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Aubrey Dunne2

1Jet Propulsion Laboratory, California Institute of Technology, United States
2Ubotica Technologies, Ireland

ABSTRACT

In partnership with Ubotica Technologies, the Jet
Propulsion Laboratory is demonstrating state-of-the-art
data analysis onboard CogniSAT-6/HAMMER (CS-6).
CS-6 is a satellite with a visible and near infrared range
hyperspectral instrument and neural network accelera-
tion hardware. Performing data analysis at the edge
(e.g. onboard) can enable new Earth science measure-
ments and responses. We will demonstrate data analysis
and inference onboard CS-6 for numerous applications
using deep learning and spectral analysis algorithms.

1 INTRODUCTION

The capabilities of in-orbit assets to perform Earth
science has skyrocketed in recent years. New space
providers are deploying satellites that possess state-of-
the-art multi- and hyperspectral instruments along with
processors that raise the ceiling for onboard computa-
tion. CogniSAT-6/HAMMER (CS-6) is one such space-
craft that has a visible and near infrared range hyper-
spectral instrument and AI acceleration hardware, en-
abling advanced edge data analysis [1]. CS-6, which
is a 6U CubeSat, launched in March of 2024. It is in
a sun-synchronous orbit at an orbital height of around
500 km. Onboard CS-6 there is a Myriad X Vision Pro-
cessing Unit (VPU) which can perform rapid computer
vision, image signal processing, and neural network ex-
ecution. CS-6 employs the HyperScape 100 instrument
that can take hyperspectral measurements in the range
440nm−884nm and achieves a ground sample distance
of 5 meters per pixel.

Analyzing data onboard serves several key function-
alities including rapid response to detected phenomena
and reducing data volume through identification of un-
usable data. The former relies on inferring science prop-
erties of a data acquisition to direct intelligent plan-
ning of future measurements. Performing this com-
putation at the edge (e.g. onboard) is key to enabling
new, time-sensitive measurements of rare Earth phe-
nomena that would otherwise be unobtainable if ground
analysis was required. A spacecraft can self-cue and
take another measurement in the same overflight using
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Figure 1: Overview of a rapid response workflow for
volcano monitoring. Image sources: Ubotica Technolo-
gies (steps 1 & 2), Planet Labs (step 3).

the knowledge from the first acquisition to direct the
second one. This concept, called dynamic targeting,
would enable higher-resolution pinpoint measurements
[2], [3]. Alternatively, a spacecraft can cross-cue an-
other spacecraft to obtain rapid follow-up imagery of
key targets. Onboard data analysis realizes a key com-
ponent of NASA’s New Observing Strategies (NOS)
program which aims to advance observation systems.
Figure 1 illustrates a rapid-response use-case for on-
board data inference. Detection of thermal activity trig-
gers communication to ground stations or other assets
for quick follow-up actions. Inter-satellite links (ISL)
enables satellites such as CS-6 to cross-cue other sens-
ing assets or participate in decentralized scheduling [4].

In this work, we focus on the development and
deployment of onboard algorithms, including spectral
analysis algorithms and deep neural networks such as
convolutional neural networks (CNNs), to perform in-
ference for both image analysis and spectral signa-
ture detection in the visible and near infrared spec-
tral ranges. Leveraging AI acceleration hardware to
perform spectral analysis is novel and pioneers new
avenues for edge computing. We target numerous
Earth science applications ranging from the detection
of clouds, wildfires, volcanic activity, and harmful al-
gal blooms to surface water, vegetation, and mineral
mapping and land-use classification. This paper de-
tails the development of inference algorithms that will
be demonstrated onboard CS-6 and other spacecraft.
This ongoing effort consists of composing datasets for
each application using automated labeling techniques,
designing and implementing algorithms within the con-
straints of flight hardware including training machine
learning models, validating inference and execution,
and a flight demonstration.

1

Itai Zilberstein
Appears in Proc. of the Intl. Symposium on Artificial Intelligence, Robotics and Automation in Space, 
Brisbane, Australia. November 2024.



2 METHODS

2.1 Datasets
CS-6 data is limited due to its recent launch (March
2024). For spectral analysis, we leverage data from the
USGS spectral library [5]. The image datasets are com-
posed of 190 scenes from the Menut satellite operated
by Open Cosmos and several hundred scenes from Plan-
etscope data. We use the red, blue, green, and near in-
frared bands from these data products. CS-6 bands are
stretched to enhance the data and enable compatibility
with models trained on other satellite scenes. Let q1 and
q99 be the 1st and 99th quantiles of a band. We stretch
(onboard) each pixel, p, in a band so that it is in the
range [vmin,vmax] using the formula

MIN

[
MAX

(
vmin +

vmax − vmin

(q99 −q1)
· (p−q1),vmin

)
,vmax

]
.

(1)
We derive automated labeling techniques from the Haze
Optimized Transform (HOT) method for clouds [6],
Normalized Difference Water Index (NDWI) method
for surface water extent (SWE) [7], band thresholds for
thermal activity [8], ESA’s WorldCover maps for land
use [9], and Sentinel-2 imagery for algal blooms. Meth-
ods such as HOT and NDWI can be directly computed
from VNIR data. We compute the NDWI mask using
the equation

NDWI =
Green−NIR
Green+NIR

. (2)

The NDWI product is then thresholded using Otsu’s
method to obtain a binary surface water mask for a
scene. The HOT method leverages the relationship be-
tween blue and red band values for non-cloudy pix-
els. The red band is less affected by atmospheric haze,
while the blue band has more scattering. The clear-sky
line defines this correlation and points that fall close to
this line signify clear pixels, while points far from this
line signify cloud or haze interference. Note that Plan-
etscope scenes are delivered with cloud masks, there-
fore we apply the HOT method to label Menut and CS-6
data products. We compute the clear-sky line by select-
ing the 0.15% of data points with the smallest blue band
value. These points are divided into 20 bins, and for
each bin the 20 points with the highest red band value
are selected. Given these 400 points, we fit a line using
linear regression. Let m and b define the clear-sky line.
We compute the HOT value as

HOT = |m ·Blue−Red|+ b√
1+m2

. (3)

Like NDWI, the HOT product is thresholded using
Otsu’s method to obtain a binary cloud mask. Despite
using automated techniques, the labelled data is human-
verified to ensure quality.

Due to CS-6 having only visible and near infrared
data products, the science return is limited for certain
applications. Without a higher wavelength, cloud clas-
sification includes noise from snow, shorelines, and

other high-reflectance objects. SWE has noise from
shadows and urban areas. There are obvious limitations
in thermal detection without VSWIR or TIR sensing.
Despite these drawbacks, the models perform with high
accuracy as shown in the evaluation.

2.2 Spectral Analysis Algorithms
Spectral analysis is used for two different applications:
mineral and vegetation mapping. We engineer these al-
gorithms to leverage the AI acceleration hardware on-
board CS-6, a novel approach to deploying spectral al-
gorithms.

We use three common methods: spectral angle map-
per (SAM), matched filters (MF), and the Reed-Xiaoli
anomaly detector (RX).

SAM is a function that measures similarity between
any two spectra: x and y. It generalizes the notion of
an angle between two vectors in N-space. Small SAM
values indicate a high similarity, and vice versa. It is
computed as follows:

SAM(x,y) = cos−1
(

x · y
||x||2 ||y||2

)
. (4)

MF also quantifies similarity between two spectra,
but it scales and normalizes the response by using scene
statistics µ (mean) and Σ (covariance). Larger MF val-
ues indicate a stronger match between spectrum x and
a target of interest t (e.g., a well-known mineral spec-
trum). MF is a linear detector given by the formula:

MF(x, t; µ,Σ) =
(t −µ)T Σ−1(x−µ)

(t −µ)T Σ−1(t −µ)
. (5)

RX also uses scene statistics µ and Σ. However, it
does not measure similarity between two spectra, but
rather how anomalous a spectrum x is with respect to the
scene. Large values indicate outliers. Its computation is
similar to MF:

RX(x; µ,Σ) = (x−µ)T
Σ
−1(x−µ). (6)

Finally, ongoing and future work consists of spectral
unmixing using deep learning [10].

2.3 Convolutional Neural Networks
Image analysis consists of semantic segmentation using
the U-Net [11] deep CNN architecture tailored for de-
ployment on flight hardware. We require models that
provide high quality, quick classification using minimal
computing resources. To minimize CPU computation,
we embed preprocessing operations such as normaliza-
tion as layers in the CNNs.

The trained models identify clouds, surface water ex-
tent (flooding), thermal events (e.g., volcanoes, wild-
fires), land surface type (e.g., city, forest, water, crop-
land,...), and harmful algal blooms.
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Figure 2: CNNs will be used for the onboard analysis of many science events.

Models for segmentation applications, such as cloud
screening and surface water extent, are trained to op-
timize the sparse categorical cross entropy loss. For
thermal detection, positive classification is much rarer,
therefore we optimize a weighted version of the sparse
categorical cross entropy loss. The weights are set
based on the distribution of classes in the training set.

2.4 Evaluation and Verification

We evaluate the quality of the algorithms on ground
hardware and verify their computation on flight hard-
ware prior to flight. Table 1 shows the accuracy and in-
tersection over union (IoU) of three binary image clas-
sifiers on the test data sets. Cloud and thermal detection
both achieve over 97% accuracy and higher negative (la-
bel 0) IoU compared to positive (label 1) IoU. Surface
water extent achieves lower performance than the other
classifiers, but still maintains 87% accuracy. It is de-
sirable for the models to over-classify rather than have
false negatives in many applications.

In addition to evaluating model quality, we verify
model size, run-time and error on both CPU an Myriad
X hardware. Table 2 shows the model sizes and single
input execution times when run on a Myriad X VPU.
The inputs to the spectral algorithms are higher di-
mensional resulting in a longer runtime despite smaller
model size compared to the U-Nets. Figure 3 illustrates
the error of the spectral algorithms for vegetation detec-
tion when run on the Myriad X versus a traditional CPU.
As confirmed by the analysis, we expect to see nearly
identical outputs barring minor offsets due to floating
point arithmetic.

Application Clouds SWE Thermal
Accuracy 0.9748 0.8730 0.9988

Positive IoU 0.9063 0.7069 0.9715
Negative IoU 0.9144 0.8101 0.9988

Table 1: Results of current, best performing U-Net
models on test set data for three applications. Models
in the table perform binary classification, therefore pos-
itive refers to the label 1 and negative to label 0.

Application Model Model Size Execution Time (s)
Clouds U-Net Xception 4.5 MB 0.4781

U-Net UAVSAR 4.3 MB 0.5293
SWE U-Net Xception 4.5 MB 0.4938

U-Net UAVSAR 4.3 MB 0.5333
Thermal U-Net Xception 4.5 MB 0.4800

U-Net UAVSAR 4.3 MB 0.5307
Vegetation SAM 175 KB 2.499

MF 177 KB 4.3060
RX 3 KB 3.119

Mineral SAM 4 KB 10.0871
MF 6 KB 17.9930
RX 3 KB 13.5023

Table 2: Model size and single input execution time
when compiled and executed on a Myriad X VPU.

Figure 3: Validation of spectral analysis algorithms
computation on a CPU and Myriad X VPU.

3 CURRENT STATUS

Development begins with training of deep learning
models and engineering of spectral algorithms. These
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Figure 4: Two scenes taken by CS-6 (left), and the respective inference that would be obtained onboard for cloud
screening (top right) and surface water extent (bottom right) from deep learning models. Includes imagery from
CogniSAT-6/HAMMER, 2024, Open Cosmos Limited. All rights reserved.

Figure 5: The detection of vegetation for a CS-6 scene (left) using three spectral analysis algorithms. Includes
imagery from CogniSAT-6/HAMMER, 2024, Open Cosmos Limited. All rights reserved.

models are then tested on Myriad X Neural Compute
Stick(s). Finally, the models are executed on a flatsat
testbed at Ubotica before upload and use onboard CS-6.

We have developed dozens of models for the appli-
cations listed previously. An initial, small set of these
models have been verified on the flatsat testbed and are
pending flight on CS-6 in September of 2024. These
models include CNNs for cloud screening, surface wa-
ter extent, and thermal activity detection. Figure 4
shows the classification of clouds and surface water ex-
tent for two scenes taken by CS-6 as would be computed
onboard. The demonstration will include the collection
of a scene, the onboard data inference of that collection,
and the receipt of an ISL message containing a sum-
mary of the data. The complete data and segmentation
will be received via a downlink after the experiment for
further analysis.

The spectral analysis algorithms will be demon-
strated onboard CS-6 after the CNNs in the fall of 2024.
On ground hardware, the algorithms have been verified
for mineral and vegetation detection applications with
CS-6 imagery as shown in Figures 5 and 6.

4 CONCLUSION

Leveraging edge computing for onboard data analysis
is an exciting new capability of Earth-observing assets
that opens the door for new Earth science. Spectral anal-
ysis can provide insights into high dimensional data.
Image analysis can quickly detect features of interest
in scenes. Engineering these processes to execute at

Figure 6: Comparison of vegetation spectra: CS-6 im-
agery (blue) vs. one example from the USGS spectral
library (orange).

the edge requires lightweight and efficient models that
maintain high performance. We hope to advance the
technology readiness level of this capability to enable
deployment to future Earth-science missions. In addi-
tion to demonstrations of more applications and mod-
els onboard CS-6, we have plans to deploy these mod-
els to more spacecraft. We also plan to integrate the
onboard inference with other technologies such as dy-
namic targeting and multi-asset federated scheduling in
future flight demonstrations [12], [13].
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