%

1108
67.03%

331
20.02%

(b) 3 class labelled data

Table 6 Confusion Matrix of the Gaussian Naïve Bayes Classifier on the tropical dataset

storm classification, the three class classifier performed better on the convection core class and worse on the rainy anvil

class than the five-class classifier (Table 5. This pattern is opposite the relationship of the RDF classifers, where the

three-class classifier was worse at convection core classification. The precision of both classifiers on storm clouds also

decreased. The three-class and five-class SVM classifiers scored a precision of 47% and 45% respectively. Overall, due

to the poorer precision and accuracy of storm clouds than the RDF, the SVM classifier did not perform as well.

C. Gaussian Naïve Bayes

The Gaussian Naïve Bayes classifier used is from Scikit learn. The likelihood of each feature is assumed to be

Gaussian.

Table 6 contains the results of the Gaussian Naïve Bayes classifier when trained on the tropical dataset. Both classifiers

only reached an accuracy of 20% within the convection core class, however, the five class classifier misclassified more

convection core clouds as non-storm than the three-class classifier. The performance on the rainy anvil clouds is

very different, with the five-class classifier correctly identifying 90% of the clouds compared to 60% with the 3-class

classifier. The non-storm class was better classified by the three-cloud classifier. Analyzing the storm vs. non-storm

accuracies show that the five-class classifier is very accurate at identifying storm clouds, identifying 91% of the storms

accurately. However, this comes at the cost of accuracy in the non-storm class where the classifier only reached an

accuracy of 75%. This is significantly below the three-class GNB and other classifiers which were able to reach around

14



Appears in Journal of Aerospace Information Systems (JAIS), 2024. https://doi.org/10.2514/1.I011318

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,393,184
92.03%

187,456
5.08%

106,523
2.89%

Rainy Anvil 599,488
56.15%

394,857
36.98%

73,349
6.87%

Convection Core 74,021
73.81%

19,290
19.24%

6,972
6.95%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,269,539
92.15%

172,290
4.86%

106,192
2.99%

Rainy Anvil 745,390
60.34%

413,333
33.46%

76,572
6.20%

Convection Core 51,743
72.04%

16,012
22.29%

4,069
5.67%

(b) 3 class labelled data

Table 7 Confusion Matrix of the Gaussian Naïve Bayes Classifier on the non-tropical dataset

90%. There is a large disparity in the precision of storm clouds between the two classifiers. The three-class classifier

achieved a 79% precision compared to 39% with the five-class classifier. Overall both classifiers have problems. The

three-class classifier has a low storm cloud accuracy. The five-class classifier has a high accuracy of storm clouds, but

also has a very low precision.

Table 7 shows the performance of the GNB classifiers over the non-tropical dataset. Both classifiers performed

similarly in every category, with the 5-class classifier performing slightly better in the convection core and rainy anvil

classes. The accuracies in the convection core and rainy anvil classes were lower than the accuracies achieved by

the SVM and RDF classifiers. When analyzing the classifiers over the two class problem of non-storm and storm,

the five-class classifier performed slightly better than the three-class classifier in the storm class. Precision in storms

decreased with the three-class classifier while increasing for the five-class classifier. This resulted in similar precision

scores of 65% and 63% for the three-class and five-class classifiers respectively. When comparing the two-class

accuracies of the five-class GNB to the best performing non-tropical classifier, the three-class RDF, it performed

identically. Both classifiers achieved around 92% accuracy in the non-storm class and 42% accuracy in the storm class.

The GNB classifier outperformed the RDF in precision however, with a best score of 65% compared to 60%.
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

46,202
95.87%

1,889
3.92%

102
0.21%

Rainy Anvil 13,044
51.40%

12,043
47.46%

290
1.14%

Convection Core 148
21.57%

389
56.71%

149
21.72%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

45,752
94.93%

2,377
4.93%

64
0.13%

Rainy Anvil 11,700
46.11%

13,505
53.22%

170
0.67%

Convection Core 118
17.15%

436
63.37%

134
19.48%

(b) 3 class labelled data

Table 8 Confusion Matrix of the ANN on the tropical dataset

D. Neural Networks

In addition to standard machine learning classifiers, we explored the use of simple neural networks using Keras [27]

and TensorFlow [28].

1. Feed Forward Artificial Neural Network (ANN)

We pass each 8-band pixel into a feed forward ANN with 2 hidden layers, 32 nodes in each hidden layer, a dropout

rate of 0.1, and a softmax activation at the final layer. We used ADAM [29] as our optimizer. Model performance was

not affected by small changes in these parameters. The model output is a vector with probability of each cloud-type

class, and we take the Argmax to get the predicted class.

The ANN performance over the tropical dataset was relatively poor compared to the past classifiers. While both the

five-class and three-class classifier achieved around 95% accuracy in the non-storm class, they struggled to identify

both the convection core and rainy anvil clouds (Table 8). Even in the two class problem neither classifier was able to

identify storm clouds with 60% accuracy. The extremely high accuracy in the non-storm class did result in a very high

precision in the storm class with the scores of 85% and 87% in the three-class and five-class classifiers respectively

The ANN was not effective on the non-tropical dataset, and labelled all pixels as the non-storm class during training

and validation. This is probably due to the larger skew of the non-tropical dataset towards the non-storm class.
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

43,893
91.08%

4190
8.69%

110
0.23%

Rainy Anvil 5,926
23.35%

19,000
74.88%

449
1.77%

Convection Core 83
12.06%

405
58.87%

200
29.07%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

43,871
91.03%

4,221
8.76%

101
0.21%

Rainy Anvil 5,650
22.26%

19,243
75.83%

485
1.91%

Convection Core 46
6.72%

434
63.36%

205
29.93%

(b) 3 class labelled data

Table 9 Confusion Matrix of the CNN on the tropical dataset

2. Convolutional Neural Network (CNN)

We also test a single-pixel CNN model. Our architecture uses 3 stacked 1-d convolutional layers, where the

convolutions are applied over the bands. Due to the small input size, we did not apply pooling. 6, 12, and 24 filters

were used for each convolutional layer respectively, and a rectified linear unit (relu) activation was used. We found a

convolutional filter shape of 1x3 to be optimal. The last layers of our net included two fully connected layers with 32

nodes, a dropout of 0.1, and a final sofmax activation. ADAM optimizer was used to train the network.

Table 9 show that the three-class and five-class classifiers perform almost identically on the tropical dataset.

Throughout the results the accuracy only changes by at most 1%. The CNN classifiers were able to achieve the highest

accuracy in the convection core class, reaching 30%. They also performed well in the rainy anvil class with an accuracy

of 75% and achieving 91% in the non-storm cloud class. These results also carry to the two class problem where they

found storm clouds with 77% accuracy. Both classifiers have the same precision score for storm clouds of 82%. Overall,

the 5-class RDF classifier was able to identify storm clouds 7% better due to a better classification of the rainy anvil

clouds. The CNN does classify non-storm clouds slightly better than the five-class RDF, but underperforms when

compared to the three-class RDF.

The CNN experiences a similar outcome to the ANN when trained on the non-tropical dataset. Table 10 shows that

the heavier skew towards non-storm clouds caused the classifier to classify the majority of the test dataset as non-storm.

For future work, we plan to upsample the minority classes when training our neural networks.
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,348,548
90.82%

307,505
8.34%

30,902
0.84%

Rainy Anvil 539,227
59.88%

322,980
35.86%

38,341
4.26%

Convection Core 228,529
85.39%

30,029
11.22%

9,079
3.39%

(a) 5 class labelled data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Clear, Thin Cirrus,
and Cirrus

3,349,638
90.85%

306,147
8.30%

31,156
0.85%

Rainy Anvil 559,743
62.15%

309,828
34.40%

30,990
3.44%

Convection Core 228,680
85.44%

32,838
12.27%

6120
2.29%

(b) 3 class labelled data

Table 10 Confusion Matrix of the CNN on the non-tropical dataset

VIII. Robustness of Learned Classifiers to Input Noise
The analysis to this point has been using clean radiance values of the simulated radiometer. In flight, however, we

cannot expect perfect data. Instead some noise is expected. In flight we expect to see Gaussian noise that is independent

along each radiance band. Along the bands of Tb380 we expect to find around 5 kelvin of noise and 1 kelvin of noise

along the remaining bands. We do not expect noise to change based on the viewing angle of the radar, however the

transmitted power will be less due to the longer travel of the signal. We generate random values from a Gaussian

distribution with a mean of 0 and a standard deviation of the expected noise for each band, and add this independently to

each band to create the noisy dataset. The impact of noise was tested using the three-class RDF classifier due to its good

performance across both datasets. The impact of noise will be determined by the total decrease in accuracy between the

classifier tested on the clean held-out test set, and on the same testset, but with noise applied.

1) Tropical dataset: RDF classifier with a max depth of 14, 32 trees, and weights equalized was trained on the first

eight images of the tropical dataset. It was then tested on the remaining five images after expected noise was

applied to those data values.

2) Non-tropical dataset: RDF classifier with a max depth of 14, 32 trees, and weights equalized was trained on the

first image of the non-tropical dataset (10 image cutouts). It was then tested on the second image (10 image

cutouts) after expected noise was applied noise was applied to those data values.

Over the tropical dataset the accuracy of the three-class RDF decreased by 4% due to the expected noise in flight.
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This proves that the RDF classifier tested is relatively robust to noise in the tropical dataset. When applied to the

non-tropical dataset the accuracy of the RDF decreased by 2% the accuracy due to expected noise in flights.

IX. Smart Targeting Background
The SMICES problem is a continuous online planning problem implemented as an orbiting satellite where there is

no set end to the imaging of the clouds. The parameters include an orbiting altitude of 400km and the setup is designed

to allow its radar to slew 15° from nadir in all directions. The slewing is assumed to have instantaneous electronic

movement. The radar is capable of targeting an area of roughly 4x4km whenever it is turned on. The power constraints

of the vehicle mean that the targeting should reach a 20% duty cycle at any given time over the course of the flight. If

these constraints were applied to current satellite targeting techniques, the result would be randomly sampling 20% of

the clouds at nadir under the satellite. Identification of the clouds occurs within the radiometer’s range, which sweeps

at 45° ahead of nadir. This sweep covers 60° around the satellite and therefore covers more ground than the radar is

capable of viewing.

When modelling the radar’s viewpoint, shown in Figure 4, we focus on the knowledge window, which is defined as

the area from the back of the radar’s reachability to the front of the radiometer sweep. The window is only as wide as

the radar’s movement since we are unable to target any clouds outside of this range. We investigate smart targeting in

the context of this model.

Within our knowledge window it is necessary to define the priority of the different clouds that will be viewed. The

classifier onboard is capable of distinguishing between five different cloud types, clear sky, thin cirrus, cirrus, rainy anvil

(RA), and convection core (CC), in order of increasing interest. In particular, the rainy anvil and convection core clouds

are the most important since they make up storms. The scientists also want to make sure that the radar is collecting data

from all of the cloud types it passes over since there can be useful information in the non-storm clouds as well. To

accomplish this, whenever an algorithm is not targeting rainy anvil and convection core clouds, the radar will be taking

a random sampling of the clouds under nadir. To simplify, the algorithms will be created to prioritize convection core

clouds, followed by rainy anvil clouds, and then a random sample of the clouds under nadir.

Multiple algorithms were created with an increasing field of view to demonstrate the improvements gained by

utilizing more of the information available to the instrument. The random algorithm serves as the baseline comparison

as it is representative of the results we would receive without targeting any clouds. The only algorithms that utilize the

entirety of the knowledge window are the windowed smart and greedy path, which plan out the projected usage of power

beyond the immediately reachable pixels.
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Fig. 4 Example of the field of view of the satellite. Identified storms are represented by each color: 4.0 =
convection core, 3.0 = rainy anvil, 2.0 = cirrus, 1.0 = thin cirrus, 0.0 = clear, -2 = not analyzed. Radar’s View:

black circle, Nadir: black square, Knowledge Window: dotted rectangle

X. Smart Targeting Algorithms
The duty cycle of the algorithms is dictated by the state of charge (SOC) of its system. In order to ensure that the

SMICES duty cycle of 20% is maintained the SOC is decreased by 4% when the algorithms analyze a pixel, and the

SOC is increased by 1% when the radar is left off. The simulation begins with 0% power.

Throughout this Section there are figures displaying how each algorithm would perform in a given knowledge

window. In each figure nadir is represented by the black square and the radar’s view is displayed by the circle. The

different cloud types are represented on the color bar such that 4.0 = convection core, 3.0 = rainy anvil, 2.0 = cirrus, 1.0

= thin cirrus, 0.0 = clear. These values also represent the reward given for analyzing each cloud type. The state of

charge for every figure is assumed to be 50%.

A. Random Targeting Algorithm

The random algorithm (Figure 5 and Algorithm 1) targets the pixel under nadir 20% of the time to ensure that it

meets the energy requirements for SMICES. It is representative of most targeting methods on current Earth Science

satellites today. Its random nature means that it is indifferent to the clouds it is flying over and will miss some important

clouds.
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Fig. 5 Chance that the radar analyzes the pixel under the random algorithm

Algorithm 1: Random Algorithm
output
:

Results: array of analyzed pixel values

input :Results: array of analyzed pixel values, Picture: knowledge window of the simulation
1 𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑣𝑎𝑙𝑢𝑒(0 < 𝑖 < 1)
2 if 𝑖 ≤ .2 then
3 𝑟𝑒𝑠𝑢𝑙𝑡𝑠←value of pixel at nadir

// add the value of pixel under nadir to results

4 end
5 return 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

B. On/Off Targeting Algorithm

The on/off algorithm (Figure 6 and Algorithm 2) improves the random algorithm by controlling when the radar is

turned on. It utilizes the system’s current energy state and the cloud type under nadir to determine when the radar is

turned on instead of using a random generator. This allows the system to save energy when there are no interesting

clouds, and use the stored energy when there are. It also mimics random by taking the value under nadir when the SOC

is high.

C. Lateral Targeting Algorithm

The lateral algorithm (Figure 7 and Algorithm 3) improves on the on/off algorithm by allowing the radar to analyze

pixels along the cross-path direction. This is symbolized in the knowledge window graphic by the band that crosses

nadir. The two important factors in determining when the radar is turned on is the state of charge of the vehicle and the
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Fig. 6 Left: radar is on because a convection core is under nadir. Right: radar is off because a cirrus cloud is
under nadir. The radar turns on when it sees good pixels under nadir in the on/off algorithm

best pixel along the lateral band. This is resolved by searching for the highest valued cloud with a tiebreaker going to

the pixel that is closest to nadir. If two pixels are equidistant from nadir, the pixel to the left is chosen.
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Algorithm 2: On/off Algorithm
output
:

Results: array of analyzed pixel values, power: power state of the system, sample: boolean to sample if

there are no high priority targets
input :Results: array of analyzed pixel values, Picture: knowledge window of the simulation, Power: power

state {0-100}, Sample
1 if 𝑝𝑜𝑤𝑒𝑟 > 60 then
2 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
3 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
4 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

5 else if 𝑝𝑜𝑤𝑒𝑟 > 40 and sample then
6 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
7 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
8 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

9 else if 𝑝𝑜𝑤𝑒𝑟 > 4 then
10 if Pixel under nadir == (CC or RA) then
11 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
12 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
13 else
14 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
15 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
16 end
17 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

18 else
19 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
20 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
21 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

22 return 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
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Fig. 7 Top three prioritized pixels based on the lateral algorithm

D. Smart Targeting Algorithm

The smart algorithm (Figure 8 and Algorithm 4) expands its view along the path of the satellite to include the

entirety of the radar’s reachability. This area is signified by the black circle in the graphic. When deciding which pixel

to analyze for a given time step, the smart algorithm follows steps similar to the lateral algorithm. The state of charge

determines which cloud types are able to be analyzed, and a search inside of the radar’s reachability finds the highest

valued cloud with a tiebreaker going to the pixel that is closest to nadir. In the case of two equidistant pixels, the pixel

that is laterally closer to nadir is chosen, and then if the tie remains the leftmost pixel is chosen.

E. Windowed Smart Targeting Algorithm

The windowed smart algorithm (Figure 9 and Algorithm 5) expands its view to include the entire knowledge window

of the simulation. This increased view now exceeds the radar’s reachability, meaning that the algorithm is able to

account for future clouds along the radar’s path. The algorithm first calculates how many clouds can be analyzed based

on the current state of charge. It then counts the number of convection core and rainy anvil clouds present within the

knowledge window. The power is then allocated for all of the convection core pixels, followed by the rainy anvil pixels,

and then any leftover power is reserved as free. The highest valued pixel within the radar’s view that has allocated power

is imaged. The tiebreaker for priority follows the same logic as the smart algorithm. The pixel under nadir is imaged if

neither a convection core or rainy anvil pixel are within the radar’s view, there is free power, and there is a sufficient

SOC.

24



Appears in Journal of Aerospace Information Systems (JAIS), 2024. https://doi.org/10.2514/1.I011318

Algorithm 3: Lateral Algorithm
output
:

Results: array of analyzed pixel values, power: power state of the system {0-100}, sample: boolean to

sample if there are no high priority targets
input :Results, Picture: knowledge window of the simulation, Power, Sample

1 𝑐𝑙𝑜𝑢𝑑𝑠← pixels that make up lateral band across nadir within radar’s view
2 𝑏𝑒𝑠𝑡 ← lat_search(𝑐𝑙𝑜𝑢𝑑𝑠) // Returns the best pixel in the lateral field of view that is
closest to nadir

3 if 𝑝𝑜𝑤𝑒𝑟 > 60 then
4 if best == RA or CC then
5 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
6 else
7 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
8 end
9 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4

10 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

11 else if 𝑝𝑜𝑤𝑒𝑟 > 40 and sample then
12 if best == RA or CC then
13 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
14 else
15 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
16 end
17 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
18 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

19 else if 𝑝𝑜𝑤𝑒𝑟 > 4 then
20 if best == (CC or RA) then
21 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
22 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
23 else
24 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
25 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
26 end
27 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

28 else
29 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
30 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
31 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

32 return Results, Power, Sample
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Fig. 8 Top three prioritized pixels based on the smart algorithm

Fig. 9 Top three prioritized pixels based on the windowed smart algorithm
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Algorithm 4: Smart Algorithm
output
:

Results: array of analyzed pixel values, power: power state of the system {0-100}, sample: boolean to

sample if there are no high priority targets
input :Results, Picture: knowledge window of the simulation, Power, Sample

1 𝑟𝑎𝑑𝑎𝑟_𝑣𝑖𝑒𝑤 ← pixels that make up radar’s range of possible targets
2 𝑏𝑒𝑠𝑡 ← smart_search(radar_view, view_radius) // Returns the best pixel in the radar’s field
of view that is closest to nadir

3 if 𝑝𝑜𝑤𝑒𝑟 > 60 then
4 if best == RA or CC then
5 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
6 else
7 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
8 end
9 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4

10 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

11 else if 𝑝𝑜𝑤𝑒𝑟 > 40 and sample then
12 if best == RA or CC then
13 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
14 else
15 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
16 end
17 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
18 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝑇𝑟𝑢𝑒

19 else if 𝑝𝑜𝑤𝑒𝑟 > 4 then
20 if best == (CC or RA) then
21 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best
22 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
23 else
24 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
25 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
26 end
27 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

28 else
29 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
30 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
31 𝑠𝑎𝑚𝑝𝑙𝑒 ← 𝐹𝑎𝑙𝑠𝑒

32 return Results, Power, Sample
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Fig. 10 Left: Top three prioritized pixels based on the greedy path algorithm. Right: Top three prioritized
pixels based on the greedy path wide algorithm

F. Greedy Path Targeting Algorithm

Greedy path (Figure 10 and Algorithm 6) improves upon the windowed smart algorithm by ranking the priority of

each convection core and rainy anvil pixel in the knowledge window. The algorithm begins by collecting the locations

of all these pixels and calculating the available radar cycles based on the state of charge. Once collected, the two pixel

types are sorted independently by their lateral distance to nadir. This means that a newly scanned convection core pixel

that will eventually cross nadir will have a higher priority than an off-nadir convection core pixel within the radar’s view.

The sorted list of rainy anvil pixels is then concatenated to the end of the sorted list of convection core pixels to create

a priority queue. Greedy path then assigns one radar cycle to the highest priority pixel and checks if it is within the

radar’s view. If it is viewable, the pixel is analyzed. Otherwise, it continues until the free cycles run out or the priority

queue ends. If free cycles are left over after the end of the priority queue and the SOC is sufficient, the algorithm will

analyze nadir.

Greedy path has two variations, greedy path and greedy path wide. The difference is in how the pixels are prioritized.

Clouds that run directly under nadir are within the radar’s field of view for significantly longer than the clouds that run

just under the edge. Greedy path wide takes this into account and always chooses the cloud that is laterally farther away

from nadir if there is a tie in priority. The logic is that it will be able to analyze more high priority clouds by choosing

the ones that are within its field of view for the shortest time. In contrast, the normal greedy path targets the cloud that is

laterally closer to nadir in the case of a tie. In the case that two pixels are laterally equidistant, the algorithms select the

leftmost pixel.
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Algorithm 5: Windowed Smart Algorithm
output
:

Results: array of analyzed pixel values, power: power state of the system {0-100}, sample: boolean to

sample if there are no high priority targets
input :Results, Picture: knowledge window of the simulation, Power, Sample

1 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← power / 4
// free_cycles is set to the total number of times the radar can be turned on at

the current power state
2 𝑠𝑡𝑜𝑟𝑚𝑠← dictionary mapping the storm types to their occurrence in the knowledge window
3 𝑏𝑒𝑠𝑡_𝑐𝑐, 𝑏𝑒𝑠𝑡_𝑟𝑎 ← smart_search(radar_view, view_radius) // Returns the best CC pixel and the
best RA pixel in the radar’s field of view that are closest to nadir

4 𝑟𝑎𝑑𝑎𝑟_𝑣𝑖𝑒𝑤 ← pixels that make up radar’s range of possible targets
5 if 𝑝𝑜𝑤𝑒𝑟 > 60 then
6 sample = True
7 else if 𝑝𝑜𝑤𝑒𝑟 < 40 then
8 sample = False

// set the sampling variable
9 if CC in storms then

10 𝑐𝑐← number of CC pixels in Picture
11 if RA in storms then
12 𝑟𝑎 ← number of RA pixels in Picture
13 if 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠 ≤ 𝑐𝑐 then
14 𝑐𝑐← free_cycles
15 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← 0
16 else
17 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← free_cycles - cc
18 end

// set cc to the total number of CC pixels that can be pictured
19 if 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠 ≤ 𝑟𝑎 then
20 𝑟𝑎 ← free_cycles
21 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← 0
22 else
23 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← free_cycles - ra
24 end

// set ra to the total number of RA pixels that can be pictured
25 if 𝑐𝑐 > 0 and best_cc exists then
26 if 𝑐𝑐 > 0 then
27 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best_cc exists
28 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
29 else if 𝑟𝑎 > 0 and best_ra exists then
30 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of best_ra
31 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
32 else if 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠 > 0 and sample then
33 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
34 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
35 else
36 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
37 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
38 return Results, Power, Sample
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Algorithm 6: Greedy Path Algorithm
output
:

Results: array of analyzed pixel values, power: power state of the system {0-100}, sample: boolean to

sample if there are no high priority targets
input :Results, Picture: knowledge window of the simulation, Power:, Sample

1 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠← power / 4
// free_cycles is set to the total number of times the radar can be turned on at

the current power state
2 if 𝑝𝑜𝑤𝑒𝑟 > 60 then
3 sample = True
4 else if 𝑝𝑜𝑤𝑒𝑟 < 40 then
5 sample = False

// set the sampling variable
6 𝑐𝑐_𝑝𝑖𝑥𝑒𝑙𝑠← empty array
7 𝑟𝑎_𝑝𝑖𝑥𝑒𝑙𝑠← empty array
8 for Each pixel in Picture do
9 if pixel is CC then

10 𝑐𝑐_𝑝𝑖𝑥𝑒𝑙𝑠← location of the pixel
11 if pixel is RA then
12 𝑟𝑎_𝑝𝑖𝑥𝑒𝑙𝑠← location of the pixel
13 end
14 𝑐𝑐_𝑝𝑖𝑥𝑒𝑙𝑠← sort(cc_pixels)
15 𝑟𝑎_𝑝𝑖𝑥𝑒𝑙𝑠← sort(ra_pixels) // sort cc_pixels and ra_pixels in order of how laterally
close they are to nadir

// for greedy path wide the sorting would be on how laterally far they are from
nadir

16 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔_𝑝𝑖𝑥𝑒𝑙𝑠← cc_pixels + ra_pixels
17 𝑐ℎ𝑒𝑐𝑘𝑠← 0
18 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ← 𝑇𝑟𝑢𝑒

19 while 𝑐ℎ𝑒𝑐𝑘𝑠 < 𝑓 𝑟𝑒𝑒_𝑐𝑦𝑐𝑙𝑒𝑠 and undecided do
20 if 𝑐ℎ𝑒𝑐𝑘𝑠 <length of interesting_pixels then
21 𝑝𝑜𝑖𝑛𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔_𝑝𝑖𝑥𝑒𝑙𝑠[𝑐ℎ𝑒𝑐𝑘𝑠] if point is within the radar’s view then
22 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ← False
23 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel at point
24 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
25 else
26 𝑢𝑛𝑑𝑒𝑐𝑖𝑑𝑒𝑑 ← False
27 if sample then
28 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of pixel under nadir
29 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 − 4
30 else
31 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
32 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
33 end
34 end
35 𝑐ℎ𝑒𝑐𝑘𝑠← 𝑐ℎ𝑒𝑐𝑘𝑠 + 1
36 end
37 if undecided then
38 𝑟𝑒𝑠𝑢𝑙𝑡𝑠← value of radar turned off
39 𝑝𝑜𝑤𝑒𝑟 ← 𝑝𝑜𝑤𝑒𝑟 + 1
40 return Results, Power, Sample
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Battery State of Charge (SOC) (0-100%) Decision Process
SOC > 60% nadir_sampling := ON;

If convection core reachable then observe convection core;
Else if rainy anvil reachable then observe rainy anvil;
Else observe nadir;

60% > SOC > 40% If convection core reachable then observe convection core;
Else if rainy anvil reachable then observe rainy anvil;
Else if nadir_sampling = ON then observe nadir;

0% > SOC > 40% If convection core reachable then observe convection core;
Else if rainy anvil reachable then observe rainy anvil;
nadir_sampling := OFF;

0% = SOC Do not sample

Table 11 Energy level thresholds for viewing pixels

G. Energy Level Thresholds

After the random algorithm the pixel selection is dictated by the energy level instead of a random generator. At full

power the system should always be analyzing a cloud, but as the power drains the list of valid clouds to analyze becomes

more constrained.

Table 11 highlights the thresholds used in the previously stated algorithms. When the state of charge is greater than

60%, the algorithms will either be view a convection core or rainy anvil pixel, or sample nadir. The sampling variable

is also set to "on" in this threshold. If the power is between 40% and 60% and the sampling variable is on, then the

algorithms perform the same as when the power is above 60%. If the variable is off, then the algorithms will only view

convection core and rainy anvil pixels. Once the power drops below 40% the algorithms also only view rainy anvil and

convection core pixels. The sampling variable is set to "off" at this threshold. The purpose of the sampling variable is to

randomly sample nadir between the 60% and 40% SOC until high priority clouds come into view.

One important feature basing cloud selection on the available energy is its flexibility. The 60% and 40% decision

boundaries are not set in stone, and can be changed to better fit a scientist’s interest. If the boundaries were to be shifted

down, then the algorithm would start randomly sampling more, and the results would be a more even distribution across

different cloud types. Inversely, if the boundaries were each shifted up, then less random sampling would occur. This

would cause the results to skew heavier to the convection core and rainy anvil clouds. Additionally, this algorithm can

be adapted to focus on any types of identified classes such as cirrus and thin cirrus.

XI. Smart Targeting Experimental Design
The tropical dataset described in Section 4 was used to evaluate the targeting algorithms. During the simulation the

along track length is 1,785km and the across track length is 3,120km.

To prepare the images for the algorithms, each pixel is passed through a trained random decision forest that identifies
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Off Clear Thin Cirrus Cirrus Rainy Anvil Convection Core
Random (20% on) 16,079 1,084 439 1,099 1,367 43

79.95% 26.88% 10.89% 27.26% 33.90% 1.07%
On/Off 16,097 720 142 405 2,694 53

80.04% 17.94% 3.54% 10.09% 67.12% 1.32%
Lateral (1 DoF + on/off) 16,094 482 111 153 3,088 183

80.03% 12.00% 2.76% 3.81% 76.87% 4.56%
Smart (1 DoF + on/off) 16,092 352 95 86 3,107 379

80.02% 8.76% 2.36% 2.14% 77.31% 9.43%
Windowed Smart 16,093 313 64 43 2,850 748

80.02% 7.79% 1.59% 1.07% 70.93% 18.62%
Greedy Path 16,093 313 64 43 2,579 1,019

80.02% 7.79% 1.59% 1.07% 64.19% 25.36%
Greedy Path Wide 16,094 411 53 80 2,415 1058

80.03% 10.23% 1.32% 1.99% 60.12% 26.34%
Table 12 The Table contains the results of running the algorithms over all 13 images of the dataset. The runs

were organized by shifting nadir to the East by the diameter of the radar view after every run. Each image
contains 13 runs. 20,111 timesteps were taken over the entire dataset. During each time step an algorithm is

capable of analyzing one pixel or turning off the radar. Percentages inside shaded cells are normalized over the
time the radar was on during the runs. Greedy path found 23.7x more convection core than random, 1.9x more

rainy anvil than random.

the type of cloud represented by the pixel. It labels CC pixels with 89% accuracy, RA pixels with 75% accuracy, and

clear, thin cirrus, and cirrus pixels with 92% accuracy when the expected radiometer noise is incorporated. Clear, thin

cirrus, and cirrus is considered once class because the algorithms never actively target any of those cloud types.

The targeting algorithms are then run over the classified image through non overlapping vertical paths from the top

to the bottom of the image. This pathing is utilized because we do not have the data to use realistic flight paths. The first

path is at the far left of the image so that the left side of the radar’s view matches with the left hand border of the scene.

The satellite is assumed to be centered over the middle pixel of the path. Once that run is complete the second run is

shifted right by the radius of the radar’s view so that no pixels overlap in between the runs. Each run progressively shifts

right until it is impossible to fit another run without going over the boundary of the image or repeating pixels. The runs

begin with nadir at the top of the image and end when nadir reaches the bottom.

We assume that the images are snapshots and do not change relative to the overflight time. Given the flight speed of

7.5km/s each run down the image only takes roughly four minutes. We are able to fit 13 runs per image, bringing the

traversal time for an entire snapshot to roughly 52 minutes. The algorithms are able to analyze one pixel or turn off

the radar during each time step of the simulation. In practice the "off" state is a stand-by mode where the most power

consuming subsystems are put on hold, but not fully off. This means that we assume that the radar can be powered up

and down instantaneously with no impact on data quality. Each timestep is the traversal time of one pixel, and given the
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pixel size of 15km each timestep in the simulation represents roughly 2 seconds. It is important to note that this dataset

contains a significantly higher number of storms than we would predict to see in a real flight. This is expected to skew

the results of the algorithm towards greater performance since there are more storms to target.

For this simulation we are assuming that the radar is able to aim at the middle of every pixel within its field of

view and count the value of every targeted pixel equally regardless of location. We also assume that the radiometer is

collecting data at the 15km x 15km pixel size. The actual radiometer has a pixel size of 6km x 10km at the highest

frequency and a lower resolution at lower frequencies. This study does not factor in the fact that the size of the radar’s

footprint changes as the radar targets off nadir.

XII. Smart Targeting Result
Table 12 shows that over the course of the runs it is clear that the dynamic targeting delivers a significant increase in

performance. In the on/off scenario there was a slight increase in the number of convection core pixels analyzed, and

the number of rainy anvil pixels evaluated effectively doubled. The number of these pixels chosen continues to rise as

the view of the algorithm increases to the size of the radar’s view. These increases can be explained by the improved

possibility of seeing high priority pixels as well as a longer amount of time to analyze the pixels as the field of view

expands along the radar’s path.

A more interesting change is found when the algorithm’s field of view expands from just the radar’s view in the smart

algorithm to the entire knowledge window in the windowed smart algorithm. When the two algorithms are compared

the windowed smart algorithm views less rainy anvil pixels and more convection core pixels than the smart algorithm.

This is largely attributed to the distribution of clouds across the sky. Clouds are not randomly distributed. Instead,

they cluster around storms. In particular, the convection core clouds serve as the center of most storms with rainy anvil

clouds surrounding the center. The clustering means that the most important clouds for the algorithms are always found

together. This problem is then exacerbated by the fact that the most scientifically interesting clouds, convection cores,

are inside of large clusters of also highly prioritized rainy anvil clouds.

The distribution is a problem due to the energy constraints of the SMICES radar. Because both cloud types are

scientifically significant, the targeting algorithms use any remaining power to analyze either of these clouds when they

fall within the radar’s field of view. This can lead to all of the available power being used to target the surrounding rainy

anvil clouds and leave no power once the convection core clouds come into view. As the knowledge window increases,

the algorithms are able to budget their remaining power by allocating resources to the future convection core clouds that

will eventually enter the radar’s view. The windowed smart algorithm is able to budget its power to save for future

convection core pixels while the smart algorithm is not. This budgeting of power explains the increase in convection

core performance at the expense of rainy anvil.

This feature of budgeting power is further developed in the greedy path algorithms, which selectively choose only
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the best rainy anvil and convection core pixels out of its knowledge window. The development is reflected in the results

which show that the greedy path algorithm analyzes a decreased number of rainy anvil pixels and an increased number

of convection core pixels when compared to the windowed smart algorithm.

These results also demonstrate that the wide approach continues this trend and analyzes slightly more convection

core pixels at the cost of some rainy anvil pixels. Unfortunately, looking at clouds that are farther off of nadir returns

worse data due to the increased distance to the imaging target. More analysis on how off nadir the analyzed clouds

are and how severely the image quality degrades per angle off nadir is necessary to deduce whether this algorithm is

actually superior. For this paper comparisons will be made to the greedy path algorithm since it prioritizes the clouds

closer to nadir.

XIII. Discussion
Multiple classifiers were able to accurately distinguish between the two-class problem in the tropical dataset. It is

important to understand that even less accurate classifiers can be used to significantly increase yield of the SMICES

mission concept. In Table 13a the first row shows the distribution of pixels acquired if sampling pixels at random (e.g.

not using any classification). Row two shows the distribution if we sample pixels the 5-class RDF classifies as Rainy

Anvil. Note that in the chart, the term "Sample Labelled" means what the classifier thinks is the correct class. We

still get some non-storm and Convection Core pixels, since the classifier is not 100% accurate. Row three shows the

distribution if we only sample pixels the RDF classifies as Convection Core. Again, we get other classes as well due to

inaccuracies in the classifier. This data shows that sampling a Rainy Anvil or Convection Core classified pixel is far

more fruitful scientifically than a random pixel.

In order to evaluate improvements in mission return, we utilized our mission simulations using the GWRF datasets.

In the simulations, intelligent targeting attempts to preferentially target areas of Convection Core and Rainy Anvil but

is limited by the rarity of such pixels, mission energy, and pointing constraints [21]. In Table 13a, row 4 shows the

distribution of pixels we would acquire if the classifier used in the simulation was 100% accurate. Row 5 shows the

distribution of pixels (true labels) we actually acquire, quantifying how classification inaccuracy reduces the impact

on return. However, this mode still dramatically outperforms uninformed (random) targeting. This highlights how

preferential targeting is able to skew sampled pixels towards storm-cloud classes.

When looking at the non-tropical dataset, distinguishing between the two classes of Rainy Anvil and convection

core is significantly harder. Again, even with the lower classification accuracy, Table 13b shows the expected pixels

observed sampling from the Rainy Anvil and Convection Core labelled pixels compared to random sampling. Again,

drawing on the mission simulations, the last two rows of Table 13b show dramatically increased yields of Rainy Anvil

and Convection Core measurements from intelligent targeting compared to uninformed (random) targeting even with

imperfect classification.
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Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Sample Randomly 67.0% 32.0% 1.0%
Sample Labelled as Rainy Anvil 16.6% 81.7% 1.8%

Sample Labelled as Convection Core 12.0% 64.4% 23.6%
Preferential Targeting (as labelled) 10.5% 64.2% 25.3%
Preferential Targeting (true labels) 23.2% 69.7% 7.1%

(a) Tropical Data

Clear, Thin Cirrus,
and Cirrus

Rainy Anvil Convection Core

Sample Randomly 67.0% 32.0% 1.0%
Sample Labelled as Rainy Anvil 46.3% 35.8% 18.0%

Sample Labelled as Convection Core 76.9% 10.9% 12.2%
Preferential Targeting (as labelled) 44.6% 21.3% 34.1%
Preferential Targeting (true labels) 76.1% 14.1% 9.8%

(b) Non-Tropical Data

Table 13 Mission return impact of Intelligent Targeting with Classifier

XIV. Future Work
We would like to extend our datasets to additional regions beyond the Caribbean and Atlantic coast to make our

classifiers more robust. A global dataset could be used to explore the possibility of a universal classifier that would work

in any region (and season, and other conditions), however variations in atmospheric phenomena in different regions

could make this difficult. Swapping between different regional classifiers in flight would be feasible.

The impact of the expected noise should also be analyzed more clearly. Even though the overall accuracy is not

strongly impacted, it is important to know if any cloud types are being disproportionately affected by the noise or if it is

balanced.

Future work on the classifiers will expand beyond single pixel classification and take into account surrounding pixels.

This should improve the accuracy because storm phenomena are not randomly distributed across the sky, instead they

are clustered close together. Upsampling on the storm clouds in each dataset may also improve the overall performance

since the datasets are very imbalanced and some of the classifiers that did not have their weights equalized.

It is also important to run the targeting simulation over a dataset that is representative of what SMICES would see in

a real flight on future iterations of this work. This would give a better understanding of the improvements that we would

expect to see through the targeting algorithms. Additionally, future work can analyze the benefit of tracking a storm

across the radar’s field of view. This would enable analysis on the morphology of the cloud over its observation time.

Analysis on how the radiometer resolution could impact the performance of the cloud classification is currently

unexplored. The targeting algorithm currently assumes the radiometer records data at the GWRF pixel size of 15km
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x 15km. Instead the resolution of the radiometer data varies based on the frequency. Understanding impact of

combining the different resolutions on the classification accuracy would enable a more accurate simulation of the in

flight environment.

Further research also needs to be conducted on the impact that off-nadir analysis has on the data quality for SMICES.

Understanding this impact along with how off-nadir the data collected from each algorithm is will allow for a more

informed decision between the wide and non-wide variation of the greedy algorithm.

We intend to test these classifiers and targeting algorithms on real data from airborne tests of the SMICES radar.

XV. Conclusion
We have described an effort to develop a classifier of deep convective storms based on radiometer data. Using

a digital twin and K-means clustering we were able to generate labels for data. The results of the classifiers are

promising for distinguishing deep convective storms in the tropical dataset. Further work still needs to be done for finer

grained storm type discrimination. Additionally, identification of deep convective storms in non tropical data was more

challenging.

The results of the targeting trial are very promising for the effectiveness of smart targeting. When comparing the

best performing algorithm, greedy path, with the baseline random algorithm, there is a 23.7x increase in the number of

convection core pixels analyzed and an almost 2x increase in rainy anvil pixels analyzed. It is important to note that

these results are skewed by the dataset used, which contains a much higher proportion of clouds than we would expect

to see in the real world. A dataset closer to a real-world scenario would result in a smaller increase in performance.

We also present results indicating that even moderate classification accuracy combined with intelligence instrument

targeting are expected to enable significant improvements in mission return.
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