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Abstract

Smart Ice Cloud Sensing (SMICES) is a small-sat con-
cept in which a radar intelligently targets ice storms
based on information collected by a lookahead radiome-
ter. Often space observations are performed by con-
tinuously collecting data from an instrument aimed at
nadir (e.g. directly below the space platform). How-
ever, if the platform has the ability to assess science
utility of features being overflown, an intelligent mea-
surement scheme can improve science return. This can
be achieved by controlling the on/off state of the instru-
ment if it is not able to continuously operate (e.g. due
to energy or thermal constraints), and by allowing the
instrument to view off nadir if it has pointing capabili-
ties. In the case of SMICES, power constraints and the
rarity of storms means that with blind nadir targeting
SMICES would collect a limited amount of ice storm
radar data. The algorithms proposed acquire measure-
ments to maximize acquired high interest storms while
concurrently collecting a background sampling of all
features. We use a cloud classification system to iden-
tify five different cloud types. Six algorithms ranging
from “blind” to more selective are described and results
from evaluation on a dataset of 13 ground swaths cov-
ering 72,399,600 km2 of data are presented. This data
is from high quality science simulations that contain all
five cloud types and multiple storms. When utilizing the
radiometer’s lookahead and the full range of the radar
the results show a 23.7x and 1.9x increase over the base
algorithm in the most and second most important cloud
types respectively.

Introduction
High altitude ice clouds, covering more than 50% of the
Earth’s surface are often produced from high-impact deep
convection events (Luo and Rossow 2004), and are strong
modulators of Earth’s weather and climate (Stephens 2005;
Bony et al. 2006). High altitude ice clouds play a signifi-
cant role in the Earth’s energy balance and hydrologic cycle
through their effects on radiative feedback and precipitation,
and therefore crucial for life on Earth.

SMICES is designed to increase our knowledge of the
phenomena by collecting data on the vertical resolution of
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the ice cloud particles. This information has never been ana-
lyzed through a global satellite. Instead, only in-situ ice par-
ticle size data has been available. Therefore SMICES will
be able to provide an innovative path towards the quantifi-
cation of how ice cloud radiative effects impact convective
storm intensity, size, and track as well as constraining cli-
mate model simulations of ice cloud feedbacks and associ-
ated hydrological processes, contributing to reducing uncer-
tainties of climate predictions.

This paper focuses on the targeting system of the SMICES
radar. Current targeting systems for satellite imaging consist
of continuously targeting nadir. If the instrument cannot be
on for the entire duration of the orbit, it is randomly turned
off to meet the energy restraints. This method ensures that
the data collected will be either the ground-track of the satel-
lite, or a random subsample of that. It also only takes images
at nadir, which is the angle that returns the best data. This
approach fails to address the problem that some parts of the
sky are more intriguing than others. Smart targeting can be
used to guide an instrument to focus its analysis on the more
interesting areas of the sky as the instrument flies over.

SMICES is actively targeting clouds, specifically deep
convective storms. Even though global cloud coverage can
span roughly 2/3 of the Earth (King et al. 2013), deep
convective storms are far more rare than all clouds. While
SMICES would fly over and collect data from some storms
using the general image targeting technique, its performance
can be improved with development in the pathing of its sci-
entific instrument. SMICES intends on utilizing the knowl-
edge gained from its cloud classification to allow its plan-
ning algorithms to target the most scientifically interesting
clouds along its path. Another challenge that the SMICES
algorithms must account for are the power constraints that
do not allow continuous observation during the entirety of
its mission. If a random schedule were to control when the
radar is turned on, important clouds would be overlooked.

Related Work
We focus on the targeting of clouds to guide the radar
through the storms. Similar work has been conducted on
the inverse problem of cloud avoidance. Cloud screening
onboard aircraft has worked to help cut out swaths of data
compromised by cloud cover to reduce the amount of down-
linked information (Thompson et al. 2014). While SMICES



is trying to collect the most useful data, its algorithms are
designed to control the data collection process instead of dis-
card invalid portions of previously collected data.

Other implemented cloud avoidance work has been com-
pleted on TANSO-FTS-2 where intelligent targeting is uti-
lized to minimize the amount of cloud coverage captured in
its images (Suto et al. 2021). Other work that focuses on
developing algorithms to achieve cloud avoidance is being
done at NASA Jet Propulsion Laboratory where a greedy
and a graph search based algorithm has been developed to
select the most clear sections of sky during a flyover (Has-
nain et al. 2021). This work is more similar to SMICES as
its goal is to target its instrument at more scientifically rele-
vant features during flight. However, the algorithms differ in
their actual targets. Storms are significantly rarer than clear
sky and are composed of different types of clouds. SMICES
prioritizes two different types of clouds through its flight in
contrast to the single feature of clear sky addressed in cloud
avoidance.

Background
The SMICES problem is a continuous online planning prob-
lem implemented as an orbiting satellite where there is no set
end to the imaging of the clouds. The parameters include an
orbiting altitude of 400km and the setup is designed to allow
its radar to slew 15° from nadir in all directions. The slew-
ing is assumed to have instantaneous electronic movement.
The radar is capable of targeting an area of roughly 4x4km
whenever it is turned on. The power constraints of the vehi-
cle mean that the targeting should reach a 20% duty cycle
at any given time over the course of the flight. If these con-
straints were applied to current satellite targeting techniques,
the result would be randomly sampling 20% of the clouds at
nadir under the satellite. Identification of the clouds occurs
within the radiometer’s range, which sweeps at 45° ahead of
nadir. This sweep covers 60° around the satellite and there-
fore covers more ground than the radar is capable of view-
ing.

When modelling the radar’s viewpoint, shown in figure 1,
we focus on the knowledge window, which is defined as the
area from the back of the radar’s reachability to the front of
the radiometer sweep. The window is only as wide as the
radar’s movement since we are unable to target any clouds
outside of this range. We investigate smart targeting in the
context of this model.

Within our knowledge window it is necessary to define
the priority of the different clouds that will be viewed. The
classifier onboard is capable of distinguishing between five
different cloud types, clear sky, thin cirrus, cirrus, rainy anvil
(RA), and convection core (CC), in order of increasing inter-
est. In particular, the rainy anvil and convection core clouds
are the most important since they make up storms. The sci-
entists also want to make sure that the radar is collecting data
from all of the cloud types it passes over since there can be
useful information in the non-storm clouds as well. To ac-
complish this, whenever an algorithm is not targeting rainy
anvil and convection core clouds, the radar will be taking
a random sampling of the clouds under nadir. To simplify,
the algorithms will be created to prioritize convection core

Figure 1: Example of the field of view of the satellite.
Identified storms are represented by each color: 4.0 =

convection core, 3.0 = rainy anvil, 2.0 = cirrus, 1.0 = thin
cirrus, 0.0 = clear, -2 = not analyzed. Radar’s View: black
circle, Nadir: black square, Knowledge Window: dotted

rectangle

clouds, followed by rainy anvil clouds, and then a random
sample of the clouds under nadir.

Multiple algorithms were created with an increasing field
of view to demonstrate the improvements gained by utilizing
more of the information available to the instrument. The ran-
dom algorithm serves as the baseline comparison as it is rep-
resentative of the results we would receive without targeting
any clouds. The only algorithms that utilize the entirety of
the knowledge window are the windowed smart and greedy
path, which plan out the projected usage of power beyond
the immediately reachable pixels.

Algorithms
The duty cycle of the algorithms is dictated by the state
of charge (SOC) of its system. In order to ensure that the
SMICES duty cycle of 20% is maintained the SOC is de-
creased by 4% when the algorithms analyze a pixel, and the
SOC is increased by 1% when the radar is left off. The sim-
ulation begins with 0% power.

Throughout this section there are figures displaying how
each algorithm would perform in a given knowledge win-
dow. In each figure nadir is represented by the black square
and the radar’s view is displayed by the circle. The different
cloud types are represented on the color bar such that 4.0 =
convection core, 3.0 = rainy anvil, 2.0 = cirrus, 1.0 = thin
cirrus, 0.0 = clear. These values also represent the reward
given for analyzing each cloud type. The state of charge for
every figure is assumed to be 50

Random
The random algorithm (figure 2 and algorithm 1) targets the
pixel under nadir 20% of the time to ensure that it meets
the energy requirements for SMICES. It is representative of
most targeting methods on current Earth Science satellites



today. Its random nature means that it is indifferent to the
clouds it is flying over and will miss some important clouds.

Figure 2: Chance that the radar analyzes the pixel under the
random algorithm

Algorithm 1: Random Algorithm
output: Results: array of analyzed pixel values
input : Results: array of analyzed pixel values,

Picture: knowledge window of the
simulation

1 i← randomvalue(0 < i < 1)
2 if i ≤ .2 then
3 results←value of pixel at nadir

// add the value of pixel under
nadir to results

4 end
5 return Results

On/Off
The on/off algorithm (figure 3 and algorithm 2) improves the
random algorithm by controlling when the radar is turned
on. It utilizes the system’s current energy state and the cloud
type under nadir to determine when the radar is turned on
instead of using a random generator. This allows the system
to save energy when there are no interesting clouds, and use
the stored energy when there are. It also mimics random by
taking the value under nadir when the SOC is high.

Lateral
The lateral algorithm (figure 4 and algorithm 3) improves
on the on/off algorithm by allowing the radar to analyze pix-
els along the cross-path direction. This is symbolized in the
knowledge window graphic by the band that crosses nadir.
The two important factors in determining when the radar is
turned on is the state of charge of the vehicle and the best
pixel along the lateral band. This is resolved by searching
for the highest valued cloud with a tiebreaker going to the
pixel that is closest to nadir.

Figure 3: Left: radar is on because a convection core is
under nadir. Right: radar is off because a cirrus cloud is
under nadir. The radar turns on when it sees good pixels

under nadir in the on/off algorithm

Algorithm 2: On/off Algorithm
output: Results: array of analyzed pixel values,

power: power state of the system, sample:
boolean to sample if there are no high
priority targets

input : Results: array of analyzed pixel values,
Picture: knowledge window of the
simulation, Power: power state {0-100},
Sample

1 if power > 60 then
2 results← value of pixel under nadir
3 power ← power − 4
4 sample← True
5 else if power > 40 and sample then
6 results← value of pixel under nadir
7 power ← power − 4
8 sample← True
9 else if power > 4 then

10 if Pixel under nadir == (CC or RA) then
11 results← value of pixel under nadir
12 power ← power − 4
13 else
14 results← value of radar turned off
15 power ← power + 1
16 end
17 sample← False
18 else
19 results← value of radar turned off
20 power ← power + 1
21 sample← False
22 return Results



Figure 4: Top three prioritized pixels based on the lateral
algorithm

Smart
The smart algorithm (figure 5 and algorithm 4) expands its
view along the path of the satellite to include the entirety of
the radar’s reachability. This area is signified by the black
circle in the graphic. When deciding which pixel to analyze
for a given time step, the smart algorithm follows steps sim-
ilar to the lateral algorithm. The state of charge determines
which cloud types are able to be analyzed, and a search in-
side of the radar’s reachability finds the highest valued cloud
with a tiebreaker going to the pixel that is closest to nadir.

Figure 5: Top three prioritized pixels based on the smart
algorithm

Windowed Smart
The windowed smart algorithm (figure 6 and algorithm 5)
expands its view to include the entire knowledge window of
the simulation. This increased view now exceeds the radar’s
reachability, meaning that the algorithm is able to account
for future clouds along the radar’s path. The algorithm first
calculates how many clouds can be analyzed based on the
current state of charge. It then counts the number of convec-
tion core and rainy anvil clouds present within the knowl-
edge window. The power is then allocated for all of the con-
vection core pixels, followed by the rainy anvil pixels, and
then any leftover power is reserved as free. The highest val-
ued pixel within the radar’s view that has allocated power is

Algorithm 3: Lateral Algorithm
output: Results: array of analyzed pixel values,

power: power state of the system {0-100},
sample: boolean to sample if there are no
high priority targets

input : Results, Picture: knowledge window of the
simulation, Power, Sample

1 clouds← pixels that make up lateral band across
nadir within radar’s view

2 best← lat search(clouds) // Returns the
best pixel in the lateral field of
view that is closest to nadir

3 if power > 60 then
4 if best == RA or CC then
5 results← value of best
6 else
7 results← value of pixel under nadir
8 end
9 power ← power − 4

10 sample← True
11 else if power > 40 and sample then
12 if best == RA or CC then
13 results← value of best
14 else
15 results← value of pixel under nadir
16 end
17 power ← power − 4
18 sample← True
19 else if power > 4 then
20 if best == (CC or RA) then
21 results← value of best
22 power ← power − 4
23 else
24 results← value of radar turned off
25 power ← power + 1
26 end
27 sample← False
28 else
29 results← value of radar turned off
30 power ← power + 1
31 sample← False
32 return Results, Power, Sample

imaged. The tiebreaker still goes to the pixel closest to nadir.
The pixel under nadir is imaged if neither a convection core
or rainy anvil pixel are within the radar’s view, there is free
power, and there is a sufficient SOC.



Algorithm 4: Smart Algorithm
output: Results: array of analyzed pixel values,

power: power state of the system {0-100},
sample: boolean to sample if there are no
high priority targets

input : Results, Picture: knowledge window of the
simulation, Power, Sample

1 radar view ← pixels that make up radar’s range of
possible targets

2 best← smart search(radar view, view radius)
// Returns the best pixel in the
radar’s field of view that is
closest to nadir

3 if power > 60 then
4 if best == RA or CC then
5 results← value of best
6 else
7 results← value of pixel under nadir
8 end
9 power ← power − 4

10 sample← True
11 else if power > 40 and sample then
12 if best == RA or CC then
13 results← value of best
14 else
15 results← value of pixel under nadir
16 end
17 power ← power − 4
18 sample← True
19 else if power > 4 then
20 if best == (CC or RA) then
21 results← value of best
22 power ← power − 4
23 else
24 results← value of radar turned off
25 power ← power + 1
26 end
27 sample← False
28 else
29 results← value of radar turned off
30 power ← power + 1
31 sample← False
32 return Results, Power, Sample

Greedy Path
Greedy path (figure 7 and algorithm 6) improves upon the
windowed smart algorithm by ranking the priority of each
convection core and rainy anvil pixel in the knowledge win-
dow. The algorithm begins by collecting the locations of all
these pixels and calculating the available radar cycles based
on the state of charge. Once collected, the two pixel types
are sorted independently by their lateral distance to nadir.
This means that a newly scanned convection core pixel that
will eventually cross nadir will have a higher priority than
an off-nadir convection core pixel within the radar’s view.
The sorted list of rainy anvil pixels is then concatenated to

Figure 6: Top three prioritized pixels based on the
windowed smart algorithm

the end of the sorted list of convection core pixels to create
a priority queue. Greedy path then assigns one radar cycle
to the highest priority pixel and checks if it is within the
radar’s view. If it is viewable, the pixel is analyzed. Other-
wise, it continues until the free cycles run out or the priority
queue ends. If free cycles are left over after the end of the
priority queue and the SOC is sufficient, the algorithm will
analyze nadir.

Greedy path has two variations, greedy path and greedy
path wide. The difference is in how the pixels are prioritized.
Clouds that run directly under nadir are within the radar’s
field of view for significantly longer than the clouds that run
just under the edge. Greedy path wide takes this into account
and always chooses the cloud that is laterally farther away
from nadir if there is a tie in priority. The logic is that it will
be able to analyze more high priority clouds by choosing the
ones that are within its field of view for the shortest time.
In contrast, the normal greedy path targets the cloud that is
laterally closer to nadir in the case of a tie.

Figure 7: Left: Top three prioritized pixels based on the
greedy path algorithm. Right: Top three prioritized pixels

based on the greedy path wide algorithm



Algorithm 5: Windowed Smart Algorithm
output: Results: array of analyzed pixel values,

power: power state of the system {0-100},
sample: boolean to sample if there are no
high priority targets

input : Results, Picture: knowledge window of the
simulation, Power, Sample

1 free cycles← power / 4
// free cycles is set to the total
number of times the radar can be
turned on at the current power
state

2 storms← dictionary mapping the storm types to
their occurrence in the knowledge window

3 best cc, best ra← smart search(radar view,
view radius) // Returns the best CC
pixel and the best RA pixel in the
radar’s field of view that are
closest to nadir

4 radar view ← pixels that make up radar’s range of
possible targets

5 if power > 60 then
6 sample = True
7 else if power < 40 then
8 sample = False

// set the sampling variable
9 if CC in storms then

10 cc← number of CC pixels in Picture
11 if RA in storms then
12 ra← number of RA pixels in Picture
13 if free cycles ≤ cc then
14 cc← free cycles
15 free cycles← 0
16 else
17 free cycles← free cycles - cc
18 end

// set cc to the total number of
CC pixels that can be pictured

19 if free cycles ≤ ra then
20 ra← free cycles
21 free cycles← 0
22 else
23 free cycles← free cycles - ra
24 end

// set ra to the total number of
RA pixels that can be pictured

25 if cc > 0 and best cc exists then
26 if cc > 0 then
27 results← value of best cc exists
28 power ← power − 4
29 else if ra > 0 and best ra exists then
30 results← value of best ra
31 power ← power − 4
32 else if free cycles > 0 and sample then
33 results← value of pixel under nadir
34 power ← power − 4
35 else
36 results← value of radar turned off
37 power ← power + 1
38 return Results, Power, Sample

Algorithm 6: Greedy Path Algorithm
output: Results: array of analyzed pixel values,

power: power state of the system {0-100},
sample: boolean to sample if there are no
high priority targets

input : Results, Picture: knowledge window of the
simulation, Power:, Sample

1 free cycles← power / 4
// free cycles is set to the total
number of times the radar can be
turned on at the current power
state

2 if power > 60 then
3 sample = True
4 else if power < 40 then
5 sample = False

// set the sampling variable
6 cc pixels← empty array
7 ra pixels← empty array
8 for Each pixel in Picture do
9 if pixel is CC then

10 cc pixels← location of the pixel
11 if pixel is RA then
12 ra pixels← location of the pixel
13 end
14 cc pixels← sort(cc pixels)
15 ra pixels← sort(ra pixels) // sort

cc pixels and ra pixels in order
of how laterally close they are to
nadir

// for greedy path wide the
sorting would be on how laterally
far they are from nadir

16 interesting pixels← cc pixels + ra pixels
17 checks← 0
18 undecided← True
19 while checks < free cycles and undecided do
20 if checks <length of interesting pixels then
21 point← interesting pixels[checks] if

point is within the radar’s view then
22 undecided← False
23 results← value of pixel at point
24 power ← power − 4
25 else
26 undecided← False
27 if sample then
28 results← value of pixel under nadir
29 power ← power − 4
30 else
31 results← value of radar turned off
32 power ← power + 1
33 end
34 end
35 checks← checks+ 1
36 end
37 if undecided then
38 results← value of radar turned off
39 power ← power + 1
40 return Results, Power, Sample



Energy Level Thresholds
After the random algorithm the pixel selection is dictated
by the energy level instead of a random generator. At full
power the system should always be analyzing a cloud, but as
the power drains the list of valid clouds to analyze becomes
more constrained.

Table 1: Energy level thresholds for viewing pixels

Table 1 highlights the thresholds used in the previously
stated algorithms. When the state of charge is greater than
60%, the algorithms will either be view a convection core
or rainy anvil pixel, or sample nadir. The sampling variable
is also set to ”on” in this threshold. If the power is between
40% and 60% and the sampling variable is on, then the algo-
rithms perform the same as when the power is above 60%.
If the variable is off, then the algorithms will only view con-
vection core and rainy anvil pixels. Once the power drops
below 40% the algorithms also only view rainy anvil and
convection core pixels. The sampling variable is set to ”off”
at this threshold. The purpose of the sampling variable is to
randomly sample nadir between the 60% and 40% SOC until
high priority clouds come into view.

One important feature basing cloud selection on the avail-
able energy is its flexibility. The 60% and 40% decision
boundaries are not set in stone, and can be changed to bet-
ter fit a scientist’s interest. If the boundaries were to be
shifted down, then the algorithm would start randomly sam-
pling more, and the results would be a more even distribu-
tion across different cloud types. Inversely, if the boundaries
were each shifted up, then less random sampling would oc-
cur. This would cause the results to skew heavier to the con-
vection core and rainy anvil clouds. Additionally, this al-
gorithm can be adapted to focus on any types of identified
classes such as cirrus and thin cirrus.

Experimental Design
The dataset used to evaluate the algorithm was created
through the Global Weather Research and Forecasting
(GWRF) model (Skamarock et. al. 2019). The GWRF is a
state of the art physics based weather model. It is used to cre-
ate computationally expensive datasets that we use as a digi-
tal twin to real climate data. In our case the model generated
the brightness temperatures for different cloud types along
the bands of Tb250+0.0, Tb310+2.5, Tb380-0.8, Tb380-1.8,
Tb380-3.3, Tb380-6.2, Tb380-9.5, and Tb670+0.0 as well

as the scientific variables of ice water path, median parti-
cle size, and median cloud top height. These additional vari-
ables were used in the identification of the different cloud
types throughout the dataset.

The dataset used in this study was generated as a tropical
dataset of the Caribbean. The data contains 13 images that
are 119x208 pixels with a pixel size of 15km for a spatial
extent of 1,785km x 3,120km. Each image is a snapshot of
the same area in one hour intervals. During the simulation
the along track length is 1,785km and the across track length
is 3,120km.

To prepare the images for the algorithms, each pixel is
passed through a trained random decision forest that identi-
fies the type of cloud represented by the pixel. It labels CC
pixels with 89% accuracy, RA pixels with 75% accuracy,
and clear, thin cirrus, and cirrus pixels with 92% accuracy
when the expected radiometer noise is incorporated. Clear,
thin cirrus, and cirrus is considered once class because the
algorithms never actively target any of those cloud types.

The algorithms are then run over the classified image
through non overlapping vertical paths from the top to the
bottom of the image. The first path is at the far left of the
image so that the left side of the radar’s view matches with
the left hand border of the scene. Once that run is complete
the second run is shifted right by the radius of the radar’s
view so that no pixels overlap in between the runs. Each run
progressively shifts right until it is impossible to fit another
run without going over the boundary of the image or repeat-
ing pixels. The runs begin with nadir at the top of the image
and end when nadir reaches the bottom.

We assume that the images are snapshots and do not
change relative to the overflight time. Given the flight speed
of 7.5km/s each run down the image only takes roughly four
minutes. We are able to fit 13 runs per image, bringing the
traversal time for an entire snapshot to roughly 52 minutes.
The algorithm’s are able to analyze one pixel or turn off the
radar during each time step of the simulation. Each timestep
is the traversal time of one pixel, and given the pixel size
of 15km each timestep in the simulation represents roughly
2 seconds. It is important to note that this dataset contains a
significantly higher number of storms than we would predict
to see in a real flight. This is expected to skew the results of
the algorithm towards greater performance since there are
more storms to target.

Result
Table 2 shows that over the course of the runs it is clear
that the dynamic targeting delivers a significant increase in
performance. In the on/off scenario there was a slight in-
crease in the number of convection core pixels analyzed,
and the number of rainy anvil pixels evaluated effectively
doubled. The number of these pixels chosen continues to
rise as the view of the algorithm increases to the size of the
radar’s view. These increases can be explained by the im-
proved possibility of seeing high priority pixels as well as a
longer amount of time to analyze the pixels as the field of
view expands along the radar’s path.

A more interesting change is found when the algorithm’s
field of view expands from just the radar’s view in the smart



Table 2: The table contains the results of running the algorithms over all 13 images of the dataset. The runs were organized by
shifting nadir to the East by the diameter of the radar view after every run. Each image contains 13 runs. 20,111 timesteps
were taken over the entire dataset. During each time step an algorithm is capable of analyzing one pixel or turning off the

radar. Percentages inside of the box are normalized over the time the radar was on during the runs. Greedy path found 23.7x
more convection core than random, 1.9x more rainy anvil than random.

algorithm to the entire knowledge window in the windowed
smart algorithm. When the two algorithms are compared the
windowed smart algorithm views less rainy anvil pixels and
more convection core pixels than the smart algorithm.

This is largely attributed to the distribution of clouds
across the sky. Clouds are not randomly distributed. Instead,
they cluster around storms. In particular, the convection core
clouds serve as the center of most storms with rainy anvil
clouds surrounding the center. The clustering means that the
most important clouds for the algorithms are always found
together. This problem is then exacerbated by the fact that
the most scientifically interesting clouds, convection cores,
are inside of large clusters of also highly prioritized rainy
anvil clouds.

The distribution is a problem due to the energy constraints
of the SMICES radar. Because both cloud types are scientifi-
cally significant, the targeting algorithms use any remaining
power to analyze either of these clouds when they fall within
the radar’s field of view. This can lead to all of the avail-
able power being used to target the surrounding rainy anvil
clouds and leave no power once the convection core clouds
come into view. As the knowledge window increases, the
algorithms are able to budget their remaining power by al-
locating resources to the future convection core clouds that
will eventually enter the radar’s view. The windowed smart
algorithm is able to budget its power to save for future con-
vection core pixels while the smart algorithm is not. This
budgeting of power explains the increase in convection core
performance at the expense of rainy anvil.

This feature of budgeting power is further developed in
the greedy path algorithms, which selectively choose only
the best rainy anvil and convection core pixels out of its
knowledge window. The development is reflected in the re-
sults which show that the greedy path algorithm analyzes
a decreased number of rainy anvil pixels and an increased
number of convection core pixels when compared to the
windowed smart algorithm.

These results also demonstrate that the wide approach

continues this trend and analyzes slightly more convection
core pixels at the cost of some rainy anvil pixels. Unfortu-
nately, looking at clouds that are farther off of nadir returns
worse data due to the increased distance to the imaging tar-
get. More analysis on how off nadir the analyzed clouds are
and how severely the image quality degrades per angle off
nadir is necessary to deduce whether this algorithm is actu-
ally superior. For this paper comparisons will be made to the
greedy path algorithm since it prioritizes the clouds closer to
nadir.

Future Work
It is important to run the simulation over a dataset that is
representative of what SMICES would see in a real flight on
future iterations of this work. This would give a better under-
standing of the improvements that we would expect to see
through the targeting algorithms. Also, analyzing how the
misclassifications of the classifier affect the scientific gain
would be important to more accurately assess the perfor-
mance of the algorithms. Further research also needs to be
conducted on the impact that off-nadir analysis has on the
data quality for SMICES. Understanding this impact along
with how off-nadir the data collected from each algorithm is
will allow for a more informed decision between the wide
and non-wide variation of the greedy algorithm.

Conclusion
The results of the trial are very promising for the effective-
ness of smart targeting. When comparing the best perform-
ing algorithm, greedy path, with the baseline random algo-
rithm, there is a 23.7x increase in the number of convection
core pixels analyzed and an almost 2x increase in rainy anvil
pixels analyzed. It is important to note that these results are
skewed by the dataset used, which contains a much higher
proportion of clouds than we would expect to see in the real
world. A dataset closer to a real-world scenario would result
in a smaller increase in performance.
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