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Abstract

This work describes a planning architecture for a het-
erogeneous fleet of marine assets as well as a method
for detecting and tracking ocean fronts using multi-
ple autonomous underwater vehicles. Multiple vehicles
— equally-spaced along the expected frontal boundary
— complete near parallel transects orthogonal to the
front. Lateral gradients are used to determine the loca-
tion of the front crossing from each individual vehicle
transect by detecting a change in the observed water
property. Adaptive control of the vehicles ensure they
remain perpendicular to the estimated frontal bound-
ary as it evolves over time. This method was demon-
strated in several experiment periods totaling weeks, in
and around Monterey Bay, California in May and June
of 2017. We discuss the challenges associated with the
implementation of the planning system. We show the
capability of this method for repeated sampling across
a dynamic two-dimensional ocean front using a fleet
of three types of platforms: short-range Iver AUVs,
Tethys-Class Long-Range AUVs, and Seagliders. This
method extends to tracking gradients of different prop-
erties using a variety of vehicles.

Introduction
Space-based remote sensing can provide extensive infor-
mation about ocean dynamics. However, remote sens-
ing information is generally limited to measuring the
ocean surface. To probe the ocean interior efficiently
requires marine vehicles such as autonomous underwa-
ter vehicles (AUVs), gliders, profiling buoys, surface
vehicles, and ships sampling in situ. Unfortunately,
building, deploying and operating these in situ ma-
rine robotic explorers is expensive. As a result, any
actual study involves a limited number of marine ve-
hicles, especially when compared to the vast expanse
of the ocean. Determining where to deploy and operate
marine assets is a challenging problem given the 4D spa-
tiotemporal variations in oceanographic phenomena.

The use of autonomous marine vehicles will increase
as the size of ocean observing systems expand in order
to study the impact of the oceans on Earth’s climate
and ecosystems. The day-to-day operations of these

systems will become increasingly difficult if human in-
tervention is required. In order to enable large observ-
ing systems to operate, techniques for autonomous con-
trol of assets based on science goals and data sources
such as in situ measurements, remote-sensing, and
model-derived data need to be developed. Such ob-
serving systems will incorporate a wide variety of ve-
hicles with differing capabilities. Planning and execu-
tion systems that leverage existing infrastructure help
to reduce the cost associated with the development and
maintenance of an observing system as well as maintain
flexibility with regards to the planning approach and
vehicle availability. The Keck Institute for Space Stud-
ies (KISS) Satellites to Seafloor project works towards
this goal of fully autonomous sampling [Thompson et
al., 2017]. Previous ocean observing systems have re-
lied on substantial human intervention or non-adaptive
sampling strategies, including the Autonomous Ocean
Sampling Networks (AOSN) [Curtin and Bellingham,
2009; Curtin et al., 1993; Haley et al., 2009; Leonard et
al., 2007; Ramp et al., 2009] and the Adaptive Sampling
and Prediction (ASAP) [Leonard et al., 2010] projects.

Our project targets automatic generation of coordi-
nated mission plans for teams of assets to follow science
derived observation policies (e.g. the use of multiple
vehicles to perform transects orthogonal to an ocean
front). This paper describes a planning and execution
system for a heterogeneous fleet of marine assets. To
highlight this system, an approach was developed using
multiple vehicles to make a linear estimation of an ocean
front’s geometry and to continuously direct a team of
marine robotic vehicles to perform orthogonal transects
with the midpoint of the transect roughly centered on
the target front. We describe both the general approach
to front-crossing detection, front-geometry estimation,
and multi-asset control, the architecture of the plan-
ning and execution system for a deployment using three
types of vehicles: short-range Iver Autonomous Under-
water Vehicles, Long-Range Tethys Autonomous Un-
derwater vehicles, and long-range Seaglider buoyancy
driven gliders in Monterey Bay in late spring 2017, the
results from the deployment, and the challenges associ-



ated with this system. This deployment was the result
of a team effort between the KISS project members and
the MBARI Spring 2017 CANON participants [Mon-
terey Bay Aquarium Research Institute, 2017]. The
method and systems presented here represent signifi-
cant steps towards the fully-autonomous adaptive sam-
pling framework as envisioned in Thompson et al.
[2017].

Front-Crossing Detection
Lateral Gradient Front-Crossing Detection

The KISS team developed an algorithm to identify a
subsurface oceanic front based on lateral gradients of a
given hydrographic property. This could be tempera-
ture, buoyancy or density (if salinity data is available),
or any available biogeochemical property such as dis-
solved oxygen or chlorophyll.

When in situ data is received in near real time, the
algorithm grids the data, smooths it by applying a sim-
ple linear weighted average of immediate neighboring
measured data points, and calculates the lateral gra-
dients (Figure 1). The algorithm uses temporal gra-
dients, and assumes that time can be linearly related
to distance. The algorithm then calculates the lateral
gradients along the transect within the layer of inter-
est (defined beforehand by the user) as well as the mean
value, and the standard deviation. The user also defines
beforehand the number of standard deviations used to
declare a front-crossing detection. All points above this
threshold are considered potential front crossings (Fig-
ure 2). To qualify for a frontal crossing, it is required
that the threshold is crossed twice (once entering and
once leaving the high gradient region). The width of
the front is used to choose the front crossing of interest
if more than one is present. The front location, width,
and time of crossing is then output for later use in ve-
hicle tasking. An example is shown in Figure 1 and
Figure 2. Time, as apposed to distance, is plotted on
the x-axis as that is what the algorithm uses. Using real
time data from May 4, 2017 (Figure 1d) the algorithm
detects five narrow subsurface fronts from 10 to 15 m
deep (Figure 2a), and selects the widest front (Figure
2d).

Autonomous Control of Underwater
Vehicles for Front Tracking

A technique was developed to control a group of vehi-
cles to repeatedly sample across a dynamic ocean front
as it evolves over time. The planner must be able to
modify the vehicle transects in order to adapt to the
changing ocean conditions. The control algorithm is
outlined in Algorithm 1 and shown in Figure 3. The
statements in which the planning system interacts with
the execution system (i.e. the vehicles) are highlighted.
When first deployed, an initial estimated front location
and orientation is manually provided based on available
data from other assets. The vehicles are equally spaced
along this estimated front. Each vehicle is commanded

Figure 1: Lateral gradient front-crossing detector. For
this example we use data obtained on May 4, 2017 from
Iver 136 (segment 000). Real-time in situ temperature
data (shown in scatter plot in panel a) is gridded (panel
b) and smoothed (panel c). Then, lateral gradients are
calculated (panel d). When used in real time, the algo-
rithm uses temporal gradients, and assumes that time
can be linearly related to distance.

on an initial transect orthogonal to the estimated front.
When the vehicle surfaces to plan, Algorithm 1 is ex-
ecuted. The vehicle location and the scientific data
from the current transect are retrieved from the ex-
ecution system as vehicle location and transect data
respectively. The vehicles location along the transect is
calculated as locationp by projecting the vehicles cur-
rent location onto the commanded transect. If the ve-
hicle has traveled a minimum distance along the com-
manded transect, specified by transect distmin, then
the front-crossing detection algorithm is run on the data
from this transect. The resulting front-crossing is de-
fined as new front crossing. If the vehicle is a spec-
ified distance past this new front detection, then the
front is re-estimated using linear regression on front
detections from all vehicles, otherwise the transect is
continued. When re-estimating, only certain front de-
tections from each vehicle are considered, specified by
valid front detections. We used two methods when
selecting the subset of detections used in the linear re-
gression: a time based approach where detections from
the last N hours were considered and a latest detec-
tion approach where only the last detection from each
vehicle was considered. These two approaches are de-
fined in the procedure get estimation crossings. The
new transectp is calculated such that it is orthogonal
to estimated front. The vehicle is then commanded
on this new transect. In order to prevent the vehicle
from leaving the study area, transect distmax is de-
fined. If a transect has reached this length the front is
re-estimated, a transect orthogonal to this is defined,

Copyright c© 2018, all rights reserved



Figure 2: (Continues from Figure 1) The algorithm cal-
culates the mean value of the lateral gradients over the
layer of interest. In this example, we use data from
10m to 15m. The algorithm calculates the mean value
(bold red line in panel a) and the n-standard deviation
(in this case, n=1.2; red broken lines in panel a). All
points above the n-value standard deviation are consid-
ered potential fronts (red circles in panel b). A boolean
is used to isolate the front crossings (panel c). The
width of the front is used to choose the front crossing
when more than one front is present. The crossing cho-
sen by the algorithm is marked with a red arrow.

and the vehicle is commanded on this new transect.

Pilot Experiment

Experiment Site

The pilot experiment occurred in Monterey Bay, Cal-
ifornia (36.80◦N, 121.90◦W) from May to June 2017.
The circulation in Monterey Bay is characterized by
a persistent coastal upwelling, in response to preva-
lent northerly winds, which generates highly-productive
cold coastal regions [Hickey, 1979; Lynn and Simpson,
1987]. In May 2017, an intensive upwelling plume
spread southeastward across the mouth of Monterey
Bay. A fleet of AUVs were deployed to detect and track
the fronts between the upwelling plume and the strati-
fied inner bay water. Over the shelf, KISS IVERs were
set to detect lateral gradients of temperature from 10m
to 15m. Over the slope, temperature in the upwelling
water column was remarkably homogeneous in the ver-
tical dimension. Over the slope, MBARI LRAUVs were
also set to detect lateral gradients of temperatures from
10m to 15m.

Glider retasking took place in June 2017, offshore
Point Sur, where the California Undercurrent (CU) be-
comes unstable [Molemaker, McWilliams, and Dewar,
2015]. Looking for the surface signature of the CU, one
Seaglider was set to detect lateral gradients of temper-
ature from 5m to 15m. The operations regions for each
vehicle are shown in Figure 4.
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Figure 3: Iver transects on May 11 with temperature
averaged from 10 meters to 15 meters plotted. Front
crossings are shown as blue dots and estimated fronts
are shown as blue lines. Each vehicle starting location is
labeled with the vehicle name and the date. The second
transect for each vehicle is orthogonal to the estimated
front from the front crossings on the first transect.

Instruments

This work was demonstrated across three types of un-
derwater vehicles: the OceanServer Iver AUV, the
Kongsberg Underwater Technology, Inc. Seaglider and
the MBARI Tethys-class LRAUV (shown in Figure 5).
The method is extensible to other platforms and in-
deed other domains where the vehicles are able to at
least intermittently transmit collected data and receive
new instructions mid-deployment.

Iver AUVs The highest speed observing platforms
used for this field experiment consisted of two Iver2
(Ocean Server Technology Inc.) autonomous underwa-
ter vehicles (AUVs) [Crowell, 2006]. Both of the ve-
hicles were equipped with a hull-mounted Neil Brown
conductivity/temperature sensor (Ocean Sensors Inc.)
which served as the primary scientific payload for this
work. Additionally, one of these vehicles, Iver-106, was
an Ecomapper variant equipped with a SonTek Doppler
velocity log (DVL), an Ocean-Server compass for atti-
tude estimation, a WHOI micro-modem 2 and a depth
sensor. The other Iver2 vehicle, Iver-136, was similarly
equipped with the WHOI micro-modem 2, compass and
depth sensor as well as a dual upward, downward facing
600 kHz RDI phased array DVL, a Microstrain 3DM-
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System Architecture

Algorithm 1 Linear Front Delineation and Tracking
procedure vehicle retasking . Run this procedure when a vehicle
surfaces to plan

vehicle location← Get vehicle location

transect data← Get vehicle data

locationp ← project (transect, vehicle location)

if dist
(
transect start, locationp

)
>= transect distmin then

new crossing ← detect crossings (transect data)
if new crossing was detected then

crossings← crossings
⋃
{new crossing}

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
locationf ← project (transect, new front crossing)

if dist
(
locationp, locationf

)
> εpast front km then

Calculate transectp s.t. transectp ⊥ estimated front

Command vehicle on transectp

else

Continue on current transect

else if dist
(
transect start, locationp

)
<= transect distmax then

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
Calculate transectp s.t. transectp ⊥ estimated front

Command vehicle on transectp

procedure get estimation crossings(crossings) . First of two options
for this procedure

return Latest front crossing for each vehicle.

procedure get estimation crossings(crossings) . Second of two options
for this procedure

return {crossing ∈ crossings | crossing.time > current time −
εtime}

GX3-25 and an APS-1540 fluxgate magnetometer. The
Iver2 AUVs have an approximate maximum horizontal
velocity of 2 m s−1 and were operated at a speed of
1.5 m s−1 for these trials. These vehicles are shown on
board the R/V Shana Rae in Figure 5 during operations
in August 2016.

Long-Range AUVs Also used in this experiment
were two Tethys-Class Long-Range AUVs (Monterey
Bay Aquarium Research Institute) [Bellingham et al.,
2010; Hobson et al., 2012] (Figure 5). Each vehicle was
equipped with a Neil Brown conductivity, temperature,
depth (CTD) sensor and a Sea-Bird ECO fluorometer
and backscattering sensor. The LRAUVs have an ap-
proximate maximum horizontal velocity of 1 m s−1 and
an endurance of 1,000+ km. The vehicle is capable of
sampling to a maximum depth of 200 m in a saw–tooth
pattern (i.e. yo-yo). An iridium modem is used for
sending commands to the vehicle as well as download-
ing a subset of the data to the shore. When cellular
signal is available, a cellular modem is used to send the
full dataset.

Underwater Gliders We used two Seagliders
(Kongsberg Underwater Technology, Inc.) [Eriksen et
al., 2001] equipped with Seabird SBE3 temperature sen-
sor and SBE4 conductivity sensor, pressure sensor, and
Aanderaa 4330F oxygen optode (Figure 5). Sampling
occurred approximately every 5 s (0.5 m vertical res-
olution at typical vertical speeds of 0.1 m s−1). The
gliders use a buoyancy engine for propulsion, having
an approximate horizontal velocity of 0.25 m s−1 and
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Figure 4: Map of the 2017 pilot experiment region near
Monterey Bay, California. The operation regions of the
Iver AUVs, Seagliders, and Tethys-class LRAUVs are
shown.

endurance up to 4,600 km. For this experiment, we
were tasking the gliders to maximum depths of 600 m
(although they are capable of profiling to a maximum
depth of 1000 m) in a saw–tooth pattern.

System Architecture

Existing systems are leveraged to deploy a general plan-
ning method to a variety of vehicles in a short time
frame. The system architecture for all vehicles used in
this experiment is shown in Figure 6. The Seaglider
and LRAUV both operate remotely using the Iridium
network. On each surfacing, GPS, engineering, and sci-
entific data transmits to a shore-based control worksta-
tion. This workstation can then issue commands to the
vehicle. For this experiment, the planning software ran
on a separate shore-based workstation capable of com-
municating with the workstation controlling the vehi-
cles. In this way it was possible for the planner to
receive all the necessary data and send commands to
the vehicles in near real-time.

While the Seaglider and LRAUV are nominally able
to transmit data and receive new instructions during
operations, the Iver AUVs required some modifications
to enable these behaviors. Four communication modal-
ities are available to the Iver: Iridium short burst data
(SBD), Wi-Fi, 900 MHz RF, and acoustic modem. Sci-
entific data such as position, conductivity, temperature,
and timestamps can be received and new commands can
be sent over any of these four available communication
links. Possible commands include stopping a mission,
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Figure 5: Top: OceanServer Technology, Inc. Iver2
AUVs onboard the R/V Shana Rae, Bottom Left: Mon-
terey Bay Aquarium Research Institute’s Tethys-Class
Long-Range AUV., Bottom Right: Kongsberg Under-
water Technology, Inc. Seaglider onboard the R/V
Paragon

starting a mission already loaded on the vehicle, park-
ing the vehicle and inserting segments of waypoints into
the already running mission. Initially, it was planned
to use the segment insertion to facilitate the retask-
ing of the vehicles. While these commands were suc-
cessfully received and interpreted by the vehicle, some
unexplained behaviors while using this command pre-
cluded its ongoing use. As a temporary work around for
the 2017 field trials in Monterey we used the outputs
of the planning software to manually program a new
mission which was then loaded onto the AUV over the
RF link. Due to the short range of the Iver AUVs, a
surface vessel remains deployed near the vehicles at all
times. This surface vessel also houses the control and
planning workstations for the vehicle. The Iridium link
was active during this experiment, but was not used for
planning purposes.

Figure 6: System diagram outlining the communication
pathways from the vehicles to the controlling worksta-
tions and the planning workstations. The existing in-
frastructure is outlined with a red dotted line.

Results
An abridged version of the results are presented here.
The full results can be found in Branch et al. [2018].

Iver AUV Results
Two Iver AUVs were operated on three days, 4 May,
9 May, and 11 May 2017. They are limited to single
day deployments due to the short range of the vehicles.
Some operational constraints required modifications to
the outlined front tracking control method. The range
limitation associated with acoustic and RF communica-
tion and the desire to have the ability for quick vehicle
recovery required the two Iver AUVs to remain in close
proximity to each other. The front tracking algorithm
as presented does not guarantee any vehicle synchro-
nization with regards to position. To solve this issue,
the vehicles pause at any point in which a new transect
could start and waits for every other vehicle to reach
their respective decision points. Once all vehicles have
paused, the front-crossing detection algorithms are ex-
ecuted for each vehicle. If at least one vehicle has de-
tected a front crossing, a new linear front estimation is
generated and all vehicles are commanded orthogonal
to it. If no front crossings are detected then all vehicles
continue on the current transect.

In this experiment the minimum transect distance
was set at 3 km past the current estimated front. The
minimum distance required for a vehicle to go past the
front-crossing detection on a given transect was set to
0 km, this results in the vehicle turning around at the
first decision point after a front crossing is detected.
The first decision point can be significantly past the de-
tected front crossing due the minimum transect length.
Ideally this would be set to a longer distance to in-
sure that the vehicle has crossed the entire front be-
fore calculating a new transect, however due to soft-
ware constraints for this phase of the deployment this
was not possible. Front-geometry estimation was per-
formed with the latest front crossing from each vehicle.
The lateral gradient front-crossing detection algorithm
was used with the Iver AUVs. Figure 7 shows the re-
sults of the Iver experiment on 9 and 11 May, 2017.
Two transects were completed per vehicle per day. The
starting locations for each vehicle on each day are la-
beled. Temperature averaged from 10 meters to 15 me-
ters is plotted. All front crossing and front-geometry
estimations used during the deployment are shown as
blue dots and blue lines respectively. A number of dif-
ferent depth intervals for front-crossing detection were
used during the deployment in order to examine the
sensitivity of the algorithm. For reference, the front
crossings and front-geometry estimations for 10 meter
to 15 meter depth range are also plotted in green.

LRAUV Results
The LRAUV experiment took place on 07 May, 2017.
Two vehicles, Opah and Tethys, were under the control
of the planner and utilized the lateral gradient front-
crossing detection method. The minimum transect dis-
tance was set at 4.5 km past the current estimated front.
The minimum distance required for a vehicle to go past
the front-crossing detection on a given transect was set
to 0 km, this results in the vehicle turning around at
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Underwater Glider Results

Figure 7: Map view of the temperature averaged from
10 to 15 meters for the Iver transects on 09 and 11
May, 2017. Front crossings and front-geometry estima-
tions used during the experiment are indicated with a
blue dot and blue line respectively. Front crossings and
front-geometry estimations using data from 10 meters
to 15 meters during the experiment are indicated with a
green dot and green line respectively. The start location
for each vehicle for each day is labeled.

the first decision point after a front crossing is detected.
Once again, the minimum distance past a front crossing
would ideally be larger. Front-geometry estimation was
performed with the latest front crossings from each ve-
hicle. Figure 8 shows the results from the phase 2 of the
LRAUV experiment. The temperature averaged from
10m to 15m, the interval used for front-crossing detec-
tion, is plotted. The algorithm during this period of the
deployment ran incorrectly, resulting in erroneous front
crossings. The algorithm was re-run correctly in post-
processing. Both the front crossings used during the
deployment and the correct front crossings are plotted
in Figure 8. Opah was able to complete two transect
while Tethys only completed one transect due to hard-
ware issues.

Underwater Glider Results

The underwater glider operated off the coast of Point
Sur, California from 7 June to 21 June, 2017. From 7
June to 15 June the glider was in a region of strong sur-
face currents, preventing any significant forward move-
ment. The glider transect was relocated and success-
fully operated from 15 June to 21 June, 2017. During
the glider portion of the experiment, only one vehicle
was available. Using the method presented here, it is
not possible to estimate the orientation of a linear front
with a single vehicle. As such, a fixed transect orien-
tation is used in this experiment. The minimum tran-
sect distance and the minimum distance to travel past
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Figure 8: Map view of the temperature averaged from
10 to 15 meters for the LRAUV Phase 2 experiment.
The front crossings and front-geometry estimations
used in the deployment are plotted as blue dots and
blue lines respectively. The correctly calculated front
crossing and front-geometry estimations are plotted as
red dots and red lines respectively.

a front were set to a fixed 5 km, independent of the
current location of the estimated front. In normal op-
eration these distances would be increased. Due to the
short time frame of the experiment these were reduced
in order to complete more transects.

A map view of the 6 glider transects plotting the
averaged temperature over 10 meters to 15 meters, the
interval used for front-crossing detection, can be seen
in Figure 9. The front crossings and front estimations
are marked with a blue dot and a blue line respectively.
The 16 km maximum extent transect is shown in black.

Planning and Execution Challenges

Communication Paradigms The LRAUV and the
Seaglider both utilize the Iridium network to enable
the off-board planning system to control the vehicle.
A centralized off-board planner simplifies vehicle coor-
dination and allows for the use of a variety of vehicles
while avoiding unique on-board implementations. This
comes at the cost of reduced real time capabilities as
vehicles are unable to transmit data and receive new
plans during a dive. The default schedule of surfacing
activities of the LRAUV and Seaglider also impacts the
real time capabilities of the system. Immediately after
the data is received from the vehicle, the Iridium con-
nection is closed and the vehicle dives. This induces
a one dive delay when using the data from the vehicle
for planning purposes. The surfacing schedule can be
modified in order to remove this, at the cost of increased
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Figure 9: Map view plot of the temperature averaged
from 10 to 15 meters for all the glider transects from
15 to 21 June, 2017 off Point Sur, California. Front
crossings are indicated with blue dots.

surfacing times.
The Ivers use a similar off-board planning system,

however it is ship-based as apposed to shore-based. The
range limitations associated with acoustic, RF, and Wi-
Fi communication impose additional constraints. It is
ideal for the vehicles to be in close proximity so the
ship remains in contact with all vehicles simultaneously.
Our specific planning approach was modified in order
to accommodate this. The real time capabilities could
also be improved by utilizing the acoustic communica-
tion channel for scientific data and vehicle commanding.
Note that the Iridium network is a possible communi-
cation modality for the Iver, but was not used during
this deployment so the nearby ship could maintain full
control of the vehicles.

Data Decimation The bandwidth of the communi-
cation channels available is not always large enough to
support the transfer of the complete dataset acquired
by the vehicle. When this is the case, a subset of the
data must be selected for transmission and use by the
off-board planner. The Seaglider is capable of sending
the full dataset at each surfacing, however the other two
vehicles are not. The Iver AUVs selects data at a fixed
temporal resolution. The Tethys-Class LRAUV selects
data based on the change from the previously transmit-
ted data point. If a given data point differs by a spec-
ified amount from the previously selected data point
then the given data point is also selected for transmis-
sion. During the experiment, we recognized that the
decimated dataset from the LRAUV contained large
gaps, resulting in suboptimal gridded data. An appro-
priate data decimation scheme needs to be employed
for a given planning method.

Vehicle Safety Vehicle safety concerns must be ad-
dressed when implementing a planning system. A
concern present with all vehicles is contact with the
seafloor. The three vehicles used in the experiment have
the capability of autonomously avoiding the seafloor

using a sonar based device. However, to increase ve-
hicle endurance, these devices were disabled on the
LRAUVs and Seagliders. Instead, an additional layer
was added to the planner in order to avoid seafloor col-
lisions. The Seaglider dive depth was altered based on
the bathymetry along the expected dive path, while the
LRAUV’s planned transects were modified to avoid ar-
eas with bathymetery less than a specified depth.

A related concern is the lateral position of the ve-
hicles. Each vehicle must remain in the target region.
Due to the short experiment periods and limited tran-
sect length for the LRAUVs and Ivers, this was not a
concern. The Seaglider deployment used boundaries to
limit the transect and prevent the vehicle from mov-
ing onto the continental shelf. It is also desirable for
Ivers to remain in close proximity so the surface ship
with the control workstations can be in range of all ve-
hicles simultaneously and quick recoveries are possible.
The planning approach was modified to satisfy this con-
straint.

Related Work

Adaptive sampling and control of multiple autonomous
underwater vehicles has been extensively studied, in-
cluding foundational work with the Autonomous Ocean
Sampling Network [Curtin and Bellingham, 2009;
Curtin et al., 1993; Haley et al., 2009; Leonard et al.,
2007; Ramp et al., 2009]. Much of this work focuses
on spatially adapting the control strategy in order to
optimally sample a fixed region. The Adaptive Sam-
pling and Prediction project [Leonard et al., 2010] used
adaptive control in order to coordinate 6 gliders to fly
in loops at fixed spacing. Our method instead performs
repeated focused sampling across a single front as it
evolves over time.

Other work focused on control strategies that adapt
to the current conditions, however not using multi-
vehicle coordination. Troesch et al. [2016] uses an
ocean model in order to improve the station keeping
ability of vertically profiling floats. Eriksen et al. [2001]
describes the capabilities of a Seaglider to compensate
for drift from currents using depth averaged currents
over multiple dives. Those important works focus on
adaptive control of vehicles based on current conditions
to improve sampling. We instead look at other hydro-
graphic properties in order to optimize sampling of a
specific feature.

A number of near real-time feature tracking methods
exist for applications such as thermoclines [Cruz and
Matos, 2010; Sun et al., 2016; Zhang et al., 2010] and
oil spills [Zhang et al., 2011]. These approaches focus
on tracking a one-dimensional feature using a single ve-
hicle, while we utilize multiple vehicles to track a two-
dimensional feature. Flexas et al. [2018] uses an ocean
model and autonomous planning to optimize sampling
of submesoscale structures. Our approach focuses on
frontal tracking using trailing in-situ vehicle data as
apposed to an ocean model.
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Other work has investigated two-dimensional feature
tracking. Zhang et al. [2013, 2016] utilize the VTHI
front detection method on a single vehicle to detect and
track an upwelling front on a zig-zag track with a fixed
turn angle. Cruz and Matos [2014] tracks any gradient
boundary using a single vehicle following a dynamic zig-
zag pattern and a lateral gradient detection algorithm
to estimate the gradient boundary using an arc whose
curvature is defined by the last three front-crossing lo-
cations. A similar method can also be applied to track-
ing the center of a phytoplankton bloom patch [Godin
et al., 2011]. Machine learning, in the form of policy
learning, has also been applied to the problem of track-
ing the edge of a harmful algal bloom [Magazzeni et
al., 2014]. Other work focuses on tracking algal blooms
by flying formations relative to the bloom as tracked
by a drifter [Das et al., 2012]. Petillo, Schmidt, and
Balasuriya [2012] uses a simulated network of AUVs in
order to estimate the boundary of a simulated plume.
These all differ from our approach in that we are using
multiple vehicles in order to estimate the position and
orientation of an ocean front using a method of gridded
front detections as well as a linear front model.

Future Work

On-Board Planning

On-board planning can eliminate the constraints im-
posed by off-board planning. The first option is for all
vehicle planning to be performed on-board with all in-
formation required for coordination relayed through a
centralized off-board server. In the case of our planning
method, this would involve sending the front detection
locations to a centralized server and sending the front
location and orientation to each vehicle from the cen-
tralized server. This allows for shorter surfacing win-
dows, use of the full dataset, and real time use of the sci-
entific data. However, less processing power is available
for the planning and execution software. An updated
front detection method could be required depending on
the constraints of on-board processing.

The second option removes the use of a centralized
shore-based server for vehicle coordination, instead opt-
ing for a peer-to-peer based architecture. This requires
a method of inter-vehicle communication such as an
acoustic modem, limiting the distance vehicles can be
from one another. By performing all planning and exe-
cution operations on-board the vehicle, surfacing times
can be drastically reduced or the vehicles can operate in
areas where surfacing is not always possible, such as an
ice-covered environment. Real-time planning and coor-
dination is also possible with this method by removing
the need for vehicles to surface for communication. The
most appropriate paradigm for planning and execution
depends the requirements of the planning method itself.

Front Detection

Throughout this experiment, multiple points of im-
provement were identified in regards to lateral gradient

front detection. Front detection could be improved by
gridding data based on distance traveled as opposed to
time. This is particularly important for slower mov-
ing vehicles such as underwater gliders. The gridding
process itself could also be improved by using objective
mapping. In this experiment temperature was used,
other ocean properties such as, buoyancy could also be
used. The lateral gradient front detection method con-
sists of many parameters, a more in-depth analysis of
the effects of these parameters would be beneficial. Our
front-crossing detection technique could be extended in
order to select a crossing based on a set of criteria such
as front direction (i.e. cold-to-warm versus warm-to-
cold), gradient strength, and front size. By using these
different properties a specific front can be targeted.

Conclusion

This work presents a planning and execution system for
a heterogeneous fleet of underwater vehicles and demon-
strates it with a method of adaptive control using mul-
tiple autonomous underwater vehicles in order to track
an ocean front evolving over time. This method utilizes
an off-board planner for near real-time front detection,
ocean front estimation using a linear model, and vehicle
retasking. We build upon the prior efforts of the AOSN
deployments and takes a further step towards a fully-
autonomous adaptive sampling framework [Thompson
et al., 2017].

The experiment was conducted in May and June,
2017 in and around Monterey Bay, California. Three
types vehicles were used, two Tethys-Class Long-
Range AUVs, two short-range Iver AUVs, and one au-
tonomous underwater glider, a Seaglider. During this
experiment we demonstrated the performance of the
lateral gradient front detection method on data from
all three vehicles and the capability of the autonomous
control method for front tracking. We showed that this
method is both suitable for a multi-vehicle approach
with a dynamic front position and orientation and a
single-vehicle approach utilizing a fixed front orienta-
tion. The multi-vehicle approach allows for improved
synopticity over a zig-zag method when sampling a
front. While the use of off-board planning algorithms
provides more processing power and allows for flexible
implementation for different platforms.
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Ryan, J.; Sukhatme, G. S.; and Rajan, K. 2012.
Coordinated sampling of dynamic oceanographic fea-
tures with underwater vehicles and drifters. The In-
ternational Journal of Robotics Research 31(5):626–
646.

Eriksen, C. C.; Osse, T. J.; Light, R. D.; Wen, T.;
Lehman, T. W.; Sabin, P. L.; Ballard, J. W.; and
Chiodi, A. M. 2001. Seaglider: A long-range au-
tonomous underwater vehicle for oceanographic re-
search. IEEE J. Oceanic Eng. 26:424436.

Flexas, M. M.; Troesch, M. I.; Chien, S.; Thompson,
A. F.; Chu, S.; Branch, A.; Farrara, J. D.; and
Chao, Y. 2018. Autonomous sampling of ocean
submesoscale fronts with ocean gliders and numer-
ical model forecasting. Journal of Atmospheric and
Oceanic Technology 35(3):503–521.

Godin, M. A.; Zhang, Y.; Ryan, J. P.; Hoover, T. T.;
and Bellingham, J. G. 2011. Phytoplankton bloom
patch center localization by the tethys autonomous
underwater vehicle. In OCEANS’11 MTS/IEEE
KONA, 1–6.

Haley, P.; Lermusiaux, P.; Robinson, A.; Leslie, W.;
Logoutov, O.; Cossarini, G.; Liang, X.; Moreno, P.;
Ramp, S.; Doyle, J.; Bellingham, J.; Chavez, F.;

and Johnston, S. 2009. Forecasting and reanaly-
sis in the monterey bay/california current region for
the autonomous ocean sampling network-ii experi-
ment. Deep Sea Research Part II: Topical Studies in
Oceanography 56(3):127 – 148. AOSN II: The Science
and Technology of an Autonomous Ocean Sampling
Network.

Hickey, B. M. 1979. The california current system-
hypotheses and facts. Prog. Oceanogr. 8:191–279.

Hobson, B. W.; Bellingham, J. G.; Kieft, B.; McEwen,
R.; Godin, M.; and Zhang, Y. 2012. Tethys-
class long range auvs-extending the endurance of
propeller-driven cruising auvs from days to weeks.
In Autonomous Underwater Vehicles (AUV), 2012
IEEE/OES, 1–8. IEEE.

Leonard, N. E.; Paley, D. A.; Lekien, F.; Sepulchre,
R.; Fratantoni, D. M.; and Davis, R. E. 2007. Col-
lective motion, sensor networks, and ocean sampling.
Proceedings of the IEEE 95(1):48–74.

Leonard, N. E.; Paley, D. A.; Davis, R. E.; Fratantoni,
D. M.; Lekien, F.; and Zhang, F. 2010. Coordi-
nated control of an underwater glider fleet in an adap-
tive ocean sampling field experiment in monterey bay.
Journal of Field Robotics 27(6):718–740.

Lynn, R. J., and Simpson, J. J. 1987. The california
current system: The seasonal variability of its physi-
cal characteristics. J. Geophys. Res. 92:12947–12966.

Magazzeni, D.; Py, F.; Fox, M.; Long, D.; and Ra-
jan, K. 2014. Policy learning for autonomous feature
tracking. Autonomous Robots 37(1):47–69.

Molemaker, M. J.; McWilliams, J. C.; and Dewar,
W. K. 2015. Submesoscale instability and gener-
ation of mesoscale anticyclones near a separation of
the california undercurrent. J. Phys. Oc. 45:613–629.

Monterey Bay Aquarium Research Institute. 2017.
Canon spring 2017 expedition.

Petillo, S.; Schmidt, H.; and Balasuriya, A. 2012. Con-
structing a distributed auv network for underwater
plume-tracking operations. International Journal of
Distributed Sensor Networks 2012:Article ID 191235,
12pp.

Ramp, S.; Davis, R.; Leonard, N.; Shulman, I.; Chao,
Y.; Robinson, A.; Marsden, J.; Lermusiaux, P.;
Fratantoni, D.; Paduan, J.; Chavez, F.; Bahr, F.;
Liang, S.; Leslie, W.; and Li, Z. 2009. Preparing to
predict: The second autonomous ocean sampling net-
work (aosn-ii) experiment in the monterey bay. Deep
Sea Research Part II: Topical Studies in Oceanogra-
phy 56(3):68 – 86. AOSN II: The Science and Tech-
nology of an Autonomous Ocean Sampling Network.

Sun, L.; Li, Y.; Yan, S.; Wang, J.; and Chen, Z. 2016.
Thermocline tracking using a portable autonomous
underwater vehicle based on adaptive threshold. In
OCEANS 2016-Shanghai, 1–4. IEEE.

Copyright c© 2018, all rights reserved



REFERENCES

Thompson, A. F.; Chao, Y.; Chien, S.; Kinsey, J.;
Flexas, M. M.; Erickson, Z. K.; Farrara, J.; Fratan-
toni, D.; Branch, A.; Chu, S.; Troesch, M.; Claus,
B.; and Kepper, J. 2017. Satellites to seafloor: To-
ward fully autonomous ocean sampling. Oceanogra-
phy 30(2):160–168.

Troesch, M.; Chien, S. A.; Chao, Y.; and Farrara,
J. D. 2016. Planning and control of marine floats in
the presence of dynamic, uncertain currents. In In-
ternational Conference on Automated Planning and
Scheduling, 431–440.

Zhang, Y.; Bellingham, J. G.; Godin, M.; Ryan, J. P.;
McEwen, R. S.; Kieft, B.; Hobson, B.; and Hoover, T.
2010. Thermocline tracking based on peak-gradient
detection by an autonomous underwater vehicle. In
OCEANS 2010, 1–4. IEEE.

Zhang, Y.; McEwen, R. S.; Ryan, J. P.; Bellingham,
J. G.; Thomas, H.; Thompson, C. H.; and Rienecker,
E. 2011. A peak-capture algorithm used on an au-
tonomous underwater vehicle in the 2010 gulf of mex-
ico oil spill response scientific survey. Journal of Field
Robotics 28(4):484–496.

Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft, B.;
and Stanway, M. J. 2013. Two-dimensional map-
ping and tracking of a coastal upwelling front by an
autonomous underwater vehicle. Proc. MTS/IEEE
Oceans’13 1–4.

Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft,
B.; and Stanway, M. J. 2016. Autonomous four-
dimensional mapping and tracking of a coastal up-
welling front by an autonomous underwater vehicle.
Journal of Field Robotics 33(1):67–81.

Copyright c© 2018, all rights reserved


