

1
American Institute of Aeronautics and Astronautics

AIAA 2001-4681

LEVERAGING MIDDLEWARE-BASED INFRASTRUCTURE FOR REMOTE
EXPLORATION

Anthony.Barrett@jpl.nasa.gov, M/S 126-347, 818-393-5372

Thomas.McVittie@jpl.nasa.gov, M/S 126-255, 818-393-5052
Norman.Lamarra@jpl.nasa.gov, M/S 126-201, 818-393-1561
Larry.Bergman@jpl.nasa.gov, M/S 126-254, 818-393-5314

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr, Pasadena, CA 91109

ABSTRACT*
Middleware can improve the capability of business and
science applications by providing “standard” shared
services to reduce the complexity or increase the
capability of every participating application.
Successful examples of this approach (such as multi-
tier client/server and more recent portal-based
architectures) have fueled the growth of "enterprise-
level" applications, providing better integration and
more rapid adaptability of business in many fields.
Unfortunately, science and engineering application
development has not kept pace with evolving
middleware techniques, especially in aerospace and
defense systems, partly due to the complexity,
criticality, and length of the system lifecycle for such
systems (typically many years). We are therefore
attempting to reap some of the benefits of middleware-
based application development for Remote
Exploration, by proposing development of evolvable
services to enable the building of enhanced mission
applications more simply. This paper describes
middleware systems developed at JPL, shows how
leveraging middleware implementation strategies can
facilitate building a mission operations system for
managing multiple interacting missions on Mars, and
proposes an approach to implementing demonstrations
as part of a roadmap providing progressively more
intelligent remote exploration.

1. INTRODUCTION
Over the past forty years fifteen missions have
successfully sent spacecraft to Mars. While Mariner 4
was the first spacecraft and simply flew by Mars in
1964, later spacecraft were progressively more complex
and capable. Orbiters (like Mariner 9 and Mars 3)

* Copyright  2001 by the American Institute of
Aeronautics and Astronautics, Inc. The U.S.
Government has a royalty-free license to exercise all
rights under the copyright claimed herein for
Governmental purposes. All other rights are reserved
by the copyright owner.

followed fly-bys in 1971. While Mars 3 also dropped
a lander, it stopped transmitting twenty seconds after
landing. Viking 1 heralded the age of Mars landers
by reaching the surface in 1976 and surviving for six
years. In 1993 the loss of the Mars Observer orbiter
signaled the end of billion-dollar ten-year spacecraft
development cycles; the focus shifted to using recent
miniaturization techniques to develop smaller but
more frequent missions and the goal of “faster, better,
cheaper” was articulated by NASA. Finally,
Pathfinder started the age of robotic rovers in 1997.

As depicted in figure 1, the operations process for past
Mars missions, as well as any spacecraft in deep
space, involves a six-step cycle including: (1) science
plan generation, (2) command sequence generation/
validation, (3) uplink of the new sequence, (4) sensor
data acquisition, (5) telemetry downlink, (6) science
and engineering analysis. During downlink, a
spacecraft transmits mainly raw sensor data to the
ground. Engineering analysis extracts spacecraft
health and status, while science analysis computes
science products that help researchers answer the
questions that originally motivated the mission.
Often these products raise more questions than they
answer, and new investigations to answer these
additional questions are inserted into the science plan
generation process. The entire set of investigations
combine to generate observation schedules, which are
passed to the command sequence generation and
validation process. This process expands a schedule
into a sequence of commands to articulate the
instruments and collect data for downlink to Earth,
while avoiding any flight rule violations that could
endanger the spacecraft. After uplinking the
validated sequence, the cycle returns another batch of
downlinked data/telemetry to start the next cycle.

Today, we are receiving Mars Global Surveyor
telemetry, and several Mars missions are planned over
the next several years. In addition to illustrating the
six-step operations cycle, figure 1 depicts a view of
the “problem space” for communication and control

2
American Institute of Aeronautics and Astronautics

of spacecraft and instruments in deep space, via JPL’s
Deep Space Network (DSN), showing ground
processing, transmission/reception, on-board
processing, and eventual science production. While all
missions tend to take the same approach to operations,
most missions have unique software infrastructures and
communications protocols. International bodies such
as the CCSDS attempt to standardize such
communications protocols, and the newly-formed
Space Standards Working Group of the Object
Management Group (OMG) is addressing software
infrastructure issues. The objectives of these groups
mainly revolve around reducing the cost/risk of
building mission operations systems.

The main bottlenecks in the current approach to
mission operations involve (1) the low communications
bandwidth for downlinking data, and (2) the needed
negotiations between the science team and the
operations staff needed for generating each command
sequence. These two bottlenecks drive missions to
produce sub-optimal command sequences that produce
sharply restricted amounts of data. This paper
addresses how standardized middleware software
technology can assist in relaxing these bottlenecks for a
Mars campaign, and suggests areas for potentially
fruitful future study. In the next section we describe 3
approaches to easing the bottlenecks. Section 3
subsequently describes the current state of the art in
application middleware in order to set the stage for
section 4, where we describe both an existing
middleware application and an example scenario on
using middleware to enhance exploration on Mars in
2007.

2. IMPROVING ACCESS TO MARS

While more recent Mars missions are more complex,
all missions have shared a simplifying assumption –
each operated in isolation. By contrast, cooperative
missions will succeed such isolated missions in the
future, requiring yet further software complexity. The
international science community is planning sixteen
missions to Mars over the next ten years (figure 2),
and these missions will cooperate in multiple ways.
Earlier missions will provide precision approach
navigation for later missions, and real-time tracking
for critical events like descent and landing or orbit
insertion. Orbiters will provide relay services to
landed assets and positioning services to rovers and
other mobile “scout” missions. All missions will
cooperate on radiometric experiments and
maintaining a common time reference for relating
data between missions. These features have been
conceptualized as a “Mars Network” of orbiting
satellites1. While all missions will improve the
potential for collecting data on Mars by placing
multiple sensors, actually realizing this potential
requires improving mission operations tools and
techniques both to command the sensors and to collect
the resultant raw measurements.

Scientist to Instrument Connectivity

Within the Mars exploration context, one useful
operations improvement is to make it easier for
scientists to control their experiments. During
Sojourner operations2, new command sequences were
uplinked early to mid-morning on Mars and data was

External
Science

Community

Data
Acquisition

and
Command

Mission
Operations

Instrument/Sensor
 Operations

Data
Archive

Data
Processing

Data
Analysis

and
Modeling

Data/Information
Distribution

Science Team

Spacecraft and
Scientific

Instruments

Relay Satellite

Orbiter / lander

Spacecraft and
Scientific

Instruments

from P. Shames, JPL

 Low bandwidth

 Slow turn around
1

2

3

4

5
6

4

Figure 1. Problem Space Domain for Space Standards Working Group of OMG (see text)

3
American Institute of Aeronautics and Astronautics

downlinked at three times during a sol (Martian day):
just prior to the uplink, at Martian noon, and mid- to
late-afternoon on Mars. While the early downlink was
used to assure that no contingencies invalidated the
next command sequence, the operations cycle for
generating the next day’s sequence started after the
late-afternoon downlink. Given that Sojourner
command sequences were manually generated, the
daily operations efforts were arduous. Scientists had to
quickly generate an initial observation plan and
negotiate with the command sequencing personnel to
generate a sequence to uplink. This negotiation can
both add and remove observations as opportunities and
problems are found while validating the sequence, but
the cycle must complete before the next morning’s
uplink. While this hard deadline was adequate for
Sojourner (which could only travel a couple meters per
sol), such a deadline would be unnecessarily restrictive
for the Mars Exploration Rovers (MER) in 2003.
These rovers can travel up to 100 meters per sol,
providing many more observation opportunities to
choose from on each operations cycle.

One way to accelerate this process (and increase the
amount of resultant science data) uses automation both
to interpret the downlinked data and to automate parts
of the command sequencing and validation steps. In
this way, a scientist has more time to generate an
observation plan and she can continually validate
observation plans during the generation process.
Figure 3 illustrates such a system3 that was prototyped
using the ASPEN planner/scheduler and the Web
Interface for TeleScience (WITS). While the ASPEN

system automated much of the command sequence
generation and validation process, WITS provided an
interface for developing science plans, resulting in a
more direct link between the scientist and her
experiment.

Improved Average Downlinked Data Quality

Another approach to improve remote asset utilization
involves increasing the amount of information
delivered to a scientist. While an instrument can
produce prodigious amounts of raw data, the
communications system can currently only deliver a
small percentage of it to a mission scientist. For
instance, there are plans to put a camera on the Mars
Reconnaissance Orbiter that can image spots on the
Martian surface to a 20-cm resolution. At this
resolution, there are 3.6×1015 pixels on the surface of
Mars. Supposing 12 bits of information per pixel,
and a 2:1 lossless compression algorithm, the camera
can generate 2.2×1016 bits of information. Using the
DSN, an orbiter like Mars Global Surveyor (MGS)
can downlink about 85 Kbps during about 8 track
hours per day, resulting in 8.5×1011 downlinked bits
per Earth year. Thus only 0.0039% of the Martian
surface can be delivered per Earth year as raw 20-cm
resolution imagery using such a link.

This provides a strong motivation for improving the
proportion of desired information in the downlinked
data, via intelligent remote data handling. Such
intelligence might include techniques for remote
science analysis and data mining, data compression
and fusion, and event-driven data handling4. From

Figure 2. Future Missions to Mars

4
American Institute of Aeronautics and Astronautics

the perspective of figure 3, we can implement the
enhancement by migrating parts of the science-
processing task onto the spacecraft in order to
prioritize the raw data by its information content. For
instance, a scientist might be particularly interested in
smooth round Martian boulders and their surrounding
environment to prove the persistent existence of
running water over Martian centuries. With this in
mind, the scientist could utilize an automated on-board
pattern-matching algorithm for finding pixel patterns
indicating smooth round rocks. She can then request
many more desirable images, and use the algorithm to
prioritize those for downlink, perhaps dropping low-
priority images due to the bandwidth limitations.

Opportunistic Science

A third technique to improve Mars access involves
opportunistically gathering science data while
interacting with a poorly-modeled environment. For
instance, during each sol, MER rovers can travel up to
100m, thus there are high probabilities of unexpected
observation opportunities between downlinks.
Capturing these opportunities involves extending the
remote science processing to initiate new observations
as well as prioritize collected data from the
observations scheduled from Earth.

Thus, in addition to extending the remote science-
processing element, enabling opportunistic science
involves migrating parts of all six operations steps onto
the spacecraft to enable autonomous operations. With
sufficiently successful autonomy, scientists and
operations staffs would no longer need to generate a
low-level command sequence – rather, they would
interact with the spacecraft by sending observation and
maintenance goals or agendas. Given these agendas,
an on-board science-processing component analyzes
sensor data to determine data downlink priorities,
makes improvements to an investigation’s current
observation agenda, and both detects and responds to

unexpected phenomena. Observation agendas would
include both scheduled periodic observations as well
as aperiodic observations in response to detecting
unexpected phenomena, and scientists alter these
agendas as new discoveries evolve the focus of their
investigations. Different agenda components would
interact, e.g., the maintenance agenda might affect
the telemetry-processing agenda due to detecting wear
trends and diagnosing faults.

3. MIDDLEWARE TECHNOLOGY
Three approaches were introduced in the previous
section to improve remote exploration: a) improving
scientists’ control of experiments; b) improving the
quality of the downlinked raw data; and c) enabling
opportunistic science. This section explores how
middleware could assist with addressing each of these
needs. The first approach could be addressed by
considering the two-way conversation between the
scientist and the instrument (figure 1) as utilizing an
intelligent “channel”, capable of receiving high-level
requests from the scientist, and supplying high-quality
prioritized data. From the perspective of Figure 3,
this involves migrating parts of all ground operations
processes onto the spacecraft to assure that it can
satisfy such high-level requests while avoiding risks
to the system’s safety5. Issues such as security
(instrument accessible only to authorized personnel
for each context), could be handled by the
middleware. Both the first and the second approach
(improved downlink data quality) suggest the need for
intelligent remote data handling, including techniques
for remote science analysis and data-mining, data
compression and fusion, and event-driven data
handling. The third approach (opportunistic science)
could be enhanced by improved leveraging of remote
resources such as planning, scheduling, science
processing, etc. More generally, these three
approaches motivate accumulation of a set of reusable
remote IT resources (such as intelligent data handling

Science
Processing
Science

Processing

Telemetry
Processing
Telemetry
Processing

ASPEN
WITS

Science
Processing
Science

Processing

Telemetry
Processing
Telemetry
Processing

ASPEN
WITS

Figure 3. Automated rover command generation with ASPEN and WITS

1
2

34

5

6

5
American Institute of Aeronautics and Astronautics

as mentioned), which can simultaneously address more
than one set of needs. We call this “shared
middleware”, and address recent software trends that
may make this feasible for exploration.

State of the Art

Historically, software applications were built directly
on top of the platform’s operating system. A later
trend towards separating “user interface” from
“business logic” and “data access” fostered n-tier
client/server computing, and improved modularization
of code. Later, abstraction of the operating system
interface and improved networking technology made
building such distributed applications easier, hence the
recent growth of “standards-based” middleware. Issues
such as performance, service level, and software
architecture are addressed for particular applications to
ensure that a proposed solution meets multiple
objectives (including affordability).

Taking a “shared middleware” approach toward
defining and building software services can
dramatically simplify application development, thus
enabling those approaches to improving access to Mars
defined above. Modern COTS middleware can
elegantly address such issues. For example, CORBA
provides a service infrastructure with pluggable
components, freeing applications from having to
implement such features separately. Also, pluggable
components are “replaceable” with alternatives
performing the same function but providing additional
features. For example, “remote method invocation”
can be replaced by “reliable remote method invocation”
with little or no need for change to the client
application, as long as the request is properly satisfied
(i.e., unchanged interface). Providing such
“enhanced” capabilities is much simpler with
standards-based common services and the component
software approach.

An example service that can significantly simplify
application development is the “CORBA Event
Service”. Using such a service lets the developer avoid
having to implement his own event loop (for every
application), in favor of “publishing” or “subscribing”
to particular types of events in a standard fashion
whatever the meaning of the “event”. At the science
application level, such a service could help make a
remote planning decision based on subscribing to
information about remote resource location and
availability without operator intervention. This could
dramatically reduce the 6-step cycle time described
above and enable opportunistic science on the rover.
Further, using asynchronous event services can make
resource use even more efficient; for example, a
requester can perform other useful work while waiting

for the response, which is handled in a standard way
(e.g., via a callback) when it arrives.

Middleware Applications at JPL

While this concept may appear far from reality for
low-cost space missions, given today’s confused
middleware environment, with its apparent plethora
of rapidly-obsolete standards, there are examples of
this approach being successfully prototyped and used
operationally in other contexts at JPL.

A first example application illustrates great
simplification of client software by migration to a
COTS-based service architecture6. Figure 4 shows a
prototype re-implementation of the monitor and
control information service (MCIS) deployed a few
years ago in JPL’s Deep Space Network (DSN)
ground system. The original implementation was an
entirely custom-built publish/subscribe service costing
several work years to design, implement, test, and
deploy. By replacing the underlying custom service
with the CORBA event service (itself built upon other
standard CORBA services), with a COTS
implementation based on freely-available open-source
in The ACE Orb (TAO)7, most of this original code
could be removed, without changing the client and
server API. Apart from the benefit of significantly-
reduced maintenance for the JPL-written custom code,
and the leverage of 20+ work-years of effort in
building TAO, other applications could then use
standard CORBA event service (for very different
purposes). Moreover, the service itself could even be
evolved independently from the application code (e.g.,
to adapt to characteristics of an interplanetary vice
standard terrestrial internet), again potentially
benefiting all service users at once, and still with little
or no change to application code or API.

Another JPL middleware-based application, called
Shared Net, has been developed and is currently being
field tested by the United States Marine Corps. It
demonstrates how middleware-based services can be
used to greatly enhance the capabilities of
independent systems. The IMMACCS system8 (of
which Shared Net is a part) is comprised of a
collection of several hundred sensors, users,
intelligent agents, and existing data collection and
analysis systems. These components are hosted on a
number of different hardware platforms and are
scattered across a wide geographic area. IMMACCS
components generally operate autonomously, but
occasionally need to collaborate with each other to
share relevant information and to coordinate their
activities. Likewise, the components occasionally
need to download information to one or more

6
American Institute of Aeronautics and Astronautics

command and control centers, and retrieve new
instructions (missions).

Like our situation with the Mars Reconnaissance
Orbiter, IMMACCS components have far more data to
share than the network has capacity. Since both
IMMACCS components and the network nodes are
constantly moving, the precise connectivity and
capabilities of the network are constantly changing.
For example, components located in an RF shadow
(say a canyon) may only have connectivity when an
airborne or low orbit relay is overhead. In some
instances, a dynamic change in the configuration of the
network requires the use of entirely different
communications protocols.

Prior to Shared Net, the components were responsible
for managing their own communications and users
located in remote command centers generally mediated
the communication between the components manually.
The approach has a number of disadvantages:

• Each component must understand and adapt to the
state and capabilities of the network. This is an
exacting task, and conflicting approaches could be
disastrous.

• Components are unaware of each other’s
communication needs and have no way of jointly
arbitrating the use of the network. This can result
in substantial delays in transmitting critical data
while another is transmitting less critical data.

• Collaboration between components is limited by
the long-haul connectivity to the command center.
This may significantly delay the movement of

critical information between components in close
physical proximity.

• A translator is needed to translate between each
distinct combination of data formats or protocols
used by the various components.

Under the Shared Net approach, the various
components share information via a set of common
middleware-based data-management and distribution
services. They can update the shared knowledge base
by making changes to the common object repository
and learn about information shared by others by
querying the Object Repository, or by subscribing to
the creation, deletion or modification of specific types
of information (e.g., by subscribing to changes to the
mission directives assigned to me). In effect, the
publish-subscribe model provides a client (or user)
with an information feed tailored to their specific
needs. The implementation of the core information
management services is intentionally transparent to
the clients. This approach allows the services to
adapt to a variety of different configurations and
contingencies without requiring any changes to the
clients. The core information management and
distribution component is comprised of the
middleware services shown in Table 1.

These services allow IMMACCS components to be
plugged into the network much the same way in
which hardware cards are plugged into a computer
bus. Even though the components were written in
different languages, by different organizations, and
hosted on diverse CPUs and operating systems, the
middleware approach allows the components to

Event
Channel

Naming
Service

ec

orb

Naming
Client

poa

Servant/
Consumer

Consumer

ec

orb

Naming
Client

poa

Servant/
Supplier

Supplier

Consumer_Imp Supplier_Imp

Supplier
Proxy

Consumer
Proxy

QOS QOS
Parser

MDSdata

Note:

Customized components

TAO-provided components From Laverne Hall

Event
Channel

Naming
Service

ec

orb

Naming
Client

poa

Servant/
Consumer

Consumer

ec

orb

Naming
Client

poa

Servant/
Supplier

Supplier

Consumer_Imp Supplier_Imp

Supplier
Proxy

Consumer
Proxy

QOS QOS
Parser

MDSdata

Note:

Customized components

TAO-provided components From Laverne Hall

Figure 4 Example Monitor and Control Information Service Re-implementation

7
American Institute of Aeronautics and Astronautics

efficiently share information and isolated them from
knowledge of the current network configuration and
status. In addition, they do not need to be aware of
exactly who is providing/requesting the information
nor of the specific information format or
communication protocol used by the other components.
This allows new components or services to be added to
the system without requiring code changes to the
existing components.

Not surprisingly, this architecture also provides an
excellent environment for supporting agent-based
expert systems. Agents are themselves objects (albeit
with behaviors) that live within and collaborate with
each other via the Shared Net. The common
representation of information also allows the agents to
“reason” about the information without needing to
understand the particular data format used by the
originating system (rather it uses the translation
service to mediate).

4. MIDDLEWARE APPLICATIONS IN
MARS PROGRAM

Both of the previously-described JPL middleware
applications demonstrate the feasibility and benefits of
developing middleware-based services to improve
access to Mars as described in Section 2.

At a minimum, we can gain an unparalleled level of
flexibility and adaptability by building a service-
oriented architecture based on middleware. In some
instances existing COTS middleware services (such as
object repositories and persistence) will directly meet
our needs. In other instances, particularly where our
needs diverge from the standard COTS
implementations, we can transparently modify the
services to add features such as “reliable data
transfer”, “fault tolerance” or even adaptations to
different network protocols. This approach also
provides benefits such as improved reconfigurability
for unforeseen future uses. Recently, the loss of a star
tracker in the DS1 spacecraft did not result in
catastrophic loss of navigation capability, because a
camera could be reprogrammed to act as a star
tracker. An on-board architecture capable of
achieving this is already under development within
JPL’s Mission Data System9. We apply similar
reasoning to the leveraging of distributed resources
via middleware services.

However, as shown in the Shared Net example,
middleware can also serve as an enabler allowing us
to build collaborative (or at least cooperating)
communities out of the independently developed
systems that will be deployed on Mars over the next
few years.

Service Description
Object
Repository &
Persistence

Maintains a rich object-oriented representation of the information and data provided by each
component. For example, it contains objects representing physical assets with their location &
capabilities, mission objectives, planned/actual traversal routes, weather readings, topology, and
seismic sensor readings. Additionally, the service interacts with several different databases and
file systems to save the information to non-volatile storage.

Publish &
Subscribe

Dynamically manages the flow of information across the networks in order to satisfy both static
system-wide priority policies and the quality of service required by dynamic subscriptions. It
allows components to specify interest in specific types of information maintained by Shared Net
(e.g., inform me when a mission objective has changed or when the weather data indicates an
approaching storm). When a subscription is met, the Shared Net will pre-stage the information in
the component’s local cache. Subscriptions can also include a quality of service that indicates the
relative importance of the subscription to the component.

Information
Prioritization

Prioritizes information based on a set of rules. It coordinates with the communication services to
determine which information should be transmitted given the available bandwidth.

Data Archival
& Replay

Maintains a detailed history of events occurring on the server. This allows an interested
user/system to retrieve and replay events that occurred during a specified period of time.

Aggregation Uses a set of rules to summarize low-level data into a more compact form. For example, it may
take a set of periodic sensor readings reporting the same data readings and create a new summary
object indicating that the reading held over a period of time. This allows the summary object to
be transmitted to interested users/systems while retaining the raw data.

Query Allows users to retrieve objects that meet specified criteria.
Translation Provides bi-directional translation between the component’s native data format and the object

representation. This service allows any system to send relevant information to any other system.
Fault Tolerance Provides automatic & transparent replication of selected services and objects on either the same

or different processors.

Table 1 Shared Net Middleware Services

8
American Institute of Aeronautics and Astronautics

Interacting Missions on Mars in 2003

In 2001 Mars Odyssey starts orbiting Mars, collecting
data with its three primary instruments, and beaming
that data back to earth. Among these instruments, the
thermal emission imaging system (THEMIS) generates
the lion’s share of the data†. This instrument can
image the surface of Mars to a 20-meter resolution at 5
different visible spectral bands during the day, to a
100-meter resolution at 9 different infrared spectral
bands during the day, and to a 100-meter resolution at
2 different infrared spectral bands at night. Since
Mars has 1.45×1014 square meters of surface, the three
instrument mode data volumes are 8330Gb, 667Gb,
and 133Gb respectively. Adding these volumes and
supposing that Odyssey can downlink 70Mb per day
results in discovering that it would take over 300 years
to downlink all possible measurements. For this
reason Odyssey will continue to collect THEMIS data
even after two MER missions place rovers on Mars,
and Odyssey picks up an extra data relay duty.

Within the 2003 time frame, Odyssey will make 3
different sensors available to the Mars Program: a
gamma-ray spectrometer, a radiation environment
sensor, and the THEMIS. At the same time each rover
will make its suite of sensors available. While this
suite has not been determined yet, research into similar
“Athena class” rovers has involved 5 different sensors:

† Our data on Mars Odyssey comes from the “2001
Mars Odyssey Fact Sheet” available at the Odyssey
gamma ray spectrometer team’s website:
http://grs8.lpl.arizona.edu/faq/

a panoramic camera, an miniature thermal emission
spectrometer, a Mössbauer Spectrometer, an alpha
proton X-ray spectrometer, and a microscopic imager
with a rock abrasion tool. While the data rates for
these instruments are still unknown, the rovers are
being designed to be able to traverse up to 100 meters
per sol, and the Odyssey UHF radio can receive >100
Mbits over an 8 minute time window each sol when
the orbiter flies over a rover. Thus Odyssey can
receive over 200 Mbits per sol, but only pass on
70Mbits per day. While each rover can circumvent
Odyssey and transmit directly to Earth, a rover’s
relatively small solar panel and antenna implies a
much lower transmission speed. Thus the three
missions will compete for Odyssey’s downlink
transmission bandwidth.

This interaction can be finessed away by strategically
sequencing and all communications activities and
amounts months in advance and scheduling other
operations around the communications activities on a
daily basis, but this approach causes a fair amount of
inefficiency. Consider a scenario where MER-A is on
a long traverse while MER-B has just found a rich
source of data. Given a strategic communications
plan for each rover to use 35 Mb of Odyssey’s
downlink bandwidth, neither MER-B nor Odyssey can
take advantage of MER-A’s wasted bandwidth. Even
worse, MER-A has to stop its traverse and waste both
its and Odyssey’s time/energy to transmit even though
it has little data to transmit. While this approach is
better than having each mission run in isolation, it
does not take full advantage of the multiple missions.
Taking full advantage involves dynamically allocating

Figure 5. Multiple Mars mission software architecture based on the Shared Net enabled IMMACCS model.
All components communicate via a common data management and distribution service, which relies
heavily on middleware services

Data management & Distribution Service

Telemetry &
Science

Processing
Agents

Shared Network

Metadata
Service

Persistence
Service

Publish
Service

Subscription
Service

Operations Planners

Science Planners

Odyssey

MER-A MER-B

Earth

Mars

9
American Institute of Aeronautics and Astronautics

bandwidth to maximize the amount of downlinked
data. This involves dynamically coordinating the
missions’ sequences as they evolve.

Middleware-Based Application Architecture

A straightforward middleware-based service approach
(shown in Figure 5) could also be used to coordinate
the applications. A set of generic services similar to
those provided by Shared Net could be provided, but
specifically tailored to our needs. For example, the
software bus would need to allow components to
transparently be plugged in either on Earth or in situ.
Likewise, the Object Repository, and a suitably
modified data distribution service could maintain and
distribute the telemetry and commands for these assets
both locally on Mars, and over the long-haul to Earth.
Since the middleware understands the priority of the
information and the current capabilities of the network,
it effectively provides an intelligent store-and-forward
capability mediating between Earth and the fielded
resources. Priority information could be dispatched
(and even preemptively retransmitted based on past
transmission receipt behavior), with lower priority
information being sent if bandwidth is available.
Summarization agents could be used to collapse near
identical data sets while allowing the scientist to later
request the raw data download stored by the Data
Archive service.

Supporting Autonomous Operations

Lastly, Figure 6 shows an example of a collaboration
architecture that builds upon the same middleware-

service approach. However, instead of merely
collecting and distributing information, the
middleware becomes a hub for collaboration where
each resource (sensor web, rover, etc) utilizes services
provided either by other resources, or by the
infrastructure (data management, communication).

For example, a weather sensor web could regularly
send out particulate readings (measuring the amount
of material suspended in the atmosphere), which
would be stored by the Object Repository. Individual
rovers could subscribe to be notified if the particulate
count in their adjacent geographic area exceeds a safe
level. Upon receiving a notification, the rover could
shield its optics. Note that the same notification could
be triggered if an orbiter’s camera (or other
instruments) detected an emerging sand storm.
Likewise, an atmospheric scientist might ask for
individual readings to be transmitted at a low priority,
but ask for summary information to be transmitted
hourly, or more often if the deviations in the
observations exceed a particular threshold.

Combined with in-situ planners, the collaboration
approach could enable opportunistic science. For
example, a rover’s report on a particularly unusual
(and unexpected) rock could result in the planner
retasking the rover to refine the investigation, or even
scheduling other resources (such as orbital platforms
or rovers equipped with additional sensors) to
investigate.

Generic Middleware Services
Collaborative Applications

Provide mineral data
Subscribe to regional weather data
Subscribe to mission guidelines
Subscribe to adjacent rovers health

Subscribe to priority mineralogy
Provide mission guidelines
Query for detailed raw data

rovers

Sensor webs

Provide weather data
Provide seismic data

Data Store(s)
persistence replication ...

Access
control Validation Priority

Distribution
(p&s)

Bandwidth
Utilization

Query Update Management

Application(s)

Geology
agent

Geology
agent

Geology
agent

Fusion
agent

Collector
proxy

Generic Middleware Services
Collaborative Applications

Provide mineral data
Subscribe to regional weather data
Subscribe to mission guidelines
Subscribe to adjacent rovers health

Subscribe to priority mineralogy
Provide mission guidelines
Query for detailed raw data

rovers

Sensor webs

Provide weather data
Provide seismic data

Data Store(s)
persistence replication ...

Access
control Validation Priority

Distribution
(p&s)

Bandwidth
Utilization

Query Update Management

Application(s)

Geology
agent

Geology
agent

Geology
agent

Fusion
agent

Collector
proxy

Figure 6. Example Software Architecture Enabled by Middleware Services

10
American Institute of Aeronautics and Astronautics

The flexibility of the architecture also allows
contemplation of an “evolvable” set of such services,
progressively implemented by successive Mars
missions, each contributing capability to the overall
Mars environment as a secondary goal to their primary
(sensor) science goals.

5. PROPOSED PROTOTYPING
APPROACH

In order to develop and validate the concepts described
here, we have proposed a prototyping approach to
progressively increase confidence in their readiness
and applicability for near-term missions. We begin by
sketching an initial simple testbed configuration,
consisting of workstation and target platforms, the
latter represented by a “flight” CPU (e.g., 200MHz
Power PC), and perhaps a “science” CPU (e.g., a
400MHz Power PC or Pentium) in a VME card cage.
This cage provides a “simulator” capability for testing
and demonstration of simple applications built upon a
simple middleware infrastructure (and could also use
MDS components if available). At first, a basic
communications layer would be provided by standard
middleware (e.g., ACE/TAO), in order to demonstrate
the feasibility of hosting such basic services on
simulated flight hardware. Next, An initial proposed
example application is WINDS, whereby a “local”
model of the Jupiter atmosphere is built from
successive measurements. The application would take
simulated imagery from Voyager, Galileo or Cassini
data, and image-processing algorithms (currently
implemented on a ground workstation), and
determining the feasibility of migrating such software
to the simulated flight environment as a set of software
components plugged into the middleware backbone.
Generic application services (e.g., data management,
publish/subscribe) would then be progressively added
to this environment to determine the benefits of
application flexibility and adaptability. The goal at
this stage would be to measure whether additional
applications become successively easier to implement
into the evolving service environment, compared to the
effort of building the first (standalone) application. If
appropriate services are properly chosen for
implementation, the effort to implement new
capabilities should significantly reduce, as was
demonstrated in the two unrelated JPL applications
above.

As engineering hardware becomes available (e.g.,
FIDO rover), a more complex application would be
implemented, e.g., MISUS as described above. This
would be the first attempt to implement goal-based
science objectives, and requires several services to be
available in possibly-changing configurations. At this

stage, some of the required components could remain
on workstation platforms, interacting with the
simulated flight hardware using middleware
communications services – indeed, this would
indicate the feasibility and problems of such a
distributed approach without having to port each
application component to the flight platform. The
prototype testbed would then be ready to demonstrate
middleware-based central planning, central science
module, continuous planning and simulated on-board
science analysis and platform control with a resource
profile. Such ambitious application integration has
been contemplated but not demonstrated for flight
environments; the proposed prototype would therefore
address many of the questions and concerns that have
prevented this in the past, as well as determining the
practicality of the middleware-service approach for
such potentially-limited flight platforms (low CPU
speed, small RAM, unreliable network). It also
determines the likely timeframe when such
applications would be feasible (based on simple
prediction of the growth in flight computer resources
over time).

6. CONCLUSIONS
We believe that middleware is heading towards
commodity COTS product availability. Many market
segments are driving this trend, and large enterprises
expect COTS middleware to solve many of their
large-scale application integration problems. The
consumer market demands such supplier integration;
requiring coherent information access and
modification hardly conceivable a decade ago. We
believe that such levels of integrated “science service”
are attainable for space exploration, and indeed are
required in order to make such exploration more
affordable (i.e., reduced failures, increased return on
investment). Coupled with higher-performance
communication technology (e.g., optical
communication) and processor speed, we expect
feasible operation of an evolvable set of middleware
services on the next generation of low-cost missions.
Looking further ahead, we believe the esoteric
technologies of virtual multimedia and even quantum
computing may be harnessed to improve the
effectiveness of our interaction with remote space
environments, and to progressively engage the public
in such science exploration.

ACKNOWLEDGEMENTS
The research described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration. The Shared
Net development is sponsored by the Office of Naval

11
American Institute of Aeronautics and Astronautics

Research, and the Marine Corps Warfighting
Laboratory. The authors express appreciation for the
contributions made by the MarsNetIT study team at
JPL in Summer 2000, supported by JPL’s Center for
Space Mission Information and Software Systems
(CSMISS), and also for the support of the Mars
Network Project Office.

REFERENCES
[1] R. J. Cesarone, R. C. Hastrup, D. J. Bell, D. T.

Lyons and K. G. Nelson, "Architectural Design for
a Mars Communications & Navigation Orbital
Infrastructure," presented at the AAS/AIAA
Astrodynamics Specialist Conference, Girwood,
Alaska, August 16-19, 1999.

[2] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B.
Cooper, B. Wilcox, “Experiences with Operations
and Autonomy of the Mars Pathfinder
Microrover,” proceedings of the 1998 IEEE
Aerospace Conference, March 21-28 1998,
Snowmass at Aspen, Colorado.

[3] R. Sherwood, A. Mishkin, T. Estlin, S. Chien, S.
Maxwell, B. Englehardt, B. Cooper, G. Rabideau,
“An Automated Rover Command Generation
Prototype for the Mars 2003 Marie Curie Rover,”
SpaceOps 2000, Toulouse, France, June 2000.

[4] R. Manduchi, S. Dolinar, A. Matache, F. Pollara,
“Onboard Science Processing and Buffer
Management for Intelligent Deep Space
Communications,” proceedings of the 2000 IEEE
Aerospace Conference, March 18-25 2000, Big
Sky, Montana.

[5] T. Estlin, T. Mann, A. Gray, G. Rabideau, R.
Castano, S. Chien and E. Mjolsness, “An
Integrated System for Multi-Rover Scientific
Exploration,” Sixteenth National Conference of
Artificial Intelligence (AAAI-99), July 1999,
Orland, FL.

[6] L. Hall, C. Hung, C. Hwang, A. Oyake, J. Yin,
“COTS-based OO-Component Approach for
Software Inter-operability and Reuse (Software
Systems Engineering Methodology)” 0-7803-
6599-2/01, Proceedings of the 2001 IEEE
Aerospace Conference, Mar 2001 at Big Sky,
Montana.

[7] D. Schmidt, University of California, Irvine
(http://www.cs.wustl.edu/~schmidt/)

[8] J. Phol, M. Porczak, T. McVittie, R. Leighton,
"IMMACCS - A Multi-Agent Decision-Support
System," Technical Report CADRU-12-99, Cal
Poly San Luis Obispo.

[9] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks,
“SOFTWARE Architecture Themes in JPL’S
Mission Data System”, AIAA 99-4453.

BIOGRAPHIES

Anthony Barrett is a member of the Artificial
Intelligence Group, where his research and
development activities involve planning and
scheduling applied to controlling clusters of
spacecraft and managing the operations interactions
between collaborating flight projects. He holds a B.S
in Physics, Computer Science, and Applied
Mathematics from James Madison University, and
both an M.S. and Ph.D. in Computer Science from the
University of Washington. His research interests are
in the areas of planning, scheduling, and multi-agent
systems.

Thom McVittie is a member of the Reliable
Distributed Systems Group, where he focuses on
development of software architectures supporting
information collaboration across unreliable networks.
Dr. McVittie holds a M.S in Computer Architecture,
and a Ph.D. degree in Electrical and Computer
Engineering from the University of California, Santa
Barbara. His research interests include software
fault tolerance, distributed systems, and agent
architectures.

Norman Lamarra’s current primary focus is on
integrating Multidisciplinary Analysis Technology for
NASA’s Intelligent Synthesis Environment Program,
whose goal is to develop an integrated engineering
environment for the conceptualization, development,
and operation of future space systems. Dr. Lamarra
obtained the Ph.D. degree from UCLA in System
Science (Communications Systems) in 1982. He has
also worked for over 25 years in analysis &
simulation of radar systems and phased-array
antenna systems, and in real-time multiprocessing
simulators.

Larry Bergman is the Manager of the Engineering &
Communications Infrastructure Section, the Project
Engineer for the JPL Supercomputer Facility, and the
Program Manager for the Hybrid Technology
Multithreaded (HTMT) petaflops supercomputer
project. He obtained the M.S. degree from Caltech,
and the Ph.D. from Chalmers University,
Gothenburg, Sweden, both in electrical engineering.
His research interests are in terabit optical networks
and supercomputer technologies. He holds several
patents and has authored over 100 papers.

