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Abstract–Earth observing satellites are powerful tools for collecting scientific information 
about our planet, however they have limitations: they cannot easily deviate from their orbital 
trajectories, their sensors have a limited field of view, and pointing and operating these sensors 
can take a large amount of the spacecraft’s resources. It is important for these satellites to 
optimize the data they collect and include only the most important or informative 
measurements. Dynamic targeting is an emerging concept in which satellite resources and data 
from a lookahead instrument are used to intelligently reconfigure and point a primary 
instrument. Simulation studies have shown that dynamic targeting increases the amount of 
scientific information gathered versus conventional sampling strategies. In this work, we 
present two different learning-based approaches to dynamic targeting, using reinforcement and 
imitation learning, respectively. These learning methods build on a dynamic programming 
solution to plan a sequence of sampling locations. We evaluate our approaches against existing 
heuristic methods for dynamic targeting, showing the benefits of using learning for this 
application. Imitation learning performs on average 10.0% better than the best heuristic 
method, while reinforcement learning performs on average 13.7% better. We also show that 
both learning methods can be trained effectively with small amounts of data. 
1   INTRODUCTION 
Earth observing satellites serve an important purpose in acquiring scientific data, with 
applications in various fields such as geology, meteorology, and climate science. However, 
these satellites have limitations in terms of data collection. They are confined to predetermined 
orbital paths, possess sensors with restricted fields of view, and necessitate a significant portion 
of the spacecraft's energy for sensor operation and positioning. Therefore, it is imperative for 
these satellites to optimize their data collection by focusing on the most informative 
measurements. 

The primary objective of this work is to develop strategies for determining the most efficient 
way for Earth observation satellites to sample their surroundings while considering practical 
constraints, particularly power consumption. We concentrate on the concept of dynamic 
targeting, i.e. developing intelligent methods for orienting satellite instruments to enhance their 
scientific output. Prior research has indicated that employing dynamic targeting methods 
results in a higher volume of informative scientific data compared to uniform or random 
sampling techniques. Previous approaches to this challenge have used various methodologies 
such as greedy algorithms, local search techniques, constraint programming, and dynamic 
programming (Candela et al. 2023). In this work, we introduce a novel approach to dynamic 
targeting that leverages two learning frameworks to address this problem, reinforcement and 
imitation learning. 
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Figure 1: An Earth observation satellite with a primary sensor and a lookahead sensor that gives 
information about the environment that lies on the path ahead. The goal of this work is to determine where 
to point the primary sensor to measure the highest value scientific targets (Candela et al. 2023). 

2   BACKGROUND 
2.1 Related Work 

Satellites equipped with agile (pointable) instruments offer a more efficient approach to data 
collection compared to those featuring static “pushbroom” sensors. The Eagle Eye project has 
developed planning and scheduling models for observations of pointable 2D satellite 
instruments (Knight, Donnellan, and Green 2013), and Lemaître et al. focus on scheduling for 
Agile Earth Observing Satellites (AEOS) which have three degrees of freedom for image 
acquisition (Lemaître et al. 2002). However, selecting observations for highly-agile 
instruments is an ongoing challenge; various techniques have been proposed to address this 
problem, including greedy algorithms, constraint programming approaches, dynamic 
programming, and local search methods. It is important to note that existing works on agile 
instruments generally do not leverage past observations. 

Liao and Yang present a strategy for scheduling the order of imaging operations for FormoSat-
2, a low-earth-orbit remote sensing satellite that previously imaged Taiwan (Liao and Yang 
2005). This approach considers current and upcoming weather conditions to provide a plan, 
which is periodically rescheduled using a rolling horizon scheme. 

The Autonomous Sciencecraft Experiment (ASE) was used to analyze acquired imagery and 
schedule future observations on the Earth Observing One spacecraft for over a decade (Chien 
et al. 2005). ASE operated on the orbital timescale (roughly 90 minutes), whereas ours and 
other methods can respond within minutes or faster (Candela et al. 2023). A prototype of a 
heuristic-based spacecraft pointing scheduler is presented by Chien and Troesch, which 
operates on the order of one overflight (about 8 minutes) (Chien and Troesch 2015). 

The German FireBIRD autonomy mission concept involves two satellites (TET-1 and BIROS), 
which monitor fires from space with high accuracy. FireBIRD is devised to enhance existing 
low-resolution systems (up to 1 km/pixel) such as MODIS, METEOSAT, CALIPSO, ADM, 
and EarthCARE. Lenzen et al. propose a planning and scheduling autonomy concept within 
the FireBIRD mission scope that can immediately react to onboard-detected events, which 
combines the advantages of onboard and on-ground scheduling (Lenzen et al. 2014). However, 
this strategy has not yet flown onboard a spacecraft. 
Beaumet, Verfaillie, and Charmeau conducted a study analyzing the feasibility of using an on-
board lookahead camera to detect clouds in combination with a primary instrument (Beaumet, 
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Verfaillie, and Charmeau 2011). Their work proposes an online algorithm that combines both 
instruments for autonomous high-level mission management, which increases satisfaction of 
mission objectives. 
Rapid cloud screening has been used to reduce data volume on the Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS-NG) instrument, by compressing or removing clouds in 
images (Thompson et al. 2014). Similarly, cloud avoidance work has been undertaken on 
TANSO-FTS-2, using intelligent targeting to minimize observations effected by clouds (Suto 
et al. 2021). Greedy and graph-search-based algorithms are employed by Hasnain et al. to select 
the clearest sections of the sky for imaging (Hasnain et al. 2021). 
The Smart Ice Cloud Sensing (SMICES) mission concept proposes using machine learning and 
artificial intelligence methods to target storms and clouds of scientific interest (Ogut et al. 
2022a; Swope et al. 2021). Sponsored by the NASA Earth Science Technology Office (ESTO) 
under the Instrument Incubator Program 19 (IIP-19), SMICES, a combined radar/radiometer 
instrument, is designed to measure cloud ice and water vapor in the upper troposphere and 
lower stratosphere. It is able to operate at a very high rate, targeting images on the order of 
seconds, and utilizes multiple cloud labels to identify targets of scientific interest. The SMICES 
concept is currently in development for demonstration on an aircraft, but the ultimate goal is 
to deploy the algorithms on a small satellite in low-Earth orbit. 

Recent work has demonstrated flight of advanced machine learning models on board small 
satellite platforms such as ESA’s Φ-Sat (Giuffrida et al. 2022) and ESA’s OPS-SAT (Labrèche 
et al. 2022). There exist several methods for satellite observation scheduling that use machine 
learning concepts. Chen et al. present an approach to scheduling agile satellite tasks that uses 
a recurrent neural network (Chen et al. 2019). Wei et al. develop a multi-objective method 
based on deep reinforcement learning and parameter transfer which considers both the failure 
rate and the timeliness when scheduling satellite tasks (Wei et al. 2021). These methods both 
assume that the satellite has only one imaging sensor (no lookahead), and neither method 
considers power consumption. 
2.2 Dynamic Targeting 

The purpose of dynamic targeting methods is to maximize the number of high value targets 
sampled by an Earth-observing satellite instrument, while complying with energy constraints. 
Prior algorithms for dynamic targeting were developed for use in both storm tracking and cloud 
avoidance scenarios (Candela et al. 2023). In the case of storm tracking, particular cloud types 
are more informative and scientifically valuable to sample, so those cloud types are given a 
higher priority. In other cases, high value scientific targets are only visible when there is no 
cloud cover, so sampling clear skies is given a higher priority. 
Dynamic targeting methods use a model of a satellite with a primary sensor and a lookahead 
sensor that allows the satellite to see a limited view of its future path (see Figure 1). This 
configuration is seen in satellites such as the Smart Ice Cloud Sensing (SMICES) small-sat, 
which carries a radar to take targeted samples of deep convective ice storms, and a radiometer 
to find these storms along the path of the satellite (Ogut et al. 2022b; Bosch-Lluis et al. 2022). 

Many existing methods for dynamic targeting follow a “greedy” policy, meaning they sample 
the location with the highest immediate reward, given some constraints. We will compare our 
methods to the following existing dynamic targeting approaches: random, greedy nadir, greedy 
lateral, greedy radar, greedy window, and a dynamic programming (DP) approach (Candela et 
al. 2023). See Figure 2 for an illustration of these approaches. 
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Figure 2: Existing dynamic targeting algorithms for intelligent satellite observations. Each has different 
knowledge of the environment. Our learning approaches have the same knowledge and sampling capabilities 
as greedy window (d). The dynamic programming approach (e) has full knowledge of future states and thus 
is used as a benchmark. 

Each approach has a different sampling space and knowledge of the environment. The greedy 
nadir sampling method always points the instrument directly downwards (at nadir) but decides 
whether to take a sample based on the state of charge (battery percentage) of the satellite and 
the target beneath the sensor. A random method is used as a lower bound, which also 
exclusively points the instrument at nadir, but randomly decides when to take a sample. The 
greedy lateral approach searches along the lateral axis of the sensor for the best target to sample 
and then determines whether to sample based on the best target type and the state of charge. 
The greedy radar method functions the same as the greedy lateral approach, but instead 
searches the entire reachable area of the primary (radar) sensor. The greedy window method 
uses the knowledge of the target types in the reachable sensor area and the lookahead sensor 
along with the state of charge of the satellite to determine whether to sample and where to point 
the primary sensor. Our methods have the same knowledge of the environment as the greedy 
window method (primary and lookahead sensor). 

The dynamic programming approach uses the entire path of the satellite (not just what is visible 
to the sensors) to determine when and where to sample. The DP approach is used to generate 
an upper bound for performance comparisons but is not practical to implement on a satellite 
because the algorithm assumes that it has full knowledge of all future states of the world, which 
is not the case with real-world limited lookahead sensors. 
2.3 Satellite Simulation 

This work leverages an existing framework to model an Earth observation satellite with a 
primary radar sensor and a lookahead sensor (Candela et al. 2023). The simulation framework 
allows the user to specify the range and resolution of the primary and lookahead sensors, and 
the rate of charging/discharging of the satellite. For our simulation studies, we use a primary 
radar sensor with a range of 15º from nadir, and a lookahead sensor with a range of 45º from 
nadir. We use a resolution of 7 km/pixel for the lookahead images. Taking a sample discharges 
the satellite's battery by 5% of a complete charge, and it can recharge its battery by 1% at each 
time step (so effectively the satellite power discharges by 4% when taking a sample). This 
charge/discharge rate causes the satellite to keep the primary sensor off on average 80% of the 
time, and only take samples 20% of the time. For these studies, we assume that the lookahead 
sensor is always on and does not interfere with the charging rate of the satellite. 
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Figure 2: Existing dynamic targeting algorithms for intelligent satellite observations. Each has different knowledge of the
environment. Our learning approaches have the same knowledge and sampling capabilities as greedy window (d). The dynamic
programming approach (e) has full knowledge of future states and thus is used as a benchmark.
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ways on and does not interfere with the charging rate of the
satellite.
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tion calculates a feasible orbit for the satellite, and images
are extracted from real historical data that represent local in-
formation that would be seen by the lookahead sensor given
the time and the satellite’s location. For cloud avoidance, we 220

use data from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) (Justice et al. 1998). Each pixel in the
real satellite image is categorized into three classes: clear
(high scientific reward), mid-cloud (medium scientific re-
ward), and cloud (low scientific reward). For storm hunt- 225

ing, we use data from the Global Precipitation Measurement
(GPM) mission, and classify the data into three storm types:
no storm (low scientific reward), rainy anvil (medium sci-
entific reward), and convective core (high scientific reward)
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GPM (IMERG), version 4.4).
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We model the dynamic targeting problem as a Markov De-
cision Process (MDP) as follows. A state s 2 S consists 235

of the information that can be seen in the primary and
lookahead sensors, and the current state of charge (SOC 2
[0%, 100%])) of the satellite. An action a 2 A involves
taking a sample with the primary instrument at a particu-
lar location, which receives some scientific reward R 2 R. 240

The satellite transitions into the next state deterministically
(P (s, s0) = 1) by moving one discrete timestep t forward
along its orbit. However, the next state s

0 cannot be fully
known a priori as there is some new information that is yet
to be observed by the lookahead sensor. The policy function 245

⇡ is a mapping from state space (S) to action space (A).
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Our simulation is useful both for testing cloud avoidance to better observe the Earth's surface, 
and for testing storm hunting, or intelligently sampling cloud cover. The simulation calculates 
a feasible orbit for the satellite, and images are extracted from real historical data that represent 
local information that would be seen by the lookahead sensor given the time and the satellite's 
location. For cloud avoidance, we use data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Justice et al. 1998). Each pixel in the real satellite image is 
categorized into three classes: clear (high scientific reward), mid-cloud (medium scientific 
reward), and cloud (low scientific reward). For storm hunting, we use data from the Global 
Precipitation Measurement (GPM) mission, and classify the data into three storm types: no 
storm (low scientific reward), rainy anvil (medium scientific reward), and convective core 
(high scientific reward) (Hou et al. 2014; Integrated Multi-satellitE Retrievals for GPM 
(IMERG)). 

3   METHODS 
3.1 Problem Formulation 

We model the dynamic targeting problem as a Markov Decision Process (MDP) as follows. A 
state 𝑠 ∈ 𝑆 consists of the information that can be seen in the primary and lookahead sensors, 
and the current state of charge (𝑆𝑂𝐶 ∈ [0%, 100%]) of the satellite. An action 𝑎 ∈ 𝐴 involves 
taking a sample with the primary instrument at a particular location, which receives some 
scientific reward 𝑅 ∈ ℝ. The satellite transitions into the next state deterministically 
(𝑃(𝑠, 𝑠′) = 1) by moving one discrete timestep 𝑡 forward along its orbit. However, the next 
state 𝑠′ cannot be fully known a priori as there is some new information that is yet to be 
observed by the lookahead sensor. The policy function 𝜋 is a mapping from state space (𝑆) to 
action space (𝐴). 
We explore two different learning approaches that leverage ideas from dynamic programming 
to solve the dynamic targeting problem. These methods are reinforcement learning and 
imitation learning. 
3.2 Dynamic Programming 

Prior work uses a dynamic programming (DP) algorithm that produces optimal policies given 
a particular set of assumptions (Candela et al. 2023). However, DP is generally not deployable 
on missions because it is computationally expensive, it uses a lookahead sensor range that is 
physically unrealistic, and it requires information of future states. 

We use dynamic programming as an “oracle” to generate an upper bound on performance for 
our models, but we will also use the concept of DP in our reinforcement learning and imitation 
learning methods. Algorithm 1 summarizes the DP formulation we will use throughout this 
work. This method has full knowledge of all images along the entire path that will be traversed. 
We use the standard memoization strategy, which works backwards from the last state in the 
environment (Bellman 2003). As the algorithm progresses, it “visits” every state in the 
environment (every image paired with every state of charge) and records the current plus future 
reward value for taking any action at that state. These reward values are stored in an array (𝐷). 
After the algorithm terminates, to determine the optimal sequence of actions to take we simply 
look up the current state of the environment (based on the time step and the state of charge) 
and take the action that results in the highest future reward value according to 𝐷.  
3.3 Reinforcement Learning 

Reinforcement learning methods involve an agent that learns policies by interacting with the 
environment and receiving feedback via a reward function that incentivizes “good” actions and  
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Algorithm 1: The dynamic programming (memoization) method considers every possible state of the 
environment to optimize reward. 

penalizes “bad” actions. Reinforcement learning is an iterative approach that improves 
gradually by learning from its mistakes and successes throughout many trials.  

Here we use a variation of Q-learning to solve the dynamic targeting problem. Q-learning is a 
model-free reinforcement learning algorithm; it uses a learned lookup table called a Q-table 
which tells the agent which actions have the highest expected reward given a particular state 
of the environment. The Q-table contains a row for each possible state, and a column for every 
possible action. To follow the Q-learning policy (𝜋⋆), we simply look up which action has the 
highest value in the Q-table for the current state of the environment, and execute that action. 
The algorithm “learns” using the update function: 

𝑄(𝑠" , 𝑎") ← 𝑄(𝑠" , 𝑎") + 𝛼 <𝑟"#$ + 𝛾max% 𝑄(𝑆"#$, 𝑎) − 𝑄(𝑠" , 𝑎")C 

where 𝑄 represents the Q-table, 𝑠" is the current state of the world, 𝑎" is the last action taken, 
𝑟"#$ is the reward received from taking action 𝑎" in state 𝑠", 𝑠"#$ is the state after taking action 
𝑎", 𝛼 is the learning rate, and 𝛾 is a discount factor which tells the algorithm how heavily it 
should weight future rewards (Sutton and Barto 2020). Based on a parameter search, we choose 
𝛼 = 0.4 and 𝛾 = 0.99. Using this update function, as the Q-learning algorithm experiences 
more states, it better learns which action leads to the highest reward from that state. 

Q-learning is very sensitive to the total number of possible states, as this defines the size of the 
Q-table. If we define the environment such that it has fewer states, there is a higher likelihood 
that all states will be visited throughout training, which improves performance. As such, we 
cannot use a classified cloud image as an input to Q-learning because this method leads to too 
many state possibilities. Instead, we formulate a state vector to pick out the important features 
in our scenario. Those seven features are the state of charge (battery percentage) of the satellite, 
and six binary variables which represent the presence of the three cloud types in the primary 
sensor range, and the presence of the three cloud types in the lookahead sensor range. Thus, 
the Q-learning state representations for each scenario are: 

 

Algorithm 1: Dynamic Programming (Memoization)

1: D  Zeros(NT , NSOC , NA)
2: for each t 2 {T...1} do
3: for each SOC 2 {0...100} do
4: for each A 2 Actions do
5: S  Environment(t, SOC) . get state
6: Execute A

7: Observe R,S
0

. get reward and next state
8: Observe SOC

0
. get new state of charge

9: t
0  t+ 1

10: D(t, SOC,A) R+maxa D(t0, SOC
0
, a)

11: end for
12: end for
13: end for

We explore two different learning approaches that lever-
age ideas from dynamic programming to solve the dynamic
targeting problem. These methods are reinforcement learn-
ing and imitation learning.250

Dynamic Programming
Prior work uses a dynamic programming (DP) algorithm
that produces optimal policies given a particular set of as-
sumptions (Anonymous 2023). However, DP is generally
not deployable on missions because it is computationally ex-255

pensive, it uses a lookahead sensor range that is physically
unrealistic, and it requires information of future states.

We use dynamic programming as an “oracle” to generate
an upper bound on performance for our models, but we will
also use the concept of DP in our reinforcement learning and260

imitation learning methods. Algorithm 1 summarizes the DP
formulation we will use throughout this work. This method
has full knowledge of all images along the entire path that
will be traversed. We use the standard memoization strategy,
which works backwards from the last state in the environ-265

ment (Bellman 2003). As the algorithm progresses, it will
“visit” every state in the environment (every image paired
with every state of charge) and record the current plus fu-
ture reward value for taking any action at that state. These
reward values are stored in an array (in this case D). After270

the algorithm terminates, to determine the optimal sequence
of actions to take we simply look up the current state of the
environment (based on the time step and the state of charge)
and take the action that results in the highest future reward
value according to D.275

Reinforcement Learning
Reinforcement learning methods involve an agent that learns
policies by interacting with the environment and receiving
feedback via a reward function that incentivizes “good” ac-
tions and penalizes “bad” actions. Reinforcement learning280

is an iterative approach that improves gradually by learning
from its mistakes and successes throughout many trials.

Here we use a variation of Q-learning to solve the dy-
namic targeting problem. Q-learning is a model-free rein-
forcement learning algorithm; it uses a learned lookup table285

called a Q-table which tells the agent which actions have

the highest expected reward given a particular state of the
environment. The Q-table contains a row for each possible
state, and a column for every possible action. To follow the
Q-learning policy (⇡?), we simply look up which action has 290

the highest value in the Q-table for the current state of the en-
vironment, and execute that action. The algorithm “learns”
using the update function:

Q(st, at) Q(st, at)+

↵(rt+1 + �max
a

Q(St+1, a)�Q(st, at))
(1)

where Q represents the Q-table, st is the current state of
the world, at is the last action taken, rt+1 is the reward re- 295

ceived from taking action at in state st, st+1 is the state after
taking action at, ↵ is the learning rate, and � is a discount
factor which tells the algorithm how heavily it should weight
future rewards (Sutton and Barto 2020). Based on a parame-
ter search, we choose ↵ = 0.4 and � = 0.99. Using this up- 300

date function, as the Q-learning algorithm experiences more
states, it better learns which action leads to the highest re-
ward from that state.

Q-learning is very sensitive to the total number of possible
states, as this defines the size of the Q-table. If we define the 305

environment such that it has fewer states, there is a higher
likelihood that all states will be visited throughout train-
ing, which improves performance. As such, we cannot use
a classified cloud image as an input to Q-learning because
this method leads to too many state possibilities. Instead, we 310

formulate a state vector to pick out the important features
in our scenario. Those seven features are the state of charge
(battery percentage) of the satellite, and six binary variables
which represent the presence of the three cloud types in the
primary sensor range, and the presence of the three cloud 315

types in the lookahead sensor range. Thus, the Q-learning
state representations for each scenario are as follows:
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An example of cloud images and their corresponding Q-
learning state representations are shown in Figure 3.

Our action for Q-learning is binary: to sample or not to 320

sample. We do not choose where to sample using the Q-
learning algorithm, just when to sample. Our formulation of
the dynamic targeting problem does not take into account the
power draw or time taken to move the primary sensor. Thus,
it is straightforward to determine where the satellite should 325

sample, once we have determined at what states it should
sample. If we are taking the “sampling” action, we simply
measure the highest reward cloud type closest to nadir. Fu-
ture work could address the problem of determining where
to sample if we take into account more real-world factors 330

such as the time and energy necessary to move the sensor,
and the diminishing returns of sampling the same location.
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Figure 3: Example of lookahead sensor images (after being classified into cloud types) and their 
corresponding Q-learning states for the cloud avoidance scenario. The white circle represents the range of 
the primary (radar) sensor. 

An example of cloud images and their corresponding Q-learning state representations are 
shown in Figure 3.  

Our action for Q-learning is binary: to sample or not to sample. We do not choose where to 
sample using the Q-learning algorithm, just when to sample. Our formulation of the dynamic 
targeting problem does not consider the power draw or time taken to move the primary sensor. 
Thus, it is straightforward to determine where the satellite should sample, once we have 
determined at what states it should sample. If we are taking the “sampling” action, we simply 
measure the highest reward cloud type closest to nadir. Future work could address the problem 
of determining where to sample if we consider more real-world factors such as the time and 
energy necessary to move the sensor, and diminishing returns of sampling the same location. 

Our formulation of the state of the environment for Q-learning results in 101 × 26 = 6,464 
possible environment states. This means for the trained model to be fully generalizable, it must 
visit all 6,464 states during training. In general, Q-learning proceeds forward in time, taking 
actions and observing the environmental response, and updating its belief about the 
environment based on the rewards received. This formulation requires the Q-learning algorithm 
to naturally come across most or all of the possible states in its exploration, which can be 
unlikely or even impossible with a high number of states or limited data. Some Q-learning 
methods, like the 𝜖-greedy approach (see Algorithm 2), attempt to rectify this problem by 
sometimes choosing random actions to execute, therefore placing the environment in a new 
unseen state (Sutton and Barto 2020). In practice, we found that training the Q-table using the 
𝜖-greedy method did not produce sufficient results; this method was not able to outperform the 
greedy window method from prior work, because it did not visit enough unique states to 
generalize well when encountering new testing data.  

In order to remedy this issue, we use a strategy from dynamic programming (see Algorithm 1). 
The benefit of dynamic programming is that it visits every possible state of the environment, 
given particular training data. To improve the performance of our method, we use this feature 
of dynamic programming in our Q-learning algorithm. We begin iterating from the last 
timestep in the training data, and step backwards in time while varying the state of charge from 
0 to 100, and observing the reward from taking each action from each of these states (see 
Algorithm 3). Thus, the Q-learning algorithm “experiences” taking every action from every 

State: [12, 1, 1, 0, 1, 1, 1] State: [76, 1, 1, 0, 1, 1, 0]

Cloud Mid-Cloud Clear

SOC: 76SOC: 12
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Algorithms 2 and 3: Q-learning methods use a lookup table to determine the highest expected reward from 
taking a particular action. 

cloud image at all different levels of charge. This greatly increases the number of states that 
the Q-learning algorithm encounters while still using the same amount of satellite data for 
training. It is important to note that we are able to use this strategy because we have a simulation 
that allows us to step backwards in time through saved data. This strategy is not applicable to 
situations in which Q-learning is performed on a real system and not stored data. Although we 
are using the same framework as the dynamic programming approach, note that by learning 
the Q-table, we are able to use this method in general on unseen situations, whereas the 
dynamic programming approach will only provide a list of optimal actions for a specific 
sequence of data. 
3.4 Imitation Learning 

Imitation learning, also known as apprenticeship learning or learning from demonstration, 
consists of learning to replicate the actions of an expert agent. In this work the DP algorithm 
serves as the expert. Optimal policies can be approximated offline via learning, allowing for 
onboard inference, planning, and execution with more realistic mission resources.  

We employ behavioral cloning, a form of imitation learning that learns a policy by using 
supervised learning on a set of expert demonstrations that is collected beforehand. The process 
is described in Algorithm 4 and consists of two main steps. First, the algorithm collects a set 
of expert demonstrations 𝒟⋆ that consists of state-action pairs: 𝒟⋆ = {(𝑠&, 𝑎&⋆), (𝑠$, 𝑎$⋆), … }. 
Behavioral cloning methods typically collect non-interrupting sequences of states and actions 
(also known as a trajectories), but here we randomly discard some state-action pairs; this is for 
efficiency purposes as we later show how relatively small datasets can yield good results. 
Finally, the method trains a supervised learning model using the expert demonstrations in order 
to learn a policy 𝜋M that approximates the expert policy 𝜋⋆. 
We use a neural network for supervised learning, specifically a multilayer perceptron (MLP) 
with an architecture that is specified in Table 1. 
 

Layer Units Activation Function 
input 13 N/A 
hidden 1 32 rectified linear unit 
hidden 2 16 rectified linear unit 
hidden 3 8 rectified linear unit 
hidden 4 4 rectified linear unit 
output 1 sigmoid 

Table 1: Architecture of the multilayer perceptron network used for behavioral cloning. 
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0
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13: S  S

0

14: end for
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0
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10: end for
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Algorithm 4: Behavioral cloning is a method of imitation learning which learns to replicate the actions of 
an expert. 

The goal of the neural network is to minimize the difference between the actions drawn from 
𝜋M and the corresponding demonstrations from 𝜋⋆: 

𝜃O = argmin
'

T ℒ
(),%⋆)∈𝒟⋆

(𝜋M'(𝑠), 𝑎⋆), 

where ℒ is a loss function (e.g., mean squared error), 𝜋M'(𝑥) is the action drawn from the learned 
policy for state 𝑠, 𝑎⋆ is the expert’s action for the same state, 𝜃 is the set of parameters (in this 
case neural network weights) that define the learned policy 𝜋M', and 𝜃O is the set of learned 
parameters after solving the optimization problem. 

For this approach, states 𝑆, actions 𝐴, and the policy function 𝜋 are formulated with some 
differences because behavioral cloning does not face the same limitations as Q-learning, that 
is, the need for discrete states and actions in conjunction with a manageable Q-table size. States 
are feature vectors that contain more information than in the Q-learning case and are 
normalized between 0 and 1: 

 
Actions are now stochastic as they are randomly drawn from the policy that was learned by the 
neural network. That is, 𝑎" ∼ 𝜋M'(𝑠"), where 𝜋M'(𝑠") ∈ [0,1] is the probability of triggering an 
observation 𝑎" ∈ {0,1} given a state 𝑠" ⊂ ℝ$.. 
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Figure 4: Dynamic targeting via behavioral cloning inference. First, instrument data is processed to generate a state vector. Then,
a neural network is used to decide when to trigger observations based on what it previously learned from expert demonstrations.
In this example the network learns that it is best to wait and save resources for more valuable future observations.

Algorithm 4: Behavioral Cloning (DP expert)

1: D?  {} . empty dataset
2: for each t 2 {1...T} do
3: for each SOC 2 {0...100} do
4: p Random(0...1)
5: if p  ✏ then . random selection
6: S  Environment(t, SOC) . get state
7: A

?  argmaxa D(t, SOC, a) . get action
8: D?  D? [ (S,A?) . save state-action pair
9: end if

10: end for
11: end for
12: ⇡̂✓  NeuralNetwork.Train(D?) . learn policy

poses as we later show how relatively small datasets can395

yield good results. Finally, the method trains a supervised
learning model using the expert demonstrations in order to
learn a policy ⇡̂ that approximates the expert policy ⇡

?.
We use a neural network for supervised learning, specif-

ically a multilayer perceptron (MLP) with an architecture400

that is specified in Table 1.

Layer Units Activation Function
input 13 N/A

hidden 1 32 rectified linear unit
hidden 2 16 rectified linear unit
hidden 3 8 rectified linear unit
hidde 4 4 rectified linear unit
output 1 sigmoid

Table 1: Architecture of the multilayer perceptron network
used for behavioral cloning.

The goal of the neural network is to minimize the differ-
ence between the actions drawn from ⇡̂ and the correspond-

ing demonstrations from ⇡
?:

✓̂ = argmin
✓

X

(s,a?)2D?

L (⇡̂✓(s), a
?) , (2)

where L is a loss function (e.g., mean squared error), ⇡̂✓(x) 405

is the action drawn from the learned policy for state s, a?
is the expert’s action for the same state, ✓ is the set of pa-
rameters (in this case neural network weights) that define
the learned policy ⇡̂✓, and ✓̂ is the set of learned parameters
after solving the optimization problem. 410

For this approach, states S, actions A, and the policy func-
tion ⇡ are formulated with some differences because be-
havioral cloning does not face the same limitations as Q-
learning, that is, the need for discrete states and actions in
conjunction with a manageable Q-table size. States are fea- 415

ture vectors that contain more information than in the Q-
learning case and are normalized between 0 and 1:
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Actions are now stochastic as they are randomly drawn
from the policy that was learned by the neural network. That
is, at ⇠ ⇡̂✓(st), where ⇡̂✓(st) 2 [0, 1] is the probability of 420

triggering an observation at 2 {0, 1} given a state st ⇢ R13.

Experiments
We test our methods in two scenarios: cloud avoidance and
storm hunting. We use 39 datasets from the MODIS mission
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Figure 4: Dynamic targeting via behavioral cloning inference. First, instrument data is processed to 
generate a state vector. Then, a neural network is used to decide when to trigger observations based on what 
it previously learned from expert demonstrations. In this example the network learns that it is best to wait 
and save resources for more valuable future observations. 

4   EXPERIMENTS 
We test our methods in two scenarios: cloud avoidance and storm hunting. We use 39 datasets 
from the MODIS mission for cloud avoidance and 10 datasets from the GPM mission for storm 
hunting. Each dataset was collected at a different week of the year and represents one day worth 
of satellite images (86,400 images per dataset). We use half of the datasets for training our two 
learning models and the other half for testing. The rewards for each scenario are as follows: 

• Cloud Avoidance: off (no sample) = 0, cloud = 1, mid-cloud = 10, clear = 100 
• Storm Hunting: off (no sample) = 0, no storm = 1, rainy anvil = 10, convective 

core = 100 
We first experiment with using different amounts of data to train our learning models, and 
ultimately choose the one with the best and most consistent performance across the testing 
data. We then compare these learning methods to prior work that consists of different heuristic 
algorithms. 

5   RESULTS 
5.1 Training 
We found that in most cases, using a full dataset (86,400 images) to train each Q-learning 
model resulted in a higher or equal total reward on the testing data than using a fraction of the 
data from each dataset. In short, using more data to train improved performance. Figure 5 
illustrates the effect of the amount of training data on the reward value achieved by each set of 
models. The “percent of total reward” is determined in comparison to the dynamic 
programming approach, which gives the optimal sequence of actions and therefore the optimal 
reward. We see that the average performance of our models levels out at 20,000 images worth 
of training data in the cloud avoidance scenario, and at just 3,000 images worth of training data 
for the storm hunting scenario. In the cloud avoidance case, using all images to train our model 
outperforms the average reward value from the models trained on one full dataset (86,400 
images), but actually falls short of the best-performing models trained on 5,000 to 86,400 
images. In the storm hunting scenario our performance actually decreases when we use all the 
training images, probably due to overfitting to the training data in this case. Overall, these 
experiments indicate that our Q-learning method can be trained effectively on a small amount 
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of data (just 3,000 to 20,000 satellite images), though the amount of image data needed depends 
on the scenario tested. 

We observed similar results for the behavioral learning approach (Figure 6). Performance 
increases as the neural network is trained with more data, in this case demonstrations from the 
DP expert. However, performance converges without too many examples. Each full DP dataset 
consists of 86400 × 101 = 8726400 different possible states (images and SOC). The training 
sets that we use in this experiment represent a small fraction of this total, ranging from 0.34% 
to 2.41%. An important consideration is that while training data is randomly sampled, in 
practice we also balance it in such a way that the three different cloud types are seen and 
represented more or less equally. This is to reduce learning bias of the neural network, and is 
one possible explanation for such a quick convergence in performance. 

In both cases, we found that some datasets in our training data contained more unique states 
than others, and thus led to a consistently higher total reward on all testing data as compared 
to models trained on datasets with fewer unique states. 
 

 
Figure 5: Percent of total possible reward achieved by each set of Q-learning models trained on different 
amounts of data. Each set of models is trained on the first 𝑁 states in each training dataset. A full dataset 
contains 86,400 images. 

 

 
Figure 6: Percent of total possible reward achieved by the behavioral learning neural network when trained 
on different amounts of randomly sampled data. 
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5.2 Algorithm Comparison 

We compare our two learning approaches to existing planning methods designed to solve the 
dynamic targeting problem: random, greedy nadir, greedy lateral, greedy radar, greedy 
window, and dynamic programming as an “oracle,” i.e. an upper bound on performance (for a 
description of these methods, see Section 2). Table 2 shows how often each planning algorithm 
sampled each cloud type over all testing data. Note that for both scenarios, the cloud types that 
have a high scientific reward value are generally rarer to encounter, while cloud types with a 
lower scientific reward are much more common. In addition, due to the energy constraints of 
the satellite, we expect that each algorithm will have to spend 80% of the time “off” or not 
sampling, to recharge the battery. 
We see that in all cases, our Q-learning and behavioral cloning approaches sample high reward 
cloud types more frequently than any other planning method. Only the dynamic programming 
algorithm outperforms them in this regard, but the DP method is unrealistic to use in a real 
mission scenario and simply provides an upper bound on performance. The learning methods 
sample fewer low and mid-reward clouds than the other methods. This is a consequence of two 
factors: 1) sampling more high-reward cloud types means the learning methods have less time 
to sample low-reward cloud types, and 2) the reward function used by the learning algorithms 
encourages sampling higher reward cloud types ten times more than the next lowest reward 
cloud type. In other words, our methods are trained to maximize reward rather than to diversify 
samples, so this result is expected. Interestingly, we can see from Table 2 that the Q-learning 
method never samples Cloud (Reward = 1) types in the cloud avoidance scenario, and spends 
about 84% of its time not sampling, versus the expected 80% for recharging. This behavior is 
most likely due to the density of high reward cloud types in the training data; the Q-learning 
method generally learns to conserve power when it can only see low-reward cloud types, since 
based on the training data, there is likely to be a higher reward cloud type encountered soon. 

Out of all the methods tested, Q-learning best utilizes the data in the lookahead sensor to take 
the most scientifically rewarding samples. Behavioral cloning is the second best. This 
difference is probably due to the fact that Q-learning uses information from future state rewards 
whereas behavioral cloning only relies on current state information. Hyperparameter tuning 
might be another explaining factor. 
 

Cloud Avoidance Random Greedy 
Nadir 

Greedy 
Lateral 

Greedy 
Radar 

Greedy 
Window 

Behavioral 
Cloning Q-Learning Oracle 

(DP) 

Off (Reward = 0) 80.37% 79.98% 79.98% 79.98% 80.00% 79.98 % 84.42% 80.00% 

Cloud (Reward = 1) 13.31% 10.07% 6.43% 4.28% 4.29% 4.16 % 0.00 % 3.67% 

Mid-Cloud (Reward = 10) 4.33% 7.37% 9.09% 9.35% 7.93% 7.34 % 6.52% 7.24% 

Clear (Reward = 100) 1.99% 2.57% 4.50% 6.39% 7.78% 8.52 % 9.06% 9.08% 

Storm Hunting         

Off (Reward = 0) 80.37% 79.99% 79.99% 79.99% 80.02% 79.99 % 80.17% 80.00% 

No Storm (Reward = 1) 18.82% 18.01% 15.47% 13.17% 13.17% 13.14 % 13.12% 12.28% 

Rainy Anvil (Reward = 10) 0.78% 1.88% 4.23% 6.23% 5.79% 5.71 % 5.41% 6.40% 

Convective Core (Reward = 100) 0.03% 0.12% 0.31% 0.60% 1.01% 1.16 % 1.30% 1.32% 

Table 2: Percentage of time spent sampling each cloud type by each planning method in both scenarios. 
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 Percent of Total Possible 

Reward (Cloud Avoidance) 
Percent of Total Possible 
Reward (Storm Hunting) 

Random 25.91% 14.12% 

Greedy Nadir 34.57% 23.29% 
Greedy Lateral 55.58% 42.45% 
Greedy Radar 74.86% 65.18% 

Greedy Window 87.50% 82.57% 
Behavioral Cloning 95.84% 91.27% 

Q-Learning 98.67% 94.66% 

Oracle (DP) 100.00% 100.00% 

Table 3: Average percent of total possible reward achieved by each planning method. 

We also examine the total reward achieved by each planning method. Table 3 shows the reward 
attained by each algorithm as a percent of the total possible reward. This total possible reward 
is the reward achieved by dynamic programming, which provides the optimal sequence of 
actions for each testing dataset. In the cloud avoidance scenario, Q-learning and behavioral 
cloning attain 98.67% and 95.87% of the possible reward on average (respectively), whereas 
the best dynamic targeting method from prior work (greedy window) achieves only 87.50% of 
the possible reward on average. In the storm hunting scenario, Q-learning and behavioral 
cloning achieve 94.66% and 91.27% of the possible reward where the greedy window method 
achieves 82.57%. 
Every method takes on the order of microseconds to plan a sample (with the exception of 
dynamic programming, which is not feasible to use on a real system), so they will each 
comfortably run in real time on a satellite that is only capable of sampling once per second. 
Small differences in runtime between methods are thus not relevant. 

6   CONCLUSIONS AND FUTURE WORK 
This work presents two learning-based planning methods for dynamic targeting to improve the 
science return of Earth-observing satellites. These two methods build on dynamic 
programming and consist of reinforcement learning (Q-learning) and imitation learning 
(behavioral cloning), respectively. Simulation results demonstrate that both learning-based 
approaches perform better than existing heuristic methods, and also close to optimal. 
Additionally, both learning methods can be effectively trained with relatively small amounts 
of data. 

Future work will consider more realistic satellite factors and instrument constraints, as well 
more interesting reward models. Additionally, we would like to use full images as inputs rather 
than manually-engineered state vectors, thus preserving information that can potentially lead 
to better decisions. We would also like to use reinforcement learning methods such as deep Q-
networks (DQN) and proximal policy optimization (PPO) that easily allow for continuous state 
representations. Finally, we plan to deploy and test these algorithms on different satellite 
platforms, especially those that have flight processors that support deep learning. 
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