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Abstract
Ocean Worlds represent one of the best chances for the dis-
covery of extra-terrestrial life within our own solar system.
Liquid oceans are thought to exist on these celestial bodies,
often encased in a thick icy shell. In order to investigate these
oceans, a new mission concept utilizing a submersible craft
must be developed. This vehicle would be required to tra-
verse the icy shell and travel hundreds or even thousands of
kilometers to survey the ocean below. In doing this, the ve-
hicle might be out of contact for weeks or months at a time,
requiring it to autonomously detect, locate, and study features
of interest. Hydrothermal venting is one potential target, due
to the unique ecosystems it supports on Earth. We have devel-
oped an autonomous, nested search strategy to locate sources
of hydrothermal venting based on currently used methods. To
test this search technique a simulation environment was de-
veloped using a hydrothermal plume dispersion simulation
and a vehicle model. We show the effectiveness of the search
method in this environment.

Introduction
At least eight bodies in our solar system are thought to har-
bor liquid oceans. In some cases, such as Europa and Ence-
ladus, this ocean is perhaps habitable and encased in an icy
shell kilometers thick [National Aeronautics and Space Ad-
ministration 2018]. To explore these worlds new mission
concepts must be developed using penetrating, submersible
vehicles. A notional mission concept for such a submersible,
outlined in Figure 1, contains four main components, an or-
biting communications relay, a surface antenna, an under-ice
base station, and a submersible vehicle. In order to facilitate
ice shell transit, the vehicle needs to be small (particularly
in cross sectional area). The long mission duration — po-
tentially over a year to melt through the icy shell and a one
year exploration mission — requires a low power vehicle,
limiting the types of instruments on board. While the vehi-
cle would ideally travel hundreds to thousands of kilometers
distant from the base station, the submersible would need to
return close to the base station to transfer data – with data
subsequently relayed from the base station, through the sur-
face antenna to the orbiter for eventual return to Earth. The
radiation environment near the target body could preclude
the use of an orbiting communication relay, instead relying
on a relay in an eccentric Jovian orbit, in the case of Europa,
increasing the time between communication windows from

daily to monthly. When the submersible is away from the
base station it would be unable to communicate with Earth.
Therefore, while making journeys further and further away
from the base station, the submersible might be operating
days or weeks without contact. During this time the sub-
mersible would be required to autonomously detect, locate,
and study a specific feature of interest.

Hydrothermal venting is one potential target for a sub-
mersible mission. Evidence for hydrothermal activity has
been found on one Ocean World, Enceladus [Hsu et al. 2015;
Waite et al. 2017]. On Earth, these geological phenomena
harbor unique ecosystems and are potentially critical to the
origin of life. Similar vents on Ocean Worlds could be the
best chance at extra-terrestrial life in our Solar System. We
have developed a fully autonomous nested search strategy
for the localization of hydrothermal vents based on a man-
ual three-phase nested search commonly used in the field
[German et al. 2008]. In order to test this approach we have
developed a simulation environment using FVCOM [Chen,
Liu, and Beardsley 2003] — an existing ocean circulation
model — and a vehicle model. Due to the resolution of
the simulation environment, we focus on search in the non-
buoyant plume. This corresponds to the ship based CTD
casts and the phase 1 survey of the method presented in [Ger-
man et al. 2008].

The rest of the paper is organized as follows. First we
discuss the structure of hydrothermal venting. Then we dis-
cuss the simulation environment used to test our approach.
We outline the approach itself and the experimental setup.
Finally we discuss the results and future work.

Related Work
Adaptive sampling and control of autonomous underwa-
ter vehicles has been extensively studied, including foun-
dational work with the Autonomous Ocean Sampling Net-
work [Curtin et al. 1993; Curtin and Bellingham 2009;
Ramp et al. 2009; Haley et al. 2009; Leonard et al. 2007].

Hydrothermal vent localization on Earth is often done
with a non-autonomous three-phase nested search [German
et al. 2008]. [Yoerger et al. 2007a] demonstrates this method
in a number of cruises. [Yoerger et al. 2007b] presents a
method to autonomously revisit areas of interest after the
primary mission is completed, however this requires humans
to develop the primary mission. This method was used in the
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Figure 1: Notional Europa submersible mission showing
the communication pathway from the submersible vehicle
to Earth. Approximate ice thickness and ocean depth are
labeled.

field multiple times. [Farrell, Pang, and Li 2005] field tests a
strategy inspired by moths in order to trace chemical plumes.

Many approaches have been tested in idealized simula-
tion environments or with deployment data, which does not
allow for testing of fully autonomous planning algorithms.
[Pang 2010] and [Tian et al. 2014] use moth based strate-
gies in order to localize hydrothermal venting. [Jakuba and
Yoerger 2008] uses occupancy grid mapping in order to lo-
calize vents. [Saigol et al. 2010] uses a belief-maximization
algorithm to find a target of interest in simulation. [Ferri,
Jakuba, and Yoerger 2010] uses a trigger based approach in
order to gather higher resolution data in areas of strong sen-
sor readings.

Hydrothermal venting is not the only target of inter-
est. While not all ocean processes on Earth are expected
to recur on other ocean worlds distant from the sun, we
have a wealth of experience studying thermoclines, ocean
fronts, and other structures in Earth’s oceans. A number
of different near real-time feature tracking methods exist
for thermoclines [Cruz and Matos 2010; Zhang et al. 2010;
Sun et al. 2016]. [Zhang et al. 2013; 2016] tracks upwelling
fronts using a zig-zag pattern. [Cruz and Matos 2014] tracks
any gradient boundary using a single vehicle following a dy-
namic zig-zag pattern and a lateral gradient detection algo-
rithm to estimate the gradient boundary using an arc. A sim-
ilar method can also be applied to tracking the center of a
phytoplankton bloom patch [Godin et al. 2011]. [Branch
et al. 2018] uses near real-time data to autonomously re-
task a set of vehicles to repeatedly sample an ocean front.
Machine learning, in the form of policy learning, has been
applied to the problem of tracking the edge of a harmful al-
gal bloom [Magazzeni et al. 2014]. Other work focuses on
tracking algal blooms by flying formations relative to the
bloom as tracked by a drifter [Das et al. 2012]. [Petillo,
Schmidt, and Balasuriya 2012] uses a simulated network
of AUVs in order to estimate the boundary of a simulated

plume. [Flexas et al. 2018] uses an ocean model and au-
tonomous planning to optimize sampling of submesoscale
structures.

Onboard autonomy has also been used to coordinate mul-
tiple vehicles and correct for ocean currents. The Adaptive
Sampling and Prediction project [Leonard et al. 2010] used
adaptive control to coordinate 6 gliders flying in loops at
fixed spacing. [Troesch et al. 2016] uses an ocean model in
order to improve the station keeping ability of vertically pro-
filing floats. [Eriksen et al. 2001] describes the capabilities
of a Seaglider to compensate for drift from currents using
depth averaged currents over multiple dives.

Hydrothermal Venting
Hydrothermal venting produces a plume which can be traced
back to the source. The structure of the plume is shown
in Figure 2. Hydrothermal fluid exiting the vent is less
dense than the surrounding water, resulting in the forma-
tion of a buoyant plume. Due to entrainment, the plume is
continuously diluted by the ambient water column and ex-
pands from ~10 cm at the vent source to ~100 m at equilib-
rium. Upon reaching equilibrium, the plume expands hor-
izontally — ten to hundreds of kilometers — to form the
non-buoyant plume [German and Seyfried 2014]. The non-
buoyant plume height is a function of the properties of the
hydrothermal vent fluid as well as the surrounding water col-
umn [Turner 1979]. In the Pacific the non-buoyant plume is
normally observed at 100-150 m above the seafloor, while
in the Atlantic it is normally closer to 200-400 m [Speer and
Rona 1989].

Hydrothermal plumes are the main source of information
when localizing venting. However, tidal flows lead to local
maxima [Veirs 2003], turbulent flow disrupting smooth gra-
dients, differing vent types and strengths, and an unknown
number of sources increase the difficulty of determining the
plume source. [German et al. 2008] uses three primary sen-
sors in the detection of hydrothermal plumes: temperature,
optical backscatter [Baker, German, and Elderfield 1995;
Baker and German 2004], and a chemical sensor such as
oxidation-reduction potential [Nakamura et al. 2000]. These
sensors may be good candidates for inclusion on a sub-
mersible mission to an Ocean World due to their compact
form factor (100s of grams) and low power consumption
(10s of milliwatts).

Simulation
A simulation environment was developed, using a hy-
drothermal plume dispersion simulation and a vehicle
model. A numerical simulation of hydrothermal plume dis-
persion is performed using FVCOM, an ocean-circulation
model, at Axial Seamount on the Juan de Fuca Ridge. The
abundant lava supply to Axial supports vigorous hydrother-
mal systems and frequent volcanic activity, which have
drawn extensive on-going scientific research that makes Ax-
ial one of the best-studied seamounts on this planet. A snap-
shot of this simulation is shown in Figures 3 and 4.

FVCOM is a finite-volume, time and density-dependent,
three-dimensional, ocean circulation model [Chen, Liu, and
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Figure 2: Demonstration of a hydrothermal plume per-
formed in an aquarium tank. The buoyant and non-buoyant
components of the hydrothermal vent plume are labeled with
approximate scales. Image courtesy of C. German, WHOI

Beardsley 2003]. The unstructured grid employed in FV-
COM supports grid size variation, therefore, proves efficient
for the simulation of motion over a broad range of length
scales. In addition, FVCOM supports the use of large-scale
ocean circulation and tidal model outputs as open boundary
forcing to drive flow across a broad range of frequencies in-
side the model domain [Zheng and Weisberg 2012].

Our model domain covers 300 by 300 km, centered on
the Axial Seamount caldera and is open to flow across all
four sides of that region. Horizontal resolution varies from
200 m within a 10 by 10km region enclosing Axial’s caldera
to 10km at the domain’s boundary. The vertical dimension
utilizes a uniform sigma-coordinate system with 127 layers,
covering the full water column. This results in a ~12 m
layer thickness above Axial’s summit. The duration of the
simulation is 58 days with model outputs sampled hourly.
The 3-hourly sampled, 1/12.5◦ horizontal resolution, global
reanalysis outputs of the HYbrid Coordinate Ocean Model
(HYCOM) are used to construct the initial stratification pro-
files and open boundary forcing. Because HYCOM does not
include ocean tides, we superimpose the tidal elevation and
velocity predicted by the OSU Tidal Inversion onto the HY-
COM outputs when constructing the open boundary forc-
ing. We also add surface wind forcing and heat flux from 1-
hourly sampled National Centers for Environmental Predic-
tion (NCEP) Climate Forecast System Reanalysis (CFSR)
outputs. We apply a linear ramp to bring open boundary and
surface forcing from zero to full value over an initial four
simulation days. Lastly, we add a seafloor heat source of 1
GW at the center (0,0) of the model domain inside Axial’s
caldera, which is turned on after the initial four simulation
days. The model output consists of current, temperature,
salinity, and a passive tracer, dye, which is released at the
vent source. This tracer has a value range of [0, 100]. After
30 days the tracer content in a 20 by 20 km region surround-
ing the vent source reaches a quasi-steady state. In a 50 by
50 km region surrounding the vent source no quasi-steady
state is reached before the end of the simulation.

The simulated vehicle uses a kinematic model and has

three degrees-of-freedom: surge, heave, and yaw. A pro-
portional controller allows the vehicle to navigate to a spec-
ified location. The nominal vehicle speed is set to 1 m/s.
Simulated sensors are used to measure temperature, salinity,
the passive tracer, vehicle depth, and distance to seafloor at
a fixed interval. The position of the vehicle is assumed to
be known at all times. Currently a chemical sensor, such as
oxidation-reduction potential, and vehicle resources, such as
energy and data capacity, are not modeled.

Figure 3: Snapshot taken at 1400 m depth on Mar 1, 2011
00:00 UTC of the simulated concentration (normalized by
the source value) of a neutrally buoyant tracer originating
from a hydrothermal vent source of 1 GW heat flux located
inside the caldera of Axial Seamount at coordinate center.
The global-simulation results of HYCOM and OSU Tidal
Inversion for the period of Feb-Mar 2011 were used to drive
flow inside the domain from its four boundaries.

Spatial Nested Search Strategy
Given a vehicle’s starting location, the goal is to produce a
control strategy that results in locating the vent source. The
vent source is considered found when the region around the
vent has been surveyed at a specified resolution. A resolu-
tion of 200 m was selected to match the resolution of the
hydrothermal plume dispersion model at the vent source.

The strategy developed here addresses a number of issues.
It mimics the field-proven methods of [German et al. 2008].
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Figure 4: Snapshot taken along a W-E transect across the
center of the model domain on Mar 1, 2011 00:00 UTC
of the simulated concentration (normalized by the source
value) of a neutrally buoyant tracer originating from a hy-
drothermal vent source of 1000 MW heat flux located in-
side the caldera of Axial Seamount at coordinate center. The
global-simulation results of HYCOM and OSU Tidal Inver-
sion for the period of Feb-Mar 2011 were used to drive flow
inside the domain from its four boundaries.

Due to the limited resolution of the simulation environment,
we focus specifically on search in the non-buoyant plume.
(The buoyant plume is approximately 100 m, placing it be-
low our 200 m resolution at the vent source.) This corre-
sponds to the ship based CTD casts and — to some extent
— phase 1 of the [German et al. 2008] method. Our strategy
also allows for the localization of plume sources with differ-
ing strengths and maintains a robustness to local maxima in
vent fluid concentrations and to small scale turbulence.

Before we can search for hydrothermal venting, we must
have some method for detecting plumes. Ideally this would
involve modeled sensors for temperature, optical backscat-
ter, and oxidation reduction potential. However, currently
we only use the passive tracer in the model as a direct mea-
sure of the hydrothermal plume. This is an area of future
improvement.

The search algorithm is outlined in Algorithm 1 and op-
erates as follows. A spiral is initiated at the start location.
The horizontal spacing of the spiral is manually selected to

be the expected size of the feature in question. This insures
features of the expected size are seen during this initial sur-
vey. During this spiral the vehicle completes vertical pro-
files through the extent of the water column. When the max
plume strength value of a single profile exceeds the speci-
fied threshold, plumet in Algorithm 1, the second phase of
surveys begins. The height of the detected feature, ph, is de-
termined by binning the data from the vertical profile, pd, at
a 10 m resolution and selecting the bin with the largest aver-
age value. The subsequent surveys are performed at a depth
of ph. This is in contrast to the 3-phase strategy outlined in
[German et al. 2008] because of our focus on search in the
non-buoyant plume.

During the second phase of surveys, the search space is
partitioned into bins, survey bins, of size spacing0. These
bins are separated into four quadrants centered on the cor-
ner of the bin closest to the location of the plume detec-
tion. A dynamic ”lawnmower” survey is executed in each
of the four quadrants. The dynamic lawnmower algorithm
is outlined in Algorithm 2. The spacing of the lawnmower
pattern, track spacing, is specified beforehand. The direc-
tion of the lawnmower pattern is defined by along track
and across track. Each track line of the lawnmower pat-
tern consists of sections with length equal to the spacing. At
least min sections sections are be completed per track line.
If sections limit sections have average plume strengths be-
low plumet and the sections have monotonically decreasing
average plume strengths, then the track line is completed
and the next track line is commenced. min sections and
sections limit are manually specified search parameters.
If the maximum value of an entire track line is less than
plumet then the current lawnmower survey is ended and
the next begins. The data from each dynamic lawnmower
is binned into survey bins.

An example dynamic lawnmower is shown in Figure 5.
The plot is subdivided into track line sections. The average
plume strength is listed in each section; a green background
indicates that the average plume strength is greater than the
specified threshold, plumet. Two boundaries to the survey
are shown. Upon reaching the right-most boundary, the ve-
hicle completes the current trackline. The boundaries cor-
respond to the shared edges of the four quadrants defined
during the search process.

Upon the completion of each dynamic lawnmower, local
maxima of survey bins are found. A maximum is declared
when the 8 neighboring bins of the same resolution have a
max plume detection value less than that of the center bin.
Some a maximum has been found a nested ”lawnmower”
survey begins. An example of this process is shown in Fig-
ure 6. The local maximum — shown in green — and its
neighbors are subdivided into smaller bins with one-third
the side length of their parents. A lawnmower with spac-
ing equal to one-third that of the previous lawnmower sur-
vey and with track lines centered on each row of nested
bins is initiated. The new nested lawnmower survey cov-
ers the local maximum and all surrounding neighbors. If
multiple local maxima have been found, they are prioritized
on plume strength. This process repeats recursively until a
survey spacing of final spacing, is reached. If no local
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maxima are found during a dynamic lawnmower, or all lo-
cal maxima have been exhausted before the survey spacing
offinal spacing is reached, then the dynamic lawnmow-
ers resume. After all dynamic lawnmower surveys are com-
pleted the spiral is resumed. Another set of dynamic lawn-
mowers is started if a plume is detected outside of the previ-
ously searched area.

Algorithm 1 Autonomous Nested Search
procedure NESTED SEARCH

plans← empty stack
visited← empty set
plans.push(spiral)
survey bins← bins of size spacing0
while plans.size > 0 and not timed out do

Execute or Continue plans.top()
if executing spiral then

Wait until end of vertical profile
pd ← Get data from profile
d← max(pd)
if d >= plumet and d.location not explored then

bins← profile data binned at 10 meters and averaged
ph ← max(bins).height
(x, y)← bin corner closest to d.position
plans.push(dynamic lawnmower(x, y, ph, 90◦, 0◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph,−90◦, 0◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph,−90◦, 180◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph, 90◦, 180◦, spacing0))
Execute plans.top()

else
while plans.top() is not completed do

Wait
survey data← Get data from latest survey
survey bins.add data(survey data)
maxima← get bin maxima(survey bins)
sort maxima
for bin in maxima do

if bin not in visited then
Partition bin and bin.neighbors()
visited.add(bin)
plans.push(nested lawnmower(bin))
break

while plans.size > 0 and plans.top() is complete do
f ← plans.pop()
if f.spacing < final spacing and f contains vent source then

return Success
return Failure

Algorithm 2 Execute Dynamic Lawnmower
procedure EXECUTE DYNAMIC LAWNMOWER(x, y, h , along track, across track, track spacing)

start x← x + cos(along track) ∗ track spacing/2
start y ← y + sin(across track) ∗ track spacing/2
Go to (start x, start y, h)
curr track ← 0
curr section← 0
completed← False
section data← empty list
Start current track line on heading along track
while not completed do

Do next section on current track
section data[curr section]← Get data from last section
curr section← curr section + 1
if curr section >= min sections or survey boundary reached then

if avg(section data[i]) < plume t for last sections limit sections and
monotonically decreasing then

curr track ← curr track + 1
if max(section data) < plume thresh then

completed← True
section data← empty list
Travel track spacing on heading across track
if curr track is even then

Start next track line on heading along track
else

Start next track line on heading−along track

Experiment
121 scenarios were completed with the vehicle starting lo-
cation uniformly varied between x = [−30000, 30000] and

Figure 5: Plot showing an example dynamic lawnmower
survey. The survey area is partitioned into regions repre-
senting sections of each track line. Regions shaded green
have an average plume strength over the specified threshold.
The average value is labeled in the upper left corner of each
region. The two survey boundaries are shown as thick black
lines on the right and bottom of the plot. The starting loca-
tion is marked with a black star.

y = [−30000, 30000] at intervals of 6000m. Due to the na-
ture of the algorithm and the location of the vent at (0, 0) it is
likely that the vehicle will pass directly over the vent source
if the start location x and y are multiples of 1000. To miti-
gate this, a uniformly random value between [−1500, 1500]
was added to the x and y values of the starting location. The
simulated vehicle has a horizontal and vertical velocity of 1
m/s. The vehicle samples the model at 0.2 hz. The plume
detection threshold was set to 0.5. The initial spiral spac-
ing was set to 5000 m and the initial dynamic lawnmower
spacing was set to 4000 m. The dynamic lawnmower pa-
rameters min sections and sections limit are set to 4 and
2, respectively. The search parameters were selected based
on preliminary results. More work investigating search pa-
rameters is necessary.

Results
87% of the simulation scenarios successfully found the vent
location within 28 days. Figure 7 shows the time each run
took to successfully find the vent in black. The runs that
failed to find the vent are shown in red. Plot (a) shows the
total time while plots (b), (c), and (d) show the time spent on
the spiral survey, dynamic lawnmower surveys, and nested
lawnmower surveys respectively. Figures 8, 9, and 10 show
an example run plotting a top down view and a 3d view of the
passive tracer (dye) value from the model, and a top down
view of the survey types during the run, respectively.

We see a slight correlation between the distance and to-
tal time on successful runs. When this is decomposed into
the different stages of the algorithm we see this correlation
stronger within the spiral surveys while not at all in the lawn-
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Figure 6: Plot showing an example of the planning process
for a single nested lawnmower in one of the four quadrants.
The search space is divided into square bins with sides equal
to the lawnmower spacing. Upon finding a local maximum
bin, the bin and all its neighbors are subdivided into nested
bins of one-third the side length. A lawnmower pattern is
then executed such that each track line is centered on a row
of bins. The vehicle path and observed tracer is plotted. The
planned nested lawnmower is show in dark red. The starting
location is marked with a black star.
. Note that the measured passive tracer does not remain the
same on subsequent measurements of the same location due

to the temporal variation in fluid concentrations.

mower surveys. No correlation is seen between the failed
surveys and the distance from the vent, indicating that the
cause of the failure is not related to distance. This method
does not have a set distance in which it is feasible, start-
ing further from the vent location would only require longer
search times. Search times can be minimized by selecting
appropriate values for the survey spacing parameters.

Upon initial investigation into the failed scenarios we see
that the spiral surveys always detect the plume and initiate
lawnmower surveys. Two failure modes are then observed
in the lawnmower surveys. First, plume strength contours
are not closed by the dynamic lawnmower survey. As such,
they are not investigated by the nested lawnmower survey.
Second, local maxima are not seen at the vent location. This
could be caused by the temporal variation of the plume or
from using constant depth, as apposed to constant density,
lawnmower surveys.

Future Work
The planning method has many areas which could use fur-
ther investigation. The lawnmower surveys could be im-
proved by guaranteeing that contours will be closed, result-
ing in less failed searches. The non-buoyant plume is po-
sitioned at a constant density, not depth. As such, a fixed
depth search is not ideal. In addition, the plume height can
vary temporally on the order of 100 m over a tidal cycle on
Earth [Rudnicki and German 2002]. A long duration search
strategy, with respect to the tidal cycle, should be able to ad-
dress this temporal variation. Improved search in the verti-
cal direction would insure that the vehicle maintains contact
with the strongest part of the plume. Temporal variations in
the lateral direction should also be accounted for. This may
be particularly important for slower vehicles, perhaps less so
if they only move relative to the water, rather than relative

Figure 7: Plots showing the time to find the vent source com-
pared to the distance from the vent source. The runs that
successfully find the vent within 28 days are show in black.
The failed runs are shown in red. Panel (a) plots the total
time spent during the search. Panel (b), (c), and (d) decom-
pose the time into the spiral survey, dynamic lawnmower
surveys, and nested surveys respectively

to the ground or icy shell. Other geometric search patterns
and other search strategies such as gradient search or biolog-
ically inspired approaches can be implemented and tested.
Automated tuning of search parameters could improve re-
sults. Vehicle resource considerations can be incorporated
into the planner. More intelligent path planning can be im-
plemented to reduce resource consumption while perform-
ing multiple surveys. Hydrothermal activity is one potential
target for a submersible; investigation into other targets and
the development of a search approach capable of prioritizing
multiple target types would be beneficial.

Currently, the vehicle simulation is rudimentary. Realistic
models for sensors such as temperature, optical backscatter,
and chemical sensors can be developed. Vehicle resources
such as power and data capacity can be implemented. Fi-
nally, the vehicles motion model can be improved by ad-
vecting the vehicle according to the currents in the model.

The data volume collected by the vehicle far exceeds
the communication throughput capabilities. Therefore, a
method of summarizing the data collected needs to be de-
veloped. A number of spacecraft have implemented systems
for this purpose. The Autonomous Sciencecraft Experiment
used onboard science algorithms to summarize, delete, and
prioritize data for downlink [Chien et al. 2005]. The on-
board product generation for the Earth Observing-1 mission
serves as a predecessor to the proposed HyspIRI Intelligent
Payload Module [Chien et al. 2013]. The Mars Exploration
Rover’s (MER) WATCH system processes imagery to de-
tect dust devils and send summarized data products to Earth
[Castano et al. 2008]. The AEGIS system processes onboard
imagery to autonomously retarget science instruments on the
Mars Science Laboratory [Estlin et al. 2014] and MER [Es-
tlin et al. 2012].

More simulation runs varying search parameters such
as starting location, plume detection threshold, and survey
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Figure 8: Top down plot showing the passive tracer (dye) as
seen by the vehicle from a scenario starting at x=710, y=-
29337. The vent source location is shown as a black triangle
at (0,0).

Figure 9: 3d view plot showing the passive tracer (dye) as
seen by the vehicle from a scenario starting at x=710, y=-
29337.

spacing would allow for a better understanding of the pre-
sented search strategy. Another plume dispersal model, ei-
ther of a different region or with different plume parameters
could be developed. Real world tests in well studied areas
such as Axial Seamount would further validate the approach.

Conclusion
We developed an autonomous nested search based on the
current manual three-phase search method [German et al.
2008], as well as a realistic simulation environment in which
to test search strategies for the localization of hydrothermal
venting. This simulation environment allows for testing at
much larger spatial scales than has been investigated for
other autonomous approaches. Search parameters, such as
survey resolution and search location, allow for manual fine
tuning of the search process based on the observed data, al-
lowing for a human-in-the-loop model when possible. We

Figure 10: Plots showing the types of surveys performed on
a scenario starting at x=710, y=-29337. The spiral survey
is shown is black, the dynamic lawnmower surveys are red,
and the nested lawnmower surveys are differing shades of
blue with darker shades as surveys with larger spacing. The
vent source location is shown as a black triangle at (0,0).

performed 121 scenarios with varying start locations, of
which 87% were able to successfully find the hydrothermal
vent within 28 days.
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