
Decentralized, Decomposition-Based Observation Scheduling for a Large-Scale
Satellite Constellation

Itai Zilberstein1, Ananya Rao1,2, Matthew Salis1, Steve Chien1

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
2Carnegie Mellon University, Pittsburgh, USA

itai.m.zilberstein@jpl.nasa.gov, ananyara@andrew.cmu.edu, matthew.salis@jpl.nasa.gov, steve.a.chien@jpl.nasa.gov

Abstract

Deploying multi-satellite constellations for Earth observa-
tion requires coordinating potentially hundreds of spacecraft.
With increasing on-board capability for autonomy, we can
view the constellation as a multi-agent system (MAS) and
employ decentralized scheduling solutions. We formulate the
problem as a distributed constraint optimization problem
(DCOP) and desire scalable inter-agent communication. The
problem consists of millions of variables which, coupled with
the structure, make existing DCOP algorithms inadequate for
this application. We develop a scheduling approach that em-
ploys a well-coordinated heuristic, referred to as the Geo-
metric Neighborhood Decomposition (GND) heuristic, to de-
compose the global DCOP into sub-problems as to enable the
application of DCOP algorithms. We present the Neighbor-
hood Stochastic Search (NSS) algorithm, a decentralized al-
gorithm to effectively solve the multi-satellite constellation
observation scheduling problem using decomposition. In full,
we identify the roadblocks of deploying DCOP solvers to
a large-scale, real-world problem, propose a decomposition-
based scheduling approach that is effective at tackling large
scale DCOPs, empirically evaluate the approach against other
baseline algorithms to demonstrate the effectiveness, and dis-
cuss the generality of the approach.

Introduction
Large-scale, Earth-observing satellite constellations with
hundreds of spacecraft are becoming increasingly promi-
nent in order to monitor Earth phenomena. Spire, Satellogic,
Canon, SatRev, Spacety, Planet Lab’s Dove, and SkySat are
several examples (NewSpace 2023). Observation schedul-
ing for a large-scale constellation requires fusing informa-
tion from many sources and tasking space assets that have
varying constraints, capabilities, and visibility of Earth tar-
gets. In addition to Earth observation, satellites are deployed
for a variety of applications, including forming large internet
constellations (SpaceX 2023). Any multi-satellite constella-
tion that requires coordinating agents poses a challenging
planning and scheduling problem.

In practice, satellite observation scheduling is typically
done in a centralized fashion, where a single controller de-
velops a single schedule that specifies the actions of every

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

satellite (Shah et al. 2019). Even most research technology
efforts are centralized (Boerkoel et al. 2021; Nag, Li, and
Merrick 2018). While centralized approaches can provide
high-quality solutions, reliance on a single computing node
makes them vulnerable to single point failures and can in-
crease communications burden. In addition, many central-
ized approaches rely on local search or divide-and-conquer
algorithms, making distributed solutions natural.

Framing the constellation as a multi-agent system (MAS)
enables the application of decentralized scheduling solu-
tions. Decentralized scheduling addresses both the system’s
robustness and the vulnerabilities of a central controller
(Bonnet and Tessier 2008; Phillips and Parra 2021). Many
MAS problems are framed to optimize a global cost function
where agents control the parameters of the function and must
communicate to coordinate their parameter assignments.

In many applications, communication may be unreliable
for large message volume. For example, orbiters around a
comet or the sun may experience communication interfer-
ence or infrequent line of sight with each other. For an Earth
orbiting constellation, satellites may have limited cross-link
capability. For this reason, we desire algorithms that procure
a limited amount of messaging. Formulating the problem as
a distributed constraint optimization problem (DCOP), we
aim to produce high quality scheduling solutions.

The problem requires agents to coordinate the assign-
ments of millions of variables and the desire for limited
communication make the direct application of DCOP al-
gorithms inadequate. However, by decomposing the global
problem, we can deploy DCOP algorithms to solve smaller
sub-problems. We construct a heuristic, called the Geomet-
ric Neighborhood Decomposition heuristic (GND), that par-
titions the agents and requests in a coordinated fashion as
to instantiate sub-problems that are advantageous to solve.
Each agent individually computes the heuristic using only
knowledge of the requests to schedule and the configuration
of the constellation.

Satellite constellations are typically designed to optimize
the supply given the expected demand for a target set, which
couples the scheduling problem with the constellation con-
figuration and can be solved as another search problem (Lo
1999; Schaffer et al. 2018). Constellations are typically fixed
relative to the number of scheduling runs they execute. GND
is grounded in geometric computation and designed to ex-

Appears in Proc. of 34th Intl. Conference on Automated Planning and Scheduling, Banff, Canada. June 2024.

ploit this supply and demand relationship. GND is composed
of three layers that partition the agents and requests into sub-
problems. The goal is for the constellation to maximize the
number of requests satisfied, while adhering to downlinks
and memory constraints.

The heuristic is parameterized such that the sub-problems
produced can be of arbitrary size. Through this decompo-
sition, we can deploy DCOP algorithms on constant sized
sub-problems rather than the global problem that scales
with the number of agents and requests. To solve each sub-
problem, we build on the Broadcast Decentralized algorithm
(BD) (Parjan and Chien 2023), an adaptation of two incom-
plete DCOP algorithms, Maximum Gain Messaging (MGM)
and Distributed Stochastic Search Algorithm (DSA) (Zhang
et al. 2005), for the application of multi-satellite observation
scheduling. We refer to our developed algorithm as Neigh-
borhood Stochastic Search (NSS). Our algorithm extends
the BD algorithm in two major aspects: (1) it is scalable to
large problem instances in both computational complexity
and communication complexity, and (2) it enables constraint
reasoning, such as resource constrained scheduling.

Empirical results demonstrate the efficacy of our ap-
proach on small and large problem instances compared to
decentralized and centralized baselines. On small problem
instances, we show the gap to optimal solutions, while large
problem instances enforce the performance at scale, includ-
ing run-time results. We aim to close the gap between decen-
tralized solutions and centralized solutions while precluding
an infeasible amount of messaging. Our contributions are:
1. uncovering the obstacles in applying existing DCOP

techniques to the large-scale, multi-satellite decentral-
ized scheduling problem,

2. introducing a decomposition-based heuristic approach to
solve the scheduling problem and presenting the NSS al-
gorithm which utilizes the decomposition scheme, and

3. demonstrating the efficacy of our approach on realistic
problem instances.

Related Work
There are many aspects of satellite observation planning
ranging from visibility computation, to downlink schedul-
ing, to constraint based task allocation. This paper is mostly
concerned with the last subject. Previous work has predomi-
nantly focused on centralized solutions to the multi-satellite,
resource-constrained scheduling problem (Augenstein et al.
2016; Nag, Li, and Merrick 2018; Shah et al. 2019; Squil-
laci, Roussel, and Pralet 2021; Boerkoel et al. 2021; Squil-
laci, Pralet, and Roussel 2023; He et al. 2018; Eddy and
Kochenderfer 2021; Globus et al. 2004). More recently, de-
centralized scheduling approaches have proposed auction-
based methods (Picard 2021; Phillips and Parra 2021) and
heuristic search based methods relying on broadcasting (Par-
jan and Chien 2023). The auction-based methods rely on a
centralized controller to act as an auctioneer and has a pro-
hibitive communication and computational complexity.

We build on the approach presented by Parjan and Chien
(2023), which attempts to address some of the limitations
of the auction-based methods. In their approach, called BD,

each agent uses globally communicated satisfaction infor-
mation as a search heuristic. The main limitation is that this
approach requires each agent to send a high volume of mes-
sages to every other agent, resulting in a communication
complexity at each iteration that is polynomial in the number
of agents and requests.

Multi-satellite observation scheduling has been framed as
a DCOP previously (Picard 2021; Parjan and Chien 2023).
DCOP algorithms tend to suffer from significant compu-
tational complexity or a large reliance on communication.
Solving a DCOP optimally is known to be NP-Hard (Modi
et al. 2005). Complete algorithms, such as SyncBB (Hi-
rayama and Yokoo 1997), ADOPT (Modi et al. 2005), or
OptAPO (Mailler and Lesser 2004) are computationally in-
feasible for our problem scale.

On the other hand, incomplete DCOP algorithms, such
as Max-Sum (Stranders et al. 2009), Maximum-Gain Mes-
saging (MGM) (Maheswaran, Pearce, and Tambe 2004),
Distributed Stochastic Search (DSA) (Zhang et al. 2005),
or Distributed Gibbs (D-Gibbs) (Nguyen, Yeoh, and Lau
2013), which trade off optimality for scalability, require no-
table messaging. MGM and DSA are two search algorithms
that are the foundation of BD, and hence NSS. MGM and
DSA perform local search to iteratively improve the global
solution. Genetic algorithms have also been applied, incur-
ring similar costs as MGM and DSA (Mahmud et al. 2019).

NSS is motivated by Region-optimal algorithms (Pearce
and Tambe 2007). These algorithms solve sub-problems op-
timally, reducing the cost of complete algorithms, albeit to
the size of sub-problems. NSS extends Region-optimal algo-
rithms by obtaining incomplete solutions to sub-problems,
reducing the complexity when sub-problems remain large.
Another divide-and-conquer method for solving DCOPs is
the application of the distributed large neighborhood search
(DLNS) framework to DCOPs (Hoang et al. 2018).

In the next sections, we discuss the challenges of apply-
ing these algorithms to the multi-satellite constellation ob-
servation scheduling problem, and show how heuristically
decomposing the problem can overcome the hurdles in their
deployment while still providing high quality solutions.

Problem Formulation
In this section, we outline the Multi-Satellite Constellation
Observation Scheduling Problem (COSP). The main appli-
cation of COSP is for Earth observation, however the formu-
lation extends to orbits around other bodies. We start by for-
mally defining the problem. Then, we present the problem as
a DCOP and discuss theoretical properties of the problem,
including the barriers to applying current DCOP algorithms.
Similar formulations have been examined in previous work
(Parjan and Chien 2023; Picard 2021).

Defining COSP
The components of COSP are defined below.

1. H “ rhs, hes: the scheduling horizon.
2. K : the set of orbital planes. An orbital plane defines the

geometric plane that contains a collection of satellite or-
bits. We denote K P K as an orbital plane, and k P K for

Figure 1: A single orbital plane with 5 satellites.

the specific orbit of a satellite within that plane. Figure 1
depicts an orbital plane.

3. A: the set of agents. Each ai P A is a satellite in the
constellation. We define ai “ pk,mq where k is the orbit
of the satellite and m P R` is the memory capacity. The
notation kai and mai denote these values for agent ai,
and we use the same notation for equivalent indexing.

4. T : the set of point targets on Earth. Each ti P T is defined
as ti “ plat, lonq.

5. R: the set of requests. Each ri P R is defined as ri “

pt, hq which denotes the target to observe, t P T , and
when to observe, h Ä H .

6. For each agent, we define the following sets.
Sai : the set of possible request fulfillments for agent ai. A
request fulfillment, sj P Sai , is a task that can be sched-
uled to satisfy a request. We define sj “ pr, h,mq where
r P R is the request being satisfied, h Ä hr is the inter-
val of the observation (including processing and slewing
time), and m P R` is the amount of memory required.
Xai : the set of Boolean decision variables for agent ai.
For each sj P Sai we define the Boolean decision vari-
able xsj P Xai where xsj “ 1 iff ai schedules task sj .
Dai : the set of downlinks for agent ai. A downlink,
dj P Dai , is defined as dj “ ph,mq where m P R`
is the maximum amount of data that can be downlinked,
and the interval h Ä H is the time window for the down-
link. No possible tasks occur during a downlink, and all
downlinks are mandatory.
Cai “ CDai

Y CSai
: the set of constraints where

CDai
“

§

djPDai

cdj , and

cdj “

ÿ

slPSdj
ai

xsl ¨ msl § MINpmai ,mdj q.

Here, Sdj
ai denotes the set of possible tasks for which the

soonest downlink window in the future is dj . This con-
straint enforces that agent ai never exceeds its memory
capacity and all taken observations can be downlinked at
the soonest opportunity, which is a desired constraint of
the application. We define

CSai
“

§

sj ,slPSai

csj ,sl , where

csj ,sl “
“
xsj ¨ xsl ` Iphsj X hsl ‰ Hq § 1

‰
.

This constraint ensures that no tasks are scheduled to
overlap. Here, I denotes the indicator function.

The goal of the optimization problem is to maximize the
number of requests satisfied while not violating the con-
straints of any agent. A solution, X , is the assignment of
each x P Xai such that Cai is satisfied for all ai. This vari-
ation of COSP simplifies both the downlink model and the
slewing model so that observations are not temporally flex-
ible. Removing this simplification produces a challenging
variation of COSP which is subject to future work.

Formulating COSP as a DCOP
We can formulate the above problem structure as a dis-
tributed constraint optimization problem (DCOP). The
DCOP is a five-tuple xA,X ,D,F ,↵y which we define for
our problem below.
• A: the set of satellites as previously defined.
• X “

î
aiPA Xai : the set of Boolean decision variables

for every agent’s possible task set as previously defined.
• D “

î
xPX t0, 1u: all variable domains are Boolean.

• FpXq “
î

aiPA faipXaiq Y
î

rjPR frj pXrj q where

faipXaiq “

"
0 Cai satisfied by Xai

´8 else

and
frj pXrj q “ 1 ´

π

xPXrj

p1 ´ xq.

Here, Xrj is the set of variables such that x “ xsl and
sl “ prj , h,mq. See that frj pXrj q “ 1 iff there exists a
satellite satisfying request rj and faipXaiq “ 0 iff agent
ai has a schedule that satisfies its constraints.

• ↵pxq “ ai ñ x P Xai maps a variable to the agent
that can schedule the associating request fulfillment.

The goal of a DCOP is to obtain an assignment of all
variables as to maximize (or minimize) the sum of the util-
ity functions, X˚

“ argmaxX
∞

fPF f pXq. For COSP, this
corresponds to maximizing the number of requests satisfied.

There exist roadblocks to applying existing DCOP algo-
rithms to this formulation. The constraint graph has a mini-
mum of |A|`|R| complete sub-graphs derived from fai and
frj . Each ai P A contributes a clique of size |Xai |, and each
rj P R contributes a clique of size |Xrj |. In many problem
instances, request durations are long enough such that the
majority of agents are able to satisfy any particular request.
This results in |Xai | “ ⌦p|R|q and |Xrj | “ ⌦p|A|q. In ad-
dition, most of these cliques are highly connected to each
other, resulting in a cyclic graph. Figure 2 shows an exam-
ple of the structure we discuss.

We consider constellations with hundreds of agents and
thousands of requests. Therefore, since each agent ai con-
trols all variables in Xai , the neighborhood of variables
for an agent is ⌦p|A| ¨ |R|q, which is on the order of 105

variables. This scale and structure make the problem un-
suitable for many DCOP algorithms. Complete DCOP al-
gorithms are simply infeasible for the problem size, hav-
ing a computational complexity of Op2|A|¨|R|

q, which is on

a0

a2

a1

Figure 2: Constraint graph with |A| “ 3 and |R| “ 4. Nodes
denote the variables, and edges denote a shared constraint.

the order of 1030102. Incomplete DCOP algorithms, such as
Max-Sum (Stranders et al. 2009) or Maximum Gain Mes-
saging (MGM) (Maheswaran, Pearce, and Tambe 2004), re-
quire many iterations, where at every iteration, each agent
would exchange ⌦p|A|q messages, each with size ⌦p|R|q,
which is on the order of 107 total volume (Fioretto, Pontelli,
and Yeoh 2018). Finally, we mention that the DLNS and
region-optimal approaches, require defining sub-problems.
One application of our approach is outlining methods for
sub-problem selection. However, the above two algorithms
still incur substantial costs when sub-problems remain large.

We mention one distinction between the scheduling prob-
lem we will examine in this paper and a traditional DCOP. In
standard DCOPs, agents know the variables and constraints
of neighboring agents (Fioretto, Pontelli, and Yeoh 2018).
An agent is unaware of the values of other agents’ variables,
but is privy to their existence. In our constellation, we as-
sume that agents are aware of the existence of other agents,
but have no knowledge of the request fulfillments (variables)
other agents are attempting to schedule. The implication is
that an agent does not know the full structures of the utility
functions for which its variables are affiliated. Note, it takes
one broadcast for each agent to share their request fulfill-
ments before the problem becomes a standard DCOP. This
small nuance is motivated by the requirements of the appli-
cation, but does not impact the approach significantly.

Heuristic Decomposition

In this section, we outline the construction of the Geometric
Neighborhood Decomposition heuristic (GND) that decom-
poses the global problem. GND, which is computed individ-
ually by each agent, inherently coordinates agents without
communication. This heuristic is grounded in geometry, and
is composed of three layers: (1) the global supply layer, (2)
the inter-neighborhood delegation layer, (3) and the intra-
neighborhood delegation layer.

The first layer addresses the nuance of the scheduling
problem mentioned in the previous section, while the lat-
ter two layers act to partition the agents and requests into
sub-problems. An agent computes the heuristic values only
relevant to itself, remaining unaware of the heuristic compu-
tation of other agents.

Figure 3: The right ascension bounds show the interval a
target is within potential visibility of the orbital plane.

Global Supply
In our application, supply, or the number of agents capable
of satisfying a request, is important as there are observations
for which only a few satellites have visibility, as well as re-
quests that the entire constellation can service. Identifying
supply enables agents to make informed decisions as to min-
imize redundant observations and collectively service more
requests. The lack of knowledge of other agent variables re-
sults in agents being unaware of the global supply.

In the traditional DCOP, the supply is trivial to compute.
For a request, r, the supply is the number of agents that have
a variable x “ xsj such that sj “ pr, h,mq, which is known
since these agents all share a constraint.

We use the geometry of the satellite orbits to estimate the
visibility of a ground target for each orbital plane, obtaining
an approximation of the supply. Specifically, the supply of
a request, r, provided by an orbital plane, K, is determined
as the duration of time that the request is in the longitudinal
cross-tracks of the plane times the number of agents that
pass over a point per epoch. The longitudinal cross-tracks
are the intervals in which the target is within a visible range
of an orbital plane. This is determined by the point of closest
approach, satellite slewing capabilities, and field of view.

Figure 3 illustrates the geometric interval that a ground
target is in the cross-tracks. In the figure, ZECI denotes the
rotation axis of Earth. P1 and P2 are the bounding planes of
the cross-tracks either side of the orbital plane. The green
area depicts the region for which any ground target might
be within visibility of the orbital plane. The right ascension
bounds depict the interval of potential visibility for a spe-
cific ground target. Combining that interval with the number
of agents that pass over a point per epoch, we obtain the es-
timate of supply. The latter piece of information is derived
from the orbital period and size of a plane.

This computation is an estimate as other constraints may
impede a satellite’s ability to observe a target, despite having
visibility. Whether the supply is estimated or known exactly
makes little difference to the approach. However, in this ap-
plication, knowing the supply is an unrealistic assumption.

Inter-Neighborhood Delegation
This layer of the heuristic delegates control of each utility
function, frj , to a partition of agents. Each orbital plane,

K P K, provides a natural grouping of agents into a neigh-
borhood. Satellites in the same orbital plane experience sim-
ilar relative geometries of Earth targets, making their view of
the problem homogeneous. This makes orbital planes a log-
ical choice to be neighborhoods. We acknowledge that this
neighborhood selection exploits specifics of our domain, and
that neighborhood selection in other domains is not always
clear-cut. In subsequent sections, we use the term orbital
plane and neighborhood interchangeably. It is important to
note that our use of the term neighborhood is different from
the DCOP notion of a neighborhood. In a DCOP, the neigh-
borhood refers to agents that share a constraint. Agents in an
orbital plane typically share many constraints, however, they
also share constraints with agents in other orbital planes.

We define the inter-neighborhood delegation heuristic
based on properties of an orbital plane and the request. For
a request, r, the orbital plane with the most agents for which
there is non-zero supply gets delegated r. Ties are broken by
selecting the plane with the minimum estimated distance to
the request target, tr, over the request window. We estimate
this value using three points over the the request horizon,
hr: the start, the end, and the midpoint. This tie-breaking is
a unique secondary estimate of the supply.

The inter-neighborhood delegation serves as a complete
partitioning of the global problem into sub-problems. For
each request, r, there exists exactly one plane, K, such that
the request will be delegated. Consider that agent ai disre-
gards all variables, x, for which the associated request is not
delegated to the neighborhood of ai. We can then remove
the factors containing x from each frj and fai . The problem
has now been decomposed such that an agent is only neigh-
bors (by the DCOP notion) with other agents in the same
neighborhood. From this we obtain a partitioning into |K|

sub-problems in which the agents of each sub-problem are
the agents in an orbital plane, K, and the variables are deter-
mined by the inter-neighborhood delegation heuristic. Later,
we will present the constellation, but as a consideration we
note here that |K| “ 4 in our evaluations. Therefore, while
this partitioning is substantial, it is not necessarily sufficient
to reduce the problem scale to a desired level.

Intra-Neighborhood Delegation
The value of the previous two heuristics are not unique for
agents in the same orbital plane. The final layer further
partitions neighborhoods into smaller problems. The intra-
neighborhood heuristic is driven by agent biases, where
agents with the same biases form a partition.

First, we define the bias of an agent, denoted b. A bias is
parameterized by a periodicity, ⇢ P N. The periodicity both
determines the number of unique biases and the number of
agents for which the bias repeats in a neighborhood. To com-
pute the bias, we index each agent in an orbital plane, K, by
arbitrarily selecting an agent 0 and ordering all the agents in
the plane from 0 to |K| ´ 1 by moving counter-clockwise.
The bias, b P r0, ⇢q, is computed as an integer based on the
index, i, of the agent: b ” i mod ⇢. The periodicity of the
bias means all agents indexed i ` n ¨ ⇢ possess the same
bias for all n P N. Increasing the periodicity creates more,
smaller sub-groups of agents. The motivation for spacing the

- Sub-neighborhood agent
- Orbital plane agent

Figure 4: Partition within an orbital plane with ⇢ “ 10.

bias as opposed to selecting consecutive agents is to diver-
sify the sub-neighborhood’s collective visibilities and ge-
ometries. This creates more advantageous sub-problems to
solve by enabling a wider range of opportunities for obser-
vation. The bias for all agents is fixed, therefore we assume
it is known by all agents apriori.

We map a request fulfillment to a bias using two heuris-
tics. The sub-supply heuristic divides the original supply
thresholds into ⇢ partitions, and an agent with bias, b, will
be biased towards requests that fall into the sub-bucket in-
dexed b. The target position heuristic examines the latitude
and longitude of the ground target, tr. For each coordinate,
an agent posses bias for the target if the degree times ten
modulo ⇢ is equivalent to b. Targets tend to be clustered
in small geographic regions, hence multiplying by ten adds
more diversity to this bias. A request is delegated to the sub-
neighborhood of agents for which the bias has the highest
value according to the two heuristics.

The intra-neighborhood delegation partitions the agents in
an orbital plane into ⇢ sets, where a set is defined by agents
with the same bias. Tuning ⇢ enables us to create partitions
of arbitrary size, but at a potential reduction of coordination.

Complete Heuristic
The GND heuristic, ⌥ai : R Ñ t0, 1u, is a function
computed by an agent that maps a request fulfillment to a
Boolean value. The heuristic identifies the subset of requests
assigned to the partition containing an agent. Iff ⌥aiprq “ 1,
then the request r is within agent ai’s partition. The agents
within the partition are fixed based on the geometry of the
constellation and the parameter ⇢.

Scheduling Solutions to COSP
In this section, we present the algorithms we evaluate, in-
cluding Neighborhood Stochastic Search (NSS). We occa-
sionally use the short-hands “g.” for greedy, “heur.” for
heuristic, and “decomp.” for decomposition.

Fully Decentralized
By fully decentralized solutions, we refer to decentralized
algorithms that do not rely on inter-agent communication.
We consider three baseline algorithms.

1. Random. Each agent shuffles its set of request fulfill-
ments, Sai . The shuffled request fulfillments are iterated
through and scheduled if they do not violate constraints.

2. Greedy Start Time. Each agent sorts its request fulfill-
ments based on increasing start time. The sorted request
fulfillments are iterated through and scheduled if they do
not violate constraints.

3. Portfolio Greedy. Each agent samples a heuristic from
the portfolio of heuristics, ⇧, uniformly at random.
The heuristic defines the greedy insertion order into the
schedule. The portfolio consists of four heuristics: ran-
dom, start time, memory usage, and off-nadir angular
separation. The random heuristic assigns a random value
to each request fulfillment. We note that the portfolio
does not contain a dominating heuristic.

We evaluate an additional fully decentralized approach,
called Decomposition Heuristic to demonstrate the effec-
tiveness of the partitioning. In this algorithm, each agent first
computes the decomposition using GND and then runs the
Greedy Start Time, but using the partitioned requests.

Centralized Algorithm
The centralized algorithm we employ is an adaptation of
Squeaky Wheel Optimization (SWO) (Joslin and Clements
1999). SWO is an incomplete centralized search algorithm.
Over the course of iterations, SWO heuristically creates
schedules based on priorities assigned over previous itera-
tions. In our implementation, SWO sorts the requests based
on their priority, breaking ties with the least supply. It then
randomly selects an available satellite to schedule the re-
quest. Requests that are not scheduled on previous iterations
have their priorities increased. In subsequent iterations, re-
quests that were not previously scheduled are attempted to
be satisfied first.

Neighborhood Stochastic Search
The Neighborhood Stochastic Search algorithm (NSS) ex-
tends the request satisfaction variation of BD (Parjan
and Chien 2023) to scale to large problem instances and
enable scheduling with resource constraints. We present
the pseudo-code in Algorithm 1 and mention key sub-
procedures. The first step for an agent is to compute, using
GND, the sub-problem the agent is involved in solving. We
denote this sub-problem as N , which is itself a DCOP con-
sisting of agents, AN Ñ A, and requests, RN Ñ R.

The procedure INITIALSOLUTION constructs an initial
schedule for agent ai. We consider two variations of this re-
lying on fully decentralized algorithms:
1. NSS-Random. Agents construct random initial schedules,

the typical initialization scheme for DSA.
2. NSS-Decomposition. The Decomposition Heuristic algo-

rithm is used for the initial schedule.
The procedure MESSAGE encapsulates the communica-

tion between agents in a sub-problem. Each agent ai mes-
sages the subset of R that it satisfied in the previous itera-
tion to each agent in its sub-problem, AN , and receives the
subsequent broadcast from those agents. The data structure
com encapsulates these messages. The heuristic search is
carried out in STOCHASTICUPDATE, which is adapted from
the BD algorithm (Parjan and Chien 2023). This procedure

Algorithm 1: Neighborhood Stochastic Search for agent ai
Input: H,A,R, Sai , Dai , Cai ,⌥ai

Output: Schedule for agent ai
1: N “ COMPUTESUBPROBLEMpai, A,R, Sai ,⌥aiq

2: sched = INITIALSOLUTIONpN , Sai , Dai , Caiq

3: while not converged do
4: com “ MESSAGEpAN , sched)
5: shuffle RN
6: for r P RN do
7: assigned “ STOCHASTICUPDATEpr, sched, comq

8: if assigned “ TRUE then
9: scheduled “ SCHEDULEpr, sched, Saiq

10: end if
11: end for
12: end while
13: return sched

updates the assignment of the agent and the request based
on the communicated information. By assignment, we refer
to whether or not the request should be scheduled by this
agent. Let m be the number of agents that satisfied request r
according to the broadcast. The assignment of a request r is
stochastically updated in the following ways.
• If agent ai is not assigned to r and r was not scheduled

in the previous iteration, ai assigns to r.
• If agent ai is not assigned to r and r was scheduled in the

previous iteration, ai remains unassigned to r.
• If agent ai is assigned to r and r was not scheduled in the

previous iteration, ai will unassign with probability Pu.
• If agent ai is assigned to r and r was scheduled in the

previous iteration, ai will unassign with probability m´1
m .

In the procedure SCHEDULE, if an assigned request fulfill-
ment satisfies Cai it is immediately inserted into the sched-
ule. Otherwise, the scheduler can remove a conflicting re-
quest fulfillment from the schedule to free up resources. The
removed request fulfillments are selected as the closest start
time to the request fulfillment to insert. Allowing agents to
de-schedule requests enables the algorithm to overcome get-
ting stuck at local minima. Note that this algorithm relies on
the parameter Pu. We use Pu “ 0.7 as published by the
authors of the BD algorithm (Parjan and Chien 2023).

The stochastic search performed in NSS mimics the
search of BD with some key distinctions: the use of de-
composition to reduce size, de-allocating to overcome local-
minima, the variation in initial schedule construction, and
scheduling with resource constraints.

Theoretical Analysis of Algorithms
We summarize the per agent computational and communica-
tion complexity of the decentralized algorithms in Table 1.
It is assumed that all agents have knowledge of the requests.
Therefore, the fully decentralized algorithms incur no com-
munication. We define L, the maximum size of a satellite’s
schedule to more exactly capture the complexity. The value
of L is driven by the horizon, H , the requests, R, and an
agent’s constraints, Cai . In practice L †† |R|. Checking if

Algorithm Computation Communication
Random |R| logL N/A
G. Start Time |R| log |R| N/A
Portfolio G. |R| log |R| N/A
Decomp. Heur. |R| ` |RN | log |RN | N/A
NSS |R| ` k|RN ||AN | k|RN ||AN |

Table 1: Op¨q complexity of decentralized algorithms.

a request fulfillment satisfies Cai and inserting into a sched-
ule are both OplogLq operations. We omit the L factors in
the complexity of NSS as it is subsumed by larger factors.

The centralized algorithm, SWO, has a computational
complexity of Orkp|R|

2
` |R||A|qs. This cost is incurred by

the centralized node which has arbitrary computing power.
Centralized algorithms require sending the final schedules
to each agent, resulting in an OpL ¨ |A|q communication
cost. The NSS algorithm incurs a communication cost pro-
portional to the size of the sub-problem. Here, AN is the
largest set of agents in a sub-problem and RN is the largest
set of requests in a sub-problem. For both NSS and SWO,
we define k, the number of iterations.

The complexity shows that the fully decentralized algo-
rithms are the most efficient. In comparison to MGM, DSA,
or BD, NSS achieves a complexity parameterized by |AN |

and |RN | in each iteration as opposed to |A| and |R|.

Experimental Setup and Results
The satellite constellation we simulate is modelled on a
low Earth orbit Planet constellation and shown in Figure
5 (Planet 2023). There are 200 agents divided across 4 or-
bital planes. The constellation has two near sun-synchronous
orbital planes at 95˝ inclinations composed of 95 satellites
each, and two orbital planes at 52˝ inclinations with 5 satel-
lites each. The constellation is constructed to observe the
target set T , defined below. Each satellite has a single sensor
that can slew to 60˝ off of nadir and an on-board memory
capacity of 125 GB.

We consider two ground stations for downlinks: the ASF
Near Space Network Satellite Tracking Ground Station and
the Guam Remote Ground Terminal System. A downlink is
modelled as a constant bit stream of 62.5 MB/s for the dura-
tion of visibility of the ground stations.

The target set, T , is composed of 634 globally distributed
ground targets (cities and volcanoes). We generate a cam-
paign by selecting a random periodicity in the range r4, 12s.
A periodicity of n means each target is requested to be
observed once within n evenly spaced intervals during the
scheduling horizon. For small problem instances, we reduce
the periodicity to 2 and randomly remove requests to obtain
a smaller set. The start of the scheduling horizon is randomly
initialized during a week long simulation and the end of the
horizon is fixed at 24 hours after the start time. We remove
unsatisfiable requests based on satellite visibility during the
horizon. The amount of memory required by a request ful-
fillment is sampled from a normal distribution with mean 50
MB and standard deviation 10 MB. The interval of time re-
quired to schedule a request fulfillment is fixed at 63 seconds

Figure 5: Visualization of the satellite constellation. Dots
represent a satellite in an orbital plane.

(3 seconds for the observation and 30 seconds either side for
slewing and processing).

We produce hard problem instances through this genera-
tion. By hard, we refer to the constraint graph structure dis-
cussed previously. Despite fixing the scheduling horizon at
one day, it is the density of requests during the window that
drives the difficulty of the problem. Large problem instances
refer to problems with thousands of requests, resulting in
millions of variables, whereas small problem instances con-
tain less than 500 requests.

We tuned ⇢ using a grid search, taking ⇢ “ 5. Small devia-
tions in ⇢ had minimal effect on the performance, but drastic
changes did worse. Taking ⇢ “ 5 results in all sub-problems
having less than 20 agents, reducing the size from the global
problem by an order of magnitude. In addition, we set each
5 agent orbital planes as a neighborhood. All algorithms had
their maximum iterations set to 20.

Results on Small Problem Instances
We compare the performance of the algorithms on small
problem instances to an optimal solution, as well as the BD
algorithm (Parjan and Chien 2023). We use a branch and
bound search (B&B) to obtain an optimal schedule for the
constellation. The branch and bound algorithm can only ex-
ecute on small problem instances due to computational con-
straints and the BD algorithm, likewise, due to communica-
tion constraints. We report the average gap in satisfaction to
the optimal solution, the average execution time (per agent),
and the average total messages exchanged over 50 randomly
generated small problem instances in Table 2.

The results show that the centralized solution, SWO,

Algorithm Opt. Gap (%) Time (ms) Messages
Random 4.427 † 1 0
G. Start Time 5.158 † 1 0
Portfolio G. 3.807 † 1 0
Decomp. Heur. 2.271 1.42 0
BD 2.373 169.84 756, 200
NSS-Random 0.580 43.24 66, 690
NSS-Decomp. 0.409 39.66 63, 180
SWO 0.012 2338.04 † 500
B&B 0.0 6, 670, 695 † 500

Table 2: Results of algorithms on 50 small problems.

achieves near-optimal performance. The NSS algorithms
also achieve close to optimal performance, while the fully
decentralized solutions are significantly further from opti-
mal. Notably, the decomposition heuristic scheduling algo-
rithm outperforms the other fully decentralized algorithms
and BD. In comparison to BD, the NSS algorithms achieve
higher request satisfaction while possessing faster run-times
and procuring an order of magnitude less messages. This
supports the efficacy of GND in generating advantageous
sub-problems and the theoretical analysis of NSS.

Results on Large Problem Instances
We evaluate each scheduling algorithm against 100 ran-
domly generated large problem instances. Note, solving a
large problem instance optimally would likely take longer
than the age of the universe. Figure 6 depicts the problem
size reduction from the global problem. The percent of re-
quests delegated to a sub-problem is substantially lower than
the requests the agents in a partition would consider in the
global problem. However, this distribution is not uniform.
Further work would examine how to improve GND to bal-
ance the load of requests across sub-problems. Figures 7 and
8 show the performance of the varying approaches. The hor-
izontal lines in Figure 7 represent the medians of the simu-
lations. The NSS algorithms outperform the other decentral-
ized solutions and are comparable in performance to the cen-
tralized approach, averaging just a 3% satisfaction decrease.
In addition, the results enforce the effectiveness of the de-
composition as the fully decentralized approach outperforms
the other baselines, and NSS-Decomposition slightly outper-
forms NSS-Random. Figure 8 also shows that as the density
of requests grow, problem instances become more difficult.
The constellation cannot satisfy all requests, therefore coor-
dinating to reduce redundancy becomes crucial.

Figure 6: The percent of total requests delegated to each sub-
problem (according to GND) relative to the global percent of
satisfiable requests by agents in the sub-problem.

Figure 7: Spread of percentage satisfied requests over 100
large problem instances.

Figure 8: Satisfied requests (%) across 100 large problems

Figure 9: Execution time (ms) across 100 large problems.

Figure 9 shows the execution time of the algorithms
across problem instances. The simulations are executed in
Java. Notice the non-linearity of the y-axis. The execution
time of the decentralized approaches are reported as aver-
age time per agent. The NSS algorithms are an order of
magnitude slower than the fully decentralized approaches.
The centralized approach is another two orders of magni-
tude slower than the NSS algorithms. These results support
the theoretical analysis.

While centralized algorithms will nearly always provide
higher quality solutions, our GND-based solution is highly
effective in the decentralized context, outperforming all the
baselines. This demonstrates that high-quality schedules can
be efficiently produced in very large-scale constellations by
utilizing problem decomposition.

Conclusion
A major barrier to applying existing DCOP algorithms
to large-scale, real-world problems is their computation
and communication complexities, specifically when deal-
ing with highly connected constraint graphs. We pro-
pose a decomposition-based approach to the multi-satellite
scheduling problem that is efficient in both time and mes-
sage complexity and can scale to problems orders of mag-
nitudes larger. While not offering quality guarantees, we
show that solving well-constructed sub-problems can gener-
ate high quality global solutions while reducing the overall
costs burdened by each agent.

Beyond the application of scheduling a satellite constel-
lation, many large multi-agent systems come with limit-
ing constraints, and developing algorithms that work within
those constraints is essential. Partitioning the global problem
is one strategy to enable the broader application of DCOP
solutions that have varying complexity.

Acknowledgments
The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration
(80NM0018D0004).

References
Augenstein, S.; Estanislao, A.; Guere, E.; and Blaes, S.
2016. Optimal scheduling of a constellation of Earth-
imaging satellites, for maximal data throughput and efficient
human management. In Proc. of ICAPS, volume 26, 345–
352.
Boerkoel, J.; Mason, J.; Wang, D.; Chien, S.; and Maillard,
A. 2021. An efficient approach for scheduling imaging tasks
across a fleet of satellites. In Proc. of IWPSS.
Bonnet, G.; and Tessier, C. 2008. Coordination despite con-
strained communications: A satellite constellation case. In
Proc. of National Conf. on Control Architectures of Robots,
89–100.
Eddy, D.; and Kochenderfer, M. J. 2021. A maximum inde-
pendent set method for scheduling Earth-observing satellite
constellations. Journal of Spacecraft and Rockets, 58(5):
1416–1429.
Fioretto, F.; Pontelli, E.; and Yeoh, W. 2018. Distributed
constraint optimization problems and applications: A sur-
vey. Journal of Artificial Intelligence Research, 61: 623–
698.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2004. A
comparison of techniques for scheduling Earth-observing
satellites. In Proc. of IAAI.
He, L.; Liu, X.; Laporte, G.; Chen, Y.; and Chen, Y. 2018.
An improved adaptive large neighborhood search algorithm
for multiple agile satellites scheduling. Computers & Oper-
ations Research, 100: 12–25.
Hirayama, K.; and Yokoo, M. 1997. Distributed partial con-
straint satisfaction problem. In Proc. of CP, 222–236.
Hoang, K. D.; Fioretto, F.; Yeoh, W.; Pontelli, E.; and Zivan,
R. 2018. A large neighboring search schema for multi-agent
optimization. In Proc. of CP, 688–706.
Joslin, D. E.; and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research, 10:
353–373.
Lo, M. W. 1999. Satellite-constellation design. Computing
in Science & Engineering, 1(1): 58–67.
Maheswaran, R. T.; Pearce, J. P.; and Tambe, M. 2004. Dis-
tributed algorithms for DCOP: A graphical-game-based ap-
proach. In Proc. of PDCS, 432–439.
Mahmud, S.; Choudhury, M.; Khan, M. M.; Tran-Thanh, L.;
and Jennings, N. R. 2019. AED: An anytime evolutionary
DCOP algorithm. arXiv:1909.06254.
Mailler, R.; and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In Proc. of AAMAS, 438–445.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization

with quality guarantees. Artificial Intelligence, 161(1-2):
149–180.
Nag, S.; Li, A. S.; and Merrick, J. H. 2018. Scheduling algo-
rithms for rapid imaging using agile Cubesat constellations.
Advances in Space Research, 61(3): 891–913.
NewSpace. 2023. NewSpace Constellations. https://www.
newspace.im. Accessed: 2023-09-19.
Nguyen, D. T.; Yeoh, W.; and Lau, H. C. 2013. Distributed
Gibbs: A memory-bounded sampling-based DCOP algo-
rithm. In Proc. of AAMAS.
Parjan, S.; and Chien, S. A. 2023. Decentralized observa-
tion allocation for a large-scale constellation. Journal of
Aerospace Information Systems, 1–15.
Pearce, J. P.; and Tambe, M. 2007. Quality guarantees on
k-optimal solutions for distributed constraint optimization
problems. In Proc. of IJCAI, 1446–1451.
Phillips, S.; and Parra, F. 2021. A case study on auction-
based task allocation algorithms in multi-satellite systems.
In Proc. of AIAA Scitech.
Picard, G. 2021. Auction-based and distributed optimization
approaches for scheduling observations in satellite constel-
lations with exclusive orbit portions. arXiv:2106.03548.
Planet. 2023. Our Constellations. https://www.planet.com/
our-constellations. Accessed: 2023-06-05.
Schaffer, S.; Chien, S.; Branch, A.; and Hernandez, S. 2018.
Automatic orbit selection for a radio interferometric space-
craft constellation. Journal of Aerospace Information Sys-
tems, 15(11): 627–639.
Shah, V.; Vittaldev, V.; Stepan, L.; and Foster, C. 2019.
Scheduling the world’s largest Earth-observing fleet of
medium-resolution imaging satellites. In Proc. of IWPSS,
156–161.
SpaceX. 2023. How Starlink Works. https://www.starlink.
com/technology. Accessed: 2023-10-03.
Squillaci, S.; Pralet, C.; and Roussel, S. 2023. Scheduling
complex observation requests for a constellation of satel-
lites: Large neighborhood search approaches. In Proc. of
CPAIOR, 443–459.
Squillaci, S.; Roussel, S.; and Pralet, C. 2021. Manag-
ing complex requests for a constellation of Earth-observing
satellites. In Proc. of IWPSS.
Stranders, R.; Farinelli, A.; Rogers, A.; and Jennings, N.
2009. Decentralised coordination of mobile sensors using
the max-sum algorithm. In Proc. of IJCAI, 299––304.
Zhang, W.; Wang, G.; Xing, Z.; and Wittenburg, L. 2005.
Distributed stochastic search and distributed breakout: Prop-
erties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence,
161(1-2): 55–87.

