

©2024. All rights reserved.

LEARNING-BASED PLANNING FOR IMPROVING SCIENCE
RETURN OF EARTH OBSERVATION SATELLITES

1*Abigail Breitfeld, 2Alberto Candela, 2Juan Delfa, 3Akseli Kangaslahti, 2Itai Zilberstein,
2Steve Chien, 1David Wettergreen

*lead presenter
1abreitfe@andrew.cmu.edu, Carnegie Mellon University, USA

2Jet Propulsion Laboratory, California Institute of Technology, USA
3University of Michigan, USA

Abstract–Earth observing satellites are powerful tools for collecting scientific information
about our planet, however they have limitations: they cannot easily deviate from their orbital
trajectories, their sensors have a limited field of view, and pointing and operating these sensors
can take a large amount of the spacecraft’s resources. It is important for these satellites to
optimize the data they collect and include only the most important or informative
measurements. Dynamic targeting is an emerging concept in which satellite resources and data
from a lookahead instrument are used to intelligently reconfigure and point a primary
instrument. Simulation studies have shown that dynamic targeting increases the amount of
scientific information gathered versus conventional sampling strategies. In this work, we
present two different learning-based approaches to dynamic targeting, using reinforcement and
imitation learning, respectively. These learning methods build on a dynamic programming
solution to plan a sequence of sampling locations. We evaluate our approaches against existing
heuristic methods for dynamic targeting, showing the benefits of using learning for this
application. Imitation learning performs on average 10.0% better than the best heuristic
method, while reinforcement learning performs on average 13.7% better. We also show that
both learning methods can be trained effectively with small amounts of data.
1 INTRODUCTION
Earth observing satellites serve an important purpose in acquiring scientific data, with
applications in various fields such as geology, meteorology, and climate science. However,
these satellites have limitations in terms of data collection. They are confined to predetermined
orbital paths, possess sensors with restricted fields of view, and necessitate a significant portion
of the spacecraft's energy for sensor operation and positioning. Therefore, it is imperative for
these satellites to optimize their data collection by focusing on the most informative
measurements.

The primary objective of this work is to develop strategies for determining the most efficient
way for Earth observation satellites to sample their surroundings while considering practical
constraints, particularly power consumption. We concentrate on the concept of dynamic
targeting, i.e. developing intelligent methods for orienting satellite instruments to enhance their
scientific output. Prior research has indicated that employing dynamic targeting methods
results in a higher volume of informative scientific data compared to uniform or random
sampling techniques. Previous approaches to this challenge have used various methodologies
such as greedy algorithms, local search techniques, constraint programming, and dynamic
programming (Candela et al. 2023). In this work, we introduce a novel approach to dynamic
targeting that leverages two learning frameworks to address this problem, reinforcement and
imitation learning.

©2024. All rights reserved.

Figure 1: An Earth observation satellite with a primary sensor and a lookahead sensor that gives
information about the environment that lies on the path ahead. The goal of this work is to determine where
to point the primary sensor to measure the highest value scientific targets (Candela et al. 2023).

2 BACKGROUND
2.1 Related Work

Satellites equipped with agile (pointable) instruments offer a more efficient approach to data
collection compared to those featuring static “pushbroom” sensors. The Eagle Eye project has
developed planning and scheduling models for observations of pointable 2D satellite
instruments (Knight, Donnellan, and Green 2013), and Lemaître et al. focus on scheduling for
Agile Earth Observing Satellites (AEOS) which have three degrees of freedom for image
acquisition (Lemaître et al. 2002). However, selecting observations for highly-agile
instruments is an ongoing challenge; various techniques have been proposed to address this
problem, including greedy algorithms, constraint programming approaches, dynamic
programming, and local search methods. It is important to note that existing works on agile
instruments generally do not leverage past observations.

Liao and Yang present a strategy for scheduling the order of imaging operations for FormoSat-
2, a low-earth-orbit remote sensing satellite that previously imaged Taiwan (Liao and Yang
2005). This approach considers current and upcoming weather conditions to provide a plan,
which is periodically rescheduled using a rolling horizon scheme.

The Autonomous Sciencecraft Experiment (ASE) was used to analyze acquired imagery and
schedule future observations on the Earth Observing One spacecraft for over a decade (Chien
et al. 2005). ASE operated on the orbital timescale (roughly 90 minutes), whereas ours and
other methods can respond within minutes or faster (Candela et al. 2023). A prototype of a
heuristic-based spacecraft pointing scheduler is presented by Chien and Troesch, which
operates on the order of one overflight (about 8 minutes) (Chien and Troesch 2015).

The German FireBIRD autonomy mission concept involves two satellites (TET-1 and BIROS),
which monitor fires from space with high accuracy. FireBIRD is devised to enhance existing
low-resolution systems (up to 1 km/pixel) such as MODIS, METEOSAT, CALIPSO, ADM,
and EarthCARE. Lenzen et al. propose a planning and scheduling autonomy concept within
the FireBIRD mission scope that can immediately react to onboard-detected events, which
combines the advantages of onboard and on-ground scheduling (Lenzen et al. 2014). However,
this strategy has not yet flown onboard a spacecraft.
Beaumet, Verfaillie, and Charmeau conducted a study analyzing the feasibility of using an on-
board lookahead camera to detect clouds in combination with a primary instrument (Beaumet,

primary instrument
range

nadir

potential primary
instrument observation

lookahead sensor
previous observations

satellite travel
direction

lookahead sensor
current observation

©2024. All rights reserved.

Verfaillie, and Charmeau 2011). Their work proposes an online algorithm that combines both
instruments for autonomous high-level mission management, which increases satisfaction of
mission objectives.
Rapid cloud screening has been used to reduce data volume on the Airborne Visible-Infrared
Imaging Spectrometer (AVIRIS-NG) instrument, by compressing or removing clouds in
images (Thompson et al. 2014). Similarly, cloud avoidance work has been undertaken on
TANSO-FTS-2, using intelligent targeting to minimize observations effected by clouds (Suto
et al. 2021). Greedy and graph-search-based algorithms are employed by Hasnain et al. to select
the clearest sections of the sky for imaging (Hasnain et al. 2021).
The Smart Ice Cloud Sensing (SMICES) mission concept proposes using machine learning and
artificial intelligence methods to target storms and clouds of scientific interest (Ogut et al.
2022a; Swope et al. 2021). Sponsored by the NASA Earth Science Technology Office (ESTO)
under the Instrument Incubator Program 19 (IIP-19), SMICES, a combined radar/radiometer
instrument, is designed to measure cloud ice and water vapor in the upper troposphere and
lower stratosphere. It is able to operate at a very high rate, targeting images on the order of
seconds, and utilizes multiple cloud labels to identify targets of scientific interest. The SMICES
concept is currently in development for demonstration on an aircraft, but the ultimate goal is
to deploy the algorithms on a small satellite in low-Earth orbit.

Recent work has demonstrated flight of advanced machine learning models on board small
satellite platforms such as ESA’s Φ-Sat (Giuffrida et al. 2022) and ESA’s OPS-SAT (Labrèche
et al. 2022). There exist several methods for satellite observation scheduling that use machine
learning concepts. Chen et al. present an approach to scheduling agile satellite tasks that uses
a recurrent neural network (Chen et al. 2019). Wei et al. develop a multi-objective method
based on deep reinforcement learning and parameter transfer which considers both the failure
rate and the timeliness when scheduling satellite tasks (Wei et al. 2021). These methods both
assume that the satellite has only one imaging sensor (no lookahead), and neither method
considers power consumption.
2.2 Dynamic Targeting

The purpose of dynamic targeting methods is to maximize the number of high value targets
sampled by an Earth-observing satellite instrument, while complying with energy constraints.
Prior algorithms for dynamic targeting were developed for use in both storm tracking and cloud
avoidance scenarios (Candela et al. 2023). In the case of storm tracking, particular cloud types
are more informative and scientifically valuable to sample, so those cloud types are given a
higher priority. In other cases, high value scientific targets are only visible when there is no
cloud cover, so sampling clear skies is given a higher priority.
Dynamic targeting methods use a model of a satellite with a primary sensor and a lookahead
sensor that allows the satellite to see a limited view of its future path (see Figure 1). This
configuration is seen in satellites such as the Smart Ice Cloud Sensing (SMICES) small-sat,
which carries a radar to take targeted samples of deep convective ice storms, and a radiometer
to find these storms along the path of the satellite (Ogut et al. 2022b; Bosch-Lluis et al. 2022).

Many existing methods for dynamic targeting follow a “greedy” policy, meaning they sample
the location with the highest immediate reward, given some constraints. We will compare our
methods to the following existing dynamic targeting approaches: random, greedy nadir, greedy
lateral, greedy radar, greedy window, and a dynamic programming (DP) approach (Candela et
al. 2023). See Figure 2 for an illustration of these approaches.

©2024. All rights reserved.

Figure 2: Existing dynamic targeting algorithms for intelligent satellite observations. Each has different
knowledge of the environment. Our learning approaches have the same knowledge and sampling capabilities
as greedy window (d). The dynamic programming approach (e) has full knowledge of future states and thus
is used as a benchmark.

Each approach has a different sampling space and knowledge of the environment. The greedy
nadir sampling method always points the instrument directly downwards (at nadir) but decides
whether to take a sample based on the state of charge (battery percentage) of the satellite and
the target beneath the sensor. A random method is used as a lower bound, which also
exclusively points the instrument at nadir, but randomly decides when to take a sample. The
greedy lateral approach searches along the lateral axis of the sensor for the best target to sample
and then determines whether to sample based on the best target type and the state of charge.
The greedy radar method functions the same as the greedy lateral approach, but instead
searches the entire reachable area of the primary (radar) sensor. The greedy window method
uses the knowledge of the target types in the reachable sensor area and the lookahead sensor
along with the state of charge of the satellite to determine whether to sample and where to point
the primary sensor. Our methods have the same knowledge of the environment as the greedy
window method (primary and lookahead sensor).

The dynamic programming approach uses the entire path of the satellite (not just what is visible
to the sensors) to determine when and where to sample. The DP approach is used to generate
an upper bound for performance comparisons but is not practical to implement on a satellite
because the algorithm assumes that it has full knowledge of all future states of the world, which
is not the case with real-world limited lookahead sensors.
2.3 Satellite Simulation

This work leverages an existing framework to model an Earth observation satellite with a
primary radar sensor and a lookahead sensor (Candela et al. 2023). The simulation framework
allows the user to specify the range and resolution of the primary and lookahead sensors, and
the rate of charging/discharging of the satellite. For our simulation studies, we use a primary
radar sensor with a range of 15º from nadir, and a lookahead sensor with a range of 45º from
nadir. We use a resolution of 7 km/pixel for the lookahead images. Taking a sample discharges
the satellite's battery by 5% of a complete charge, and it can recharge its battery by 1% at each
time step (so effectively the satellite power discharges by 4% when taking a sample). This
charge/discharge rate causes the satellite to keep the primary sensor off on average 80% of the
time, and only take samples 20% of the time. For these studies, we assume that the lookahead
sensor is always on and does not interfere with the charging rate of the satellite.

potential primary
instrument observation

primary instrument
range

lookahead range

(a) random/greedy nadir (b) greedy lateral (c) greedy radar (d) greedy window (e) dynamic programming

Figure 2: Existing dynamic targeting algorithms for intelligent satellite observations. Each has different knowledge of the
environment. Our learning approaches have the same knowledge and sampling capabilities as greedy window (d). The dynamic
programming approach (e) has full knowledge of future states and thus is used as a benchmark.

sor area and the lookahead sensor along with the state of
charge of the satellite to determine whether to sample and
where to point the primary sensor. Our methods have the
same knowledge of the environment as the greedy window185

method (primary and lookahead sensor).
The dynamic programming approach uses the entire path

of the satellite (not just what is visible to the sensors) to de-
termine when and where to sample. The DP approach is used
to generate an upper bound for performance comparisons but190

is not practical to implement on a satellite because the algo-
rithm assumes that it has full knowledge of all future states
of the world, which is not the case with real-world limited
lookahead sensors.

Satellite Simulation195

This work leverages an existing framework to model an
Earth observation satellite with a primary radar sensor and
a lookahead sensor (Anonymous 2023). The simulation
framework allows the user to specify the range and reslution
of the primary and lookahead sensors, and the rate of charg-200

ing/discharging of the satellite. For our simulation studies,
we use a primary radar sensor with a range of 15º from
nadir, and a lookahead sensor with a range of 45º from nadir.
We use a resolution of 7 km/pixel for the lookahead images.
Taking a sample discharges the satellite’s battery by 5% of205

a complete charge, and it can recharge its battery by 1% at
each time step (so effectively the satellite power discharges
by 4% when taking a sample). This charge/discharge rate
causes the satellite to keep the primary sensor off on aver-
age 80% of the time, and only take samples 20% of the time.210

For these studies, we assume that the lookahead sensor is al-
ways on and does not interfere with the charging rate of the
satellite.

Our simulation is useful both for testing cloud avoidance

to better observe the Earth’s surface, and for testing storm 215

hunting, or intelligently sampling cloud cover. The simula-
tion calculates a feasible orbit for the satellite, and images
are extracted from real historical data that represent local in-
formation that would be seen by the lookahead sensor given
the time and the satellite’s location. For cloud avoidance, we 220

use data from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) (Justice et al. 1998). Each pixel in the
real satellite image is categorized into three classes: clear
(high scientific reward), mid-cloud (medium scientific re-
ward), and cloud (low scientific reward). For storm hunt- 225

ing, we use data from the Global Precipitation Measurement
(GPM) mission, and classify the data into three storm types:
no storm (low scientific reward), rainy anvil (medium sci-
entific reward), and convective core (high scientific reward)
(Hou et al. 2014; Integrated Multi-satellitE Retrievals for 230

GPM (IMERG), version 4.4).

Methods
Problem Formulation
We model the dynamic targeting problem as a Markov De-
cision Process (MDP) as follows. A state s 2 S consists 235

of the information that can be seen in the primary and
lookahead sensors, and the current state of charge (SOC 2
[0%, 100%])) of the satellite. An action a 2 A involves
taking a sample with the primary instrument at a particu-
lar location, which receives some scientific reward R 2 R. 240

The satellite transitions into the next state deterministically
(P (s, s0) = 1) by moving one discrete timestep t forward
along its orbit. However, the next state s

0 cannot be fully
known a priori as there is some new information that is yet
to be observed by the lookahead sensor. The policy function 245

⇡ is a mapping from state space (S) to action space (A).

©2024. All rights reserved.

Our simulation is useful both for testing cloud avoidance to better observe the Earth's surface,
and for testing storm hunting, or intelligently sampling cloud cover. The simulation calculates
a feasible orbit for the satellite, and images are extracted from real historical data that represent
local information that would be seen by the lookahead sensor given the time and the satellite's
location. For cloud avoidance, we use data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Justice et al. 1998). Each pixel in the real satellite image is
categorized into three classes: clear (high scientific reward), mid-cloud (medium scientific
reward), and cloud (low scientific reward). For storm hunting, we use data from the Global
Precipitation Measurement (GPM) mission, and classify the data into three storm types: no
storm (low scientific reward), rainy anvil (medium scientific reward), and convective core
(high scientific reward) (Hou et al. 2014; Integrated Multi-satellitE Retrievals for GPM
(IMERG)).

3 METHODS
3.1 Problem Formulation

We model the dynamic targeting problem as a Markov Decision Process (MDP) as follows. A
state 𝑠 ∈ 𝑆 consists of the information that can be seen in the primary and lookahead sensors,
and the current state of charge (𝑆𝑂𝐶 ∈ [0%, 100%]) of the satellite. An action 𝑎 ∈ 𝐴 involves
taking a sample with the primary instrument at a particular location, which receives some
scientific reward 𝑅 ∈ ℝ. The satellite transitions into the next state deterministically
(𝑃(𝑠, 𝑠′) = 1) by moving one discrete timestep 𝑡 forward along its orbit. However, the next
state 𝑠′ cannot be fully known a priori as there is some new information that is yet to be
observed by the lookahead sensor. The policy function 𝜋 is a mapping from state space (𝑆) to
action space (𝐴).
We explore two different learning approaches that leverage ideas from dynamic programming
to solve the dynamic targeting problem. These methods are reinforcement learning and
imitation learning.
3.2 Dynamic Programming

Prior work uses a dynamic programming (DP) algorithm that produces optimal policies given
a particular set of assumptions (Candela et al. 2023). However, DP is generally not deployable
on missions because it is computationally expensive, it uses a lookahead sensor range that is
physically unrealistic, and it requires information of future states.

We use dynamic programming as an “oracle” to generate an upper bound on performance for
our models, but we will also use the concept of DP in our reinforcement learning and imitation
learning methods. Algorithm 1 summarizes the DP formulation we will use throughout this
work. This method has full knowledge of all images along the entire path that will be traversed.
We use the standard memoization strategy, which works backwards from the last state in the
environment (Bellman 2003). As the algorithm progresses, it “visits” every state in the
environment (every image paired with every state of charge) and records the current plus future
reward value for taking any action at that state. These reward values are stored in an array (𝐷).
After the algorithm terminates, to determine the optimal sequence of actions to take we simply
look up the current state of the environment (based on the time step and the state of charge)
and take the action that results in the highest future reward value according to 𝐷.
3.3 Reinforcement Learning

Reinforcement learning methods involve an agent that learns policies by interacting with the
environment and receiving feedback via a reward function that incentivizes “good” actions and

©2024. All rights reserved.

Algorithm 1: The dynamic programming (memoization) method considers every possible state of the
environment to optimize reward.

penalizes “bad” actions. Reinforcement learning is an iterative approach that improves
gradually by learning from its mistakes and successes throughout many trials.

Here we use a variation of Q-learning to solve the dynamic targeting problem. Q-learning is a
model-free reinforcement learning algorithm; it uses a learned lookup table called a Q-table
which tells the agent which actions have the highest expected reward given a particular state
of the environment. The Q-table contains a row for each possible state, and a column for every
possible action. To follow the Q-learning policy (𝜋⋆), we simply look up which action has the
highest value in the Q-table for the current state of the environment, and execute that action.
The algorithm “learns” using the update function:

𝑄(𝑠" , 𝑎") ← 𝑄(𝑠" , 𝑎") + 𝛼 <𝑟"#$ + 𝛾max% 𝑄(𝑆"#$, 𝑎) − 𝑄(𝑠" , 𝑎")C

where 𝑄 represents the Q-table, 𝑠" is the current state of the world, 𝑎" is the last action taken,
𝑟"#$ is the reward received from taking action 𝑎" in state 𝑠", 𝑠"#$ is the state after taking action
𝑎", 𝛼 is the learning rate, and 𝛾 is a discount factor which tells the algorithm how heavily it
should weight future rewards (Sutton and Barto 2020). Based on a parameter search, we choose
𝛼 = 0.4 and 𝛾 = 0.99. Using this update function, as the Q-learning algorithm experiences
more states, it better learns which action leads to the highest reward from that state.

Q-learning is very sensitive to the total number of possible states, as this defines the size of the
Q-table. If we define the environment such that it has fewer states, there is a higher likelihood
that all states will be visited throughout training, which improves performance. As such, we
cannot use a classified cloud image as an input to Q-learning because this method leads to too
many state possibilities. Instead, we formulate a state vector to pick out the important features
in our scenario. Those seven features are the state of charge (battery percentage) of the satellite,
and six binary variables which represent the presence of the three cloud types in the primary
sensor range, and the presence of the three cloud types in the lookahead sensor range. Thus,
the Q-learning state representations for each scenario are:

Algorithm 1: Dynamic Programming (Memoization)

1: D Zeros(NT , NSOC , NA)
2: for each t 2 {T...1} do
3: for each SOC 2 {0...100} do
4: for each A 2 Actions do
5: S Environment(t, SOC) . get state
6: Execute A

7: Observe R,S
0

. get reward and next state
8: Observe SOC

0
. get new state of charge

9: t
0 t+ 1

10: D(t, SOC,A) R+maxa D(t0, SOC
0
, a)

11: end for
12: end for
13: end for

We explore two different learning approaches that lever-
age ideas from dynamic programming to solve the dynamic
targeting problem. These methods are reinforcement learn-
ing and imitation learning.250

Dynamic Programming
Prior work uses a dynamic programming (DP) algorithm
that produces optimal policies given a particular set of as-
sumptions (Anonymous 2023). However, DP is generally
not deployable on missions because it is computationally ex-255

pensive, it uses a lookahead sensor range that is physically
unrealistic, and it requires information of future states.

We use dynamic programming as an “oracle” to generate
an upper bound on performance for our models, but we will
also use the concept of DP in our reinforcement learning and260

imitation learning methods. Algorithm 1 summarizes the DP
formulation we will use throughout this work. This method
has full knowledge of all images along the entire path that
will be traversed. We use the standard memoization strategy,
which works backwards from the last state in the environ-265

ment (Bellman 2003). As the algorithm progresses, it will
“visit” every state in the environment (every image paired
with every state of charge) and record the current plus fu-
ture reward value for taking any action at that state. These
reward values are stored in an array (in this case D). After270

the algorithm terminates, to determine the optimal sequence
of actions to take we simply look up the current state of the
environment (based on the time step and the state of charge)
and take the action that results in the highest future reward
value according to D.275

Reinforcement Learning
Reinforcement learning methods involve an agent that learns
policies by interacting with the environment and receiving
feedback via a reward function that incentivizes “good” ac-
tions and penalizes “bad” actions. Reinforcement learning280

is an iterative approach that improves gradually by learning
from its mistakes and successes throughout many trials.

Here we use a variation of Q-learning to solve the dy-
namic targeting problem. Q-learning is a model-free rein-
forcement learning algorithm; it uses a learned lookup table285

called a Q-table which tells the agent which actions have

the highest expected reward given a particular state of the
environment. The Q-table contains a row for each possible
state, and a column for every possible action. To follow the
Q-learning policy (⇡?), we simply look up which action has 290

the highest value in the Q-table for the current state of the en-
vironment, and execute that action. The algorithm “learns”
using the update function:

Q(st, at) Q(st, at)+

↵(rt+1 + �max
a

Q(St+1, a)�Q(st, at))
(1)

where Q represents the Q-table, st is the current state of
the world, at is the last action taken, rt+1 is the reward re- 295

ceived from taking action at in state st, st+1 is the state after
taking action at, ↵ is the learning rate, and � is a discount
factor which tells the algorithm how heavily it should weight
future rewards (Sutton and Barto 2020). Based on a parame-
ter search, we choose ↵ = 0.4 and � = 0.99. Using this up- 300

date function, as the Q-learning algorithm experiences more
states, it better learns which action leads to the highest re-
ward from that state.

Q-learning is very sensitive to the total number of possible
states, as this defines the size of the Q-table. If we define the 305

environment such that it has fewer states, there is a higher
likelihood that all states will be visited throughout train-
ing, which improves performance. As such, we cannot use
a classified cloud image as an input to Q-learning because
this method leads to too many state possibilities. Instead, we 310

formulate a state vector to pick out the important features
in our scenario. Those seven features are the state of charge
(battery percentage) of the satellite, and six binary variables
which represent the presence of the three cloud types in the
primary sensor range, and the presence of the three cloud 315

types in the lookahead sensor range. Thus, the Q-learning
state representations for each scenario are as follows:

State =

State of Charge
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear

Present
in Primary

Present in
Lookahead

Cloud Avoidance

State =

State of Charge
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core

Present
in Primary

Present in
Lookahead

Storm Hunting

An example of cloud images and their corresponding Q-
learning state representations are shown in Figure 3.

Our action for Q-learning is binary: to sample or not to 320

sample. We do not choose where to sample using the Q-
learning algorithm, just when to sample. Our formulation of
the dynamic targeting problem does not take into account the
power draw or time taken to move the primary sensor. Thus,
it is straightforward to determine where the satellite should 325

sample, once we have determined at what states it should
sample. If we are taking the “sampling” action, we simply
measure the highest reward cloud type closest to nadir. Fu-
ture work could address the problem of determining where
to sample if we take into account more real-world factors 330

such as the time and energy necessary to move the sensor,
and the diminishing returns of sampling the same location.

State =

State of Charge
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear

Present
in Primary

Present in
Lookahead

Cloud Avoidance

State =

State of Charge
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core

Present
in Primary

Present in
Lookahead

Storm Hunting

©2024. All rights reserved.

Figure 3: Example of lookahead sensor images (after being classified into cloud types) and their
corresponding Q-learning states for the cloud avoidance scenario. The white circle represents the range of
the primary (radar) sensor.

An example of cloud images and their corresponding Q-learning state representations are
shown in Figure 3.

Our action for Q-learning is binary: to sample or not to sample. We do not choose where to
sample using the Q-learning algorithm, just when to sample. Our formulation of the dynamic
targeting problem does not consider the power draw or time taken to move the primary sensor.
Thus, it is straightforward to determine where the satellite should sample, once we have
determined at what states it should sample. If we are taking the “sampling” action, we simply
measure the highest reward cloud type closest to nadir. Future work could address the problem
of determining where to sample if we consider more real-world factors such as the time and
energy necessary to move the sensor, and diminishing returns of sampling the same location.

Our formulation of the state of the environment for Q-learning results in 101 × 26 = 6,464
possible environment states. This means for the trained model to be fully generalizable, it must
visit all 6,464 states during training. In general, Q-learning proceeds forward in time, taking
actions and observing the environmental response, and updating its belief about the
environment based on the rewards received. This formulation requires the Q-learning algorithm
to naturally come across most or all of the possible states in its exploration, which can be
unlikely or even impossible with a high number of states or limited data. Some Q-learning
methods, like the 𝜖-greedy approach (see Algorithm 2), attempt to rectify this problem by
sometimes choosing random actions to execute, therefore placing the environment in a new
unseen state (Sutton and Barto 2020). In practice, we found that training the Q-table using the
𝜖-greedy method did not produce sufficient results; this method was not able to outperform the
greedy window method from prior work, because it did not visit enough unique states to
generalize well when encountering new testing data.

In order to remedy this issue, we use a strategy from dynamic programming (see Algorithm 1).
The benefit of dynamic programming is that it visits every possible state of the environment,
given particular training data. To improve the performance of our method, we use this feature
of dynamic programming in our Q-learning algorithm. We begin iterating from the last
timestep in the training data, and step backwards in time while varying the state of charge from
0 to 100, and observing the reward from taking each action from each of these states (see
Algorithm 3). Thus, the Q-learning algorithm “experiences” taking every action from every

State: [12, 1, 1, 0, 1, 1, 1] State: [76, 1, 1, 0, 1, 1, 0]

Cloud Mid-Cloud Clear

SOC: 76SOC: 12

©2024. All rights reserved.

Algorithms 2 and 3: Q-learning methods use a lookup table to determine the highest expected reward from
taking a particular action.

cloud image at all different levels of charge. This greatly increases the number of states that
the Q-learning algorithm encounters while still using the same amount of satellite data for
training. It is important to note that we are able to use this strategy because we have a simulation
that allows us to step backwards in time through saved data. This strategy is not applicable to
situations in which Q-learning is performed on a real system and not stored data. Although we
are using the same framework as the dynamic programming approach, note that by learning
the Q-table, we are able to use this method in general on unseen situations, whereas the
dynamic programming approach will only provide a list of optimal actions for a specific
sequence of data.
3.4 Imitation Learning

Imitation learning, also known as apprenticeship learning or learning from demonstration,
consists of learning to replicate the actions of an expert agent. In this work the DP algorithm
serves as the expert. Optimal policies can be approximated offline via learning, allowing for
onboard inference, planning, and execution with more realistic mission resources.

We employ behavioral cloning, a form of imitation learning that learns a policy by using
supervised learning on a set of expert demonstrations that is collected beforehand. The process
is described in Algorithm 4 and consists of two main steps. First, the algorithm collects a set
of expert demonstrations 𝒟⋆ that consists of state-action pairs: 𝒟⋆ = {(𝑠&, 𝑎&⋆), (𝑠$, 𝑎$⋆), … }.
Behavioral cloning methods typically collect non-interrupting sequences of states and actions
(also known as a trajectories), but here we randomly discard some state-action pairs; this is for
efficiency purposes as we later show how relatively small datasets can yield good results.
Finally, the method trains a supervised learning model using the expert demonstrations in order
to learn a policy 𝜋M that approximates the expert policy 𝜋⋆.
We use a neural network for supervised learning, specifically a multilayer perceptron (MLP)
with an architecture that is specified in Table 1.

Layer Units Activation Function
input 13 N/A
hidden 1 32 rectified linear unit
hidden 2 16 rectified linear unit
hidden 3 8 rectified linear unit
hidden 4 4 rectified linear unit
output 1 sigmoid

Table 1: Architecture of the multilayer perceptron network used for behavioral cloning.

State: [12, 1, 1, 0, 1, 1, 1] State: [76, 1, 1, 0, 1, 1, 0]

Cloud Mid-Cloud Clear

SOC: 76SOC: 12

Figure 3: Example of lookahead sensor images (after be-
ing classified into cloud types) and their corresponding Q-
learning states for the cloud avoidance scenario. The white
circle represents the range of the primary (radar) sensor.

Our formulation of the state of the environment for Q-
learning results in 101 ⇥ 26 = 6464 possible environment
states. This means for the trained model to be fully general-335

izable, it must visit all 6,464 states during training. In gen-
eral, Q-learning proceeds forward in time, taking actions and
observing the environmental response, and updating its be-
lief about the environment based on the rewards received.
This formulation requires the Q-learning algorithm to nat-340

urally come across most or all of the possible states in its
exploration, which can be unlikely or even impossible with
a high number of states or limited data. Some Q-learning
methods, like the ✏-greedy approach (see Algorithm 2), at-
tempt to rectify this problem by sometimes choosing ran-345

dom actions to execute, therefore placing the environment
in a new unseen state (Sutton and Barto 2020). In practice,
we found that training the Q-table using the ✏-greedy method
did not produce sufficient results; this method was not able
to outperform the greedy window method from prior work,350

because it did not visit enough unique states to generalize
well when encountering new testing data.

In order to remedy this issue, we use a strategy from dy-
namic programming (see Algorithm 1). The benefit of dy-
namic programming is that it visits every possible state of355

the environment, given particular training data. To improve
the performance of our method, we use this feature of dy-
namic programming in our Q-learning algorithm. We be-
gin iterating from the last timestep in the training data, and
step backwards in time while varying the state of charge360

from 0 to 100, and observing the reward from taking each
action from each of these states (see Algorithm 3). Thus,
the Q-learning algorithm “experiences” taking every action
from every cloud image at all different levels of charge. This
greatly increases the number of states that the Q-learning365

algorithm encounters while still using the same amount of
satellite data for training. It is important to note that we are

Algorithm 2: Q-Learning (✏-greedy)

1: Q Zeros(NS , NA)
2: for each Episode do
3: S S0 . initial state
4: p Random(0...1)
5: if p ✏ then
6: A Random(Actions) . random action
7: else
8: A argmaxa(Q(S, a)) . greedy action
9: end if

10: Execute A

11: Observe R,S
0

. get reward and next state
12: Update Q . per equation 1
13: S S

0

14: end for

Algorithm 3: Q-Learning (DP-inspired)

1: for each t 2 {T...1} do
2: for each SOC 2 {0...100} do
3: for each A 2 Actions do
4: S Environment(t, SOC) . get state
5: Execute A

6: Observe R,S
0

. get reward and next state
7: Update Q . per equation 1
8: end for
9: end for

10: end for

able to use this strategy because we have a simulation that
allows us to step backwards in time through saved data. This
strategy is not applicable to situations in which Q-learning is 370

performed on a real system and not stored data. Although we
are using the same framework as the dynamic programming
approach, note that by learning the Q-table, we are able to
use this method in general on unseen situations, whereas the
dynamic programming approach will only provide a list of 375

optimal actions for a specific sequence of data.

Imitation Learning
Imitation learning, also known as apprenticeship learning or
learning from demonstration, consists of learning to repli-
cate the actions of an expert agent. In this work the DP al- 380

gorithm serves as the expert. Optimal policies can be ap-
proximated offline via learning, allowing for onboard infer-
ence, planning, and execution with more realistic mission
resources.

We employ behavioural cloning, a form of imitation learn- 385

ing that learns a policy by using supervised learning on a
set of expert demonstrations that is collected beforehand.
The process is described in Algorithm 4 and consists of
two main steps. First, the algorithm collects a set of ex-
pert demonstrations D? that consists of state-action pairs: 390

D? = {(s0, a?0), (s1, a?1), . . . }. Behavioral cloning methods
typically collect non-interrupting sequences of states and ac-
tions (also known as a trajectories), but here we randomly
discard some state-action pairs; this is for efficiency pur-

State: [12, 1, 1, 0, 1, 1, 1] State: [76, 1, 1, 0, 1, 1, 0]

Cloud Mid-Cloud Clear

SOC: 76SOC: 12

Figure 3: Example of lookahead sensor images (after be-
ing classified into cloud types) and their corresponding Q-
learning states for the cloud avoidance scenario. The white
circle represents the range of the primary (radar) sensor.

Our formulation of the state of the environment for Q-
learning results in 101 ⇥ 26 = 6464 possible environment
states. This means for the trained model to be fully general-335

izable, it must visit all 6,464 states during training. In gen-
eral, Q-learning proceeds forward in time, taking actions and
observing the environmental response, and updating its be-
lief about the environment based on the rewards received.
This formulation requires the Q-learning algorithm to nat-340

urally come across most or all of the possible states in its
exploration, which can be unlikely or even impossible with
a high number of states or limited data. Some Q-learning
methods, like the ✏-greedy approach (see Algorithm 2), at-
tempt to rectify this problem by sometimes choosing ran-345

dom actions to execute, therefore placing the environment
in a new unseen state (Sutton and Barto 2020). In practice,
we found that training the Q-table using the ✏-greedy method
did not produce sufficient results; this method was not able
to outperform the greedy window method from prior work,350

because it did not visit enough unique states to generalize
well when encountering new testing data.

In order to remedy this issue, we use a strategy from dy-
namic programming (see Algorithm 1). The benefit of dy-
namic programming is that it visits every possible state of355

the environment, given particular training data. To improve
the performance of our method, we use this feature of dy-
namic programming in our Q-learning algorithm. We be-
gin iterating from the last timestep in the training data, and
step backwards in time while varying the state of charge360

from 0 to 100, and observing the reward from taking each
action from each of these states (see Algorithm 3). Thus,
the Q-learning algorithm “experiences” taking every action
from every cloud image at all different levels of charge. This
greatly increases the number of states that the Q-learning365

algorithm encounters while still using the same amount of
satellite data for training. It is important to note that we are

Algorithm 2: Q-Learning (✏-greedy)

1: Q Zeros(NS , NA)
2: for each Episode do
3: S S0 . initial state
4: p Random(0...1)
5: if p ✏ then
6: A Random(Actions) . random action
7: else
8: A argmaxa(Q(S, a)) . greedy action
9: end if

10: Execute A

11: Observe R,S
0

. get reward and next state
12: Update Q . per equation 1
13: S S

0

14: end for

Algorithm 3: Q-Learning (DP-inspired)

1: for each t 2 {T...1} do
2: for each SOC 2 {0...100} do
3: for each A 2 Actions do
4: S Environment(t, SOC) . get state
5: Execute A

6: Observe R,S
0

. get reward and next state
7: Update Q . per equation 1
8: end for
9: end for

10: end for

able to use this strategy because we have a simulation that
allows us to step backwards in time through saved data. This
strategy is not applicable to situations in which Q-learning is 370

performed on a real system and not stored data. Although we
are using the same framework as the dynamic programming
approach, note that by learning the Q-table, we are able to
use this method in general on unseen situations, whereas the
dynamic programming approach will only provide a list of 375

optimal actions for a specific sequence of data.

Imitation Learning
Imitation learning, also known as apprenticeship learning or
learning from demonstration, consists of learning to repli-
cate the actions of an expert agent. In this work the DP al- 380

gorithm serves as the expert. Optimal policies can be ap-
proximated offline via learning, allowing for onboard infer-
ence, planning, and execution with more realistic mission
resources.

We employ behavioural cloning, a form of imitation learn- 385

ing that learns a policy by using supervised learning on a
set of expert demonstrations that is collected beforehand.
The process is described in Algorithm 4 and consists of
two main steps. First, the algorithm collects a set of ex-
pert demonstrations D? that consists of state-action pairs: 390

D? = {(s0, a?0), (s1, a?1), . . . }. Behavioral cloning methods
typically collect non-interrupting sequences of states and ac-
tions (also known as a trajectories), but here we randomly
discard some state-action pairs; this is for efficiency pur-

©2024. All rights reserved.

Algorithm 4: Behavioral cloning is a method of imitation learning which learns to replicate the actions of
an expert.

The goal of the neural network is to minimize the difference between the actions drawn from
𝜋M and the corresponding demonstrations from 𝜋⋆:

𝜃O = argmin
'

T ℒ
(),%⋆)∈𝒟⋆

(𝜋M'(𝑠), 𝑎⋆),

where ℒ is a loss function (e.g., mean squared error), 𝜋M'(𝑥) is the action drawn from the learned
policy for state 𝑠, 𝑎⋆ is the expert’s action for the same state, 𝜃 is the set of parameters (in this
case neural network weights) that define the learned policy 𝜋M', and 𝜃O is the set of learned
parameters after solving the optimization problem.

For this approach, states 𝑆, actions 𝐴, and the policy function 𝜋 are formulated with some
differences because behavioral cloning does not face the same limitations as Q-learning, that
is, the need for discrete states and actions in conjunction with a manageable Q-table size. States
are feature vectors that contain more information than in the Q-learning case and are
normalized between 0 and 1:

Actions are now stochastic as they are randomly drawn from the policy that was learned by the
neural network. That is, 𝑎" ∼ 𝜋M'(𝑠"), where 𝜋M'(𝑠") ∈ [0,1] is the probability of triggering an
observation 𝑎" ∈ {0,1} given a state 𝑠" ⊂ ℝ$..

State: [12, 1, 1, 0, 1, 1, 1] State: [4, 1, 1, 0, 1, 1, 0]

Cloud Type 1 Cloud Type 2 Cloud Type 3

!! =

0.12
1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.0
0.2
16
0.2

instrument data state
feature vector

neural network
learns a policy)"
that approximates

the expert policy)⋆

decision making
draw action from policy

*!	~)" !!

State: [12, 1, 1, 0, 1, 1, 1] State: [4, 1, 1, 0, 1, 1, 0]

Cloud Type 1 Cloud Type 2 Cloud Type 3do not sample

Figure 4: Dynamic targeting via behavioral cloning inference. First, instrument data is processed to generate a state vector. Then,
a neural network is used to decide when to trigger observations based on what it previously learned from expert demonstrations.
In this example the network learns that it is best to wait and save resources for more valuable future observations.

Algorithm 4: Behavioral Cloning (DP expert)

1: D? {} . empty dataset
2: for each t 2 {1...T} do
3: for each SOC 2 {0...100} do
4: p Random(0...1)
5: if p ✏ then . random selection
6: S Environment(t, SOC) . get state
7: A

? argmaxa D(t, SOC, a) . get action
8: D? D? [(S,A?) . save state-action pair
9: end if

10: end for
11: end for
12: ⇡̂✓ NeuralNetwork.Train(D?) . learn policy

poses as we later show how relatively small datasets can395

yield good results. Finally, the method trains a supervised
learning model using the expert demonstrations in order to
learn a policy ⇡̂ that approximates the expert policy ⇡

?.
We use a neural network for supervised learning, specif-

ically a multilayer perceptron (MLP) with an architecture400

that is specified in Table 1.

Layer Units Activation Function
input 13 N/A

hidden 1 32 rectified linear unit
hidden 2 16 rectified linear unit
hidden 3 8 rectified linear unit
hidde 4 4 rectified linear unit
output 1 sigmoid

Table 1: Architecture of the multilayer perceptron network
used for behavioral cloning.

The goal of the neural network is to minimize the differ-
ence between the actions drawn from ⇡̂ and the correspond-

ing demonstrations from ⇡
?:

✓̂ = argmin
✓

X

(s,a?)2D?

L (⇡̂✓(s), a
?) , (2)

where L is a loss function (e.g., mean squared error), ⇡̂✓(x) 405

is the action drawn from the learned policy for state s, a?
is the expert’s action for the same state, ✓ is the set of pa-
rameters (in this case neural network weights) that define
the learned policy ⇡̂✓, and ✓̂ is the set of learned parameters
after solving the optimization problem. 410

For this approach, states S, actions A, and the policy func-
tion ⇡ are formulated with some differences because be-
havioral cloning does not face the same limitations as Q-
learning, that is, the need for discrete states and actions in
conjunction with a manageable Q-table size. States are fea- 415

ture vectors that contain more information than in the Q-
learning case and are normalized between 0 and 1:

State =

State of Charge
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear

Present
in Primary

Present in
Lookahead

Cloud Avoidance

State =

State of Charge
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core

Present
in Primary

Present in
Lookahead

Storm Hunting

Fraction
in Primary

Fraction in
Lookahead

Fraction
in Primary

Fraction in
Lookahead

Actions are now stochastic as they are randomly drawn
from the policy that was learned by the neural network. That
is, at ⇠ ⇡̂✓(st), where ⇡̂✓(st) 2 [0, 1] is the probability of 420

triggering an observation at 2 {0, 1} given a state st ⇢ R13.

Experiments
We test our methods in two scenarios: cloud avoidance and
storm hunting. We use 39 datasets from the MODIS mission

State =

State of Charge
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear
Cloud
Mid-Cloud
Clear

Present
in Primary

Present in
Lookahead

Cloud Avoidance

State =

State of Charge
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core
No Storm
Rainy Anvil
Convective Core

Present
in Primary

Present in
Lookahead

Storm Hunting

Fraction
in Primary

Fraction in
Lookahead

Fraction
in Primary

Fraction in
Lookahead

©2024. All rights reserved.

Figure 4: Dynamic targeting via behavioral cloning inference. First, instrument data is processed to
generate a state vector. Then, a neural network is used to decide when to trigger observations based on what
it previously learned from expert demonstrations. In this example the network learns that it is best to wait
and save resources for more valuable future observations.

4 EXPERIMENTS
We test our methods in two scenarios: cloud avoidance and storm hunting. We use 39 datasets
from the MODIS mission for cloud avoidance and 10 datasets from the GPM mission for storm
hunting. Each dataset was collected at a different week of the year and represents one day worth
of satellite images (86,400 images per dataset). We use half of the datasets for training our two
learning models and the other half for testing. The rewards for each scenario are as follows:

• Cloud Avoidance: off (no sample) = 0, cloud = 1, mid-cloud = 10, clear = 100
• Storm Hunting: off (no sample) = 0, no storm = 1, rainy anvil = 10, convective

core = 100
We first experiment with using different amounts of data to train our learning models, and
ultimately choose the one with the best and most consistent performance across the testing
data. We then compare these learning methods to prior work that consists of different heuristic
algorithms.

5 RESULTS
5.1 Training
We found that in most cases, using a full dataset (86,400 images) to train each Q-learning
model resulted in a higher or equal total reward on the testing data than using a fraction of the
data from each dataset. In short, using more data to train improved performance. Figure 5
illustrates the effect of the amount of training data on the reward value achieved by each set of
models. The “percent of total reward” is determined in comparison to the dynamic
programming approach, which gives the optimal sequence of actions and therefore the optimal
reward. We see that the average performance of our models levels out at 20,000 images worth
of training data in the cloud avoidance scenario, and at just 3,000 images worth of training data
for the storm hunting scenario. In the cloud avoidance case, using all images to train our model
outperforms the average reward value from the models trained on one full dataset (86,400
images), but actually falls short of the best-performing models trained on 5,000 to 86,400
images. In the storm hunting scenario our performance actually decreases when we use all the
training images, probably due to overfitting to the training data in this case. Overall, these
experiments indicate that our Q-learning method can be trained effectively on a small amount

State: [12, 1, 1, 0, 1, 1, 1] State: [4, 1, 1, 0, 1, 1, 0]

Cloud Type 1 Cloud Type 2 Cloud Type 3

!! =

0.12
1.0
1.0
1.0
1.0
1.0
1.0
0.5
0.5
0.0
0.2
16
0.2

instrument data state
feature vector

neural network
learns a policy)"
that approximates

the expert policy)⋆

decision making
draw action from policy

*!	~)" !!

State: [12, 1, 1, 0, 1, 1, 1] State: [4, 1, 1, 0, 1, 1, 0]

Cloud Type 1 Cloud Type 2 Cloud Type 3do not sample

©2024. All rights reserved.

of data (just 3,000 to 20,000 satellite images), though the amount of image data needed depends
on the scenario tested.

We observed similar results for the behavioral learning approach (Figure 6). Performance
increases as the neural network is trained with more data, in this case demonstrations from the
DP expert. However, performance converges without too many examples. Each full DP dataset
consists of 86400 × 101 = 8726400 different possible states (images and SOC). The training
sets that we use in this experiment represent a small fraction of this total, ranging from 0.34%
to 2.41%. An important consideration is that while training data is randomly sampled, in
practice we also balance it in such a way that the three different cloud types are seen and
represented more or less equally. This is to reduce learning bias of the neural network, and is
one possible explanation for such a quick convergence in performance.

In both cases, we found that some datasets in our training data contained more unique states
than others, and thus led to a consistently higher total reward on all testing data as compared
to models trained on datasets with fewer unique states.

Figure 5: Percent of total possible reward achieved by each set of Q-learning models trained on different
amounts of data. Each set of models is trained on the first 𝑁 states in each training dataset. A full dataset
contains 86,400 images.

Figure 6: Percent of total possible reward achieved by the behavioral learning neural network when trained
on different amounts of randomly sampled data.

©2024. All rights reserved.

5.2 Algorithm Comparison

We compare our two learning approaches to existing planning methods designed to solve the
dynamic targeting problem: random, greedy nadir, greedy lateral, greedy radar, greedy
window, and dynamic programming as an “oracle,” i.e. an upper bound on performance (for a
description of these methods, see Section 2). Table 2 shows how often each planning algorithm
sampled each cloud type over all testing data. Note that for both scenarios, the cloud types that
have a high scientific reward value are generally rarer to encounter, while cloud types with a
lower scientific reward are much more common. In addition, due to the energy constraints of
the satellite, we expect that each algorithm will have to spend 80% of the time “off” or not
sampling, to recharge the battery.
We see that in all cases, our Q-learning and behavioral cloning approaches sample high reward
cloud types more frequently than any other planning method. Only the dynamic programming
algorithm outperforms them in this regard, but the DP method is unrealistic to use in a real
mission scenario and simply provides an upper bound on performance. The learning methods
sample fewer low and mid-reward clouds than the other methods. This is a consequence of two
factors: 1) sampling more high-reward cloud types means the learning methods have less time
to sample low-reward cloud types, and 2) the reward function used by the learning algorithms
encourages sampling higher reward cloud types ten times more than the next lowest reward
cloud type. In other words, our methods are trained to maximize reward rather than to diversify
samples, so this result is expected. Interestingly, we can see from Table 2 that the Q-learning
method never samples Cloud (Reward = 1) types in the cloud avoidance scenario, and spends
about 84% of its time not sampling, versus the expected 80% for recharging. This behavior is
most likely due to the density of high reward cloud types in the training data; the Q-learning
method generally learns to conserve power when it can only see low-reward cloud types, since
based on the training data, there is likely to be a higher reward cloud type encountered soon.

Out of all the methods tested, Q-learning best utilizes the data in the lookahead sensor to take
the most scientifically rewarding samples. Behavioral cloning is the second best. This
difference is probably due to the fact that Q-learning uses information from future state rewards
whereas behavioral cloning only relies on current state information. Hyperparameter tuning
might be another explaining factor.

Cloud Avoidance Random Greedy
Nadir

Greedy
Lateral

Greedy
Radar

Greedy
Window

Behavioral
Cloning Q-Learning Oracle

(DP)

Off (Reward = 0) 80.37% 79.98% 79.98% 79.98% 80.00% 79.98 % 84.42% 80.00%

Cloud (Reward = 1) 13.31% 10.07% 6.43% 4.28% 4.29% 4.16 % 0.00 % 3.67%

Mid-Cloud (Reward = 10) 4.33% 7.37% 9.09% 9.35% 7.93% 7.34 % 6.52% 7.24%

Clear (Reward = 100) 1.99% 2.57% 4.50% 6.39% 7.78% 8.52 % 9.06% 9.08%

Storm Hunting

Off (Reward = 0) 80.37% 79.99% 79.99% 79.99% 80.02% 79.99 % 80.17% 80.00%

No Storm (Reward = 1) 18.82% 18.01% 15.47% 13.17% 13.17% 13.14 % 13.12% 12.28%

Rainy Anvil (Reward = 10) 0.78% 1.88% 4.23% 6.23% 5.79% 5.71 % 5.41% 6.40%

Convective Core (Reward = 100) 0.03% 0.12% 0.31% 0.60% 1.01% 1.16 % 1.30% 1.32%

Table 2: Percentage of time spent sampling each cloud type by each planning method in both scenarios.

©2024. All rights reserved.

 Percent of Total Possible

Reward (Cloud Avoidance)
Percent of Total Possible
Reward (Storm Hunting)

Random 25.91% 14.12%

Greedy Nadir 34.57% 23.29%
Greedy Lateral 55.58% 42.45%
Greedy Radar 74.86% 65.18%

Greedy Window 87.50% 82.57%
Behavioral Cloning 95.84% 91.27%

Q-Learning 98.67% 94.66%

Oracle (DP) 100.00% 100.00%

Table 3: Average percent of total possible reward achieved by each planning method.

We also examine the total reward achieved by each planning method. Table 3 shows the reward
attained by each algorithm as a percent of the total possible reward. This total possible reward
is the reward achieved by dynamic programming, which provides the optimal sequence of
actions for each testing dataset. In the cloud avoidance scenario, Q-learning and behavioral
cloning attain 98.67% and 95.87% of the possible reward on average (respectively), whereas
the best dynamic targeting method from prior work (greedy window) achieves only 87.50% of
the possible reward on average. In the storm hunting scenario, Q-learning and behavioral
cloning achieve 94.66% and 91.27% of the possible reward where the greedy window method
achieves 82.57%.
Every method takes on the order of microseconds to plan a sample (with the exception of
dynamic programming, which is not feasible to use on a real system), so they will each
comfortably run in real time on a satellite that is only capable of sampling once per second.
Small differences in runtime between methods are thus not relevant.

6 CONCLUSIONS AND FUTURE WORK
This work presents two learning-based planning methods for dynamic targeting to improve the
science return of Earth-observing satellites. These two methods build on dynamic
programming and consist of reinforcement learning (Q-learning) and imitation learning
(behavioral cloning), respectively. Simulation results demonstrate that both learning-based
approaches perform better than existing heuristic methods, and also close to optimal.
Additionally, both learning methods can be effectively trained with relatively small amounts
of data.

Future work will consider more realistic satellite factors and instrument constraints, as well
more interesting reward models. Additionally, we would like to use full images as inputs rather
than manually-engineered state vectors, thus preserving information that can potentially lead
to better decisions. We would also like to use reinforcement learning methods such as deep Q-
networks (DQN) and proximal policy optimization (PPO) that easily allow for continuous state
representations. Finally, we plan to deploy and test these algorithms on different satellite
platforms, especially those that have flight processors that support deep learning.

7 ACKNOWLEDGEMENTS
The research was carried out in part at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration (NASA)
(80NM0018D0004). This work was supported by the Earth Science and Technology Office

©2024. All rights reserved.

(ESTO), NASA, and by NASA's Lunar Surface and Instrumentation and Technology Payload
(LSITP) program (award 80MSFC20C0008 to Astrobotic Technologies).

8 REFERENCES
Beaumet, G.; Verfaillie, G.; and Charmeau, M.-C. 2011. Feasibility of Autonomous Decision

Making On Board an Agile Earth-Observing Satellite. Computational Intelligence,
27(1): 123–139.

Bellman, R. E. 2003. Dynamic Programming. Dover Publications, Inc.
Bosch-Lluis, X.; Kangaslahti, P.; Ramos, I.; Ogut, M.; Tanner, A.; Cooperrider, J.; Munoz-

Martini, J. F.; Yue, Q.; Deal, W.; and Cooke, C. 2022. Smart Ice Cloud Sensing
(SMICES): An Overview of its Submillimeter Wave Radiometer. In IEEE International
Geoscience and Remote Sensing Symposium, 4296–4299.

Candela, A.; Swope, J.; and Chien, S. A. 2023. Dynamic Targeting to Improve Earth Science
Missions. Journal of Aerospace Information Systems, 20(11): 679–689.

Chen, M.; Chen, Y.; Chen, Y.; and Qi, W. 2019. Deep Reinforcement Learning for Agile
Satellite Scheduling Problem. In IEEE Symposium Series on Computational
Intelligence, 126–132.

Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.; Castano, R.; Davis, A.; Mandl, D.;
Frye, S.; Trout, B.; Shulman, S.; and Boyer, D. 2005. Using Autonomy Flight Software
to Improve Science Return on Earth Observing One. Journal of Aerospace Computing,
Information, and Communication, 2(4): 196–216.

Chien, S.; and Troesch, M. 2015. Heuristic Onboard Pointing Re-scheduling for an Earth
Observing Spacecraft. In International Workshop on Planning & Scheduling for Space.
Buenos Aires, Argentina.

Giuffrida, G.; Fanucci, L.; Meoni, G.; Batiˇc, M.; Buckley, L.; Dunne, A.; van Dijk, C.;
Esposito, M.; Hefele, J.; Vercruyssen, N.; Furano, G.; Pastena, M.; and Aschbacher, J.
2022. The Phi-Sat-1 Mission: The First On-Board Deep Neural Network Demonstrator
for Satellite Earth Observation. IEEE Transactions on Geoscience and Remote Sensing,
60: 1–14.

Hasnain, Z.; Mason, J.; Swope, J.; Vander Hook, J.; and Chien, S. 2021. Agile Spacecraft
Imaging Algorithm Comparison for Earth Science. In International Workshop on
Planning & Scheduling for Space.

Hou, A. Y.; Kakar, R. K.; Neeck, S.; Azarbarzin, A. A.; Kummerow, C. D.; Kojima, M.; Oki,
R.; Nakamura, K.; and Iguchi, T. 2014. The Global Precipitation Measurement Mission.
Bulletin of the American Meteorological Society, 95(5): 701–722.

Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. 2014.
ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/. Accessed: 2021-11-01.

Justice, C. O.; Vermote, E.; Townshend, J. R.; DeFries, R.; Roy, D. P.; Hall, D. K.;
Salomonson, V. V.; Privette, J. L.; Riggs, G. A.; Strahler, A. H.; Lucht, W.; Myneni,
R. B.; Knyazikhin, Y.; Running, S. W.; Nemani, R. R.; Wan, Z.; Huete, A.; van
Leeuwen, W.; Wolfe, R. E.; Giglio, L.; Muller, J.-P.; Lewis, P.; and Barnsley, M. 1998.
The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing
for global change research. IEEE Transactions on Geoscience and Remote Sensing,
36(4): 1228–1249.

©2024. All rights reserved.

Knight, R.; Donnellan, A.; and Green, J. 2013. Mission Design Evaluation Using Automated
Planning for High Resolution Imaging of Dynamic Surface Processes from the ISS. In
International Workshop on Planning and Scheduling for Space. Moffett Field, CA.

Labrèche, G.; Evans, D.; Marszk, D.; Mladenov, T.; Shiradhonkar, V.; Soto, T.; and
Zelenevskiy, V. 2022. OPS-SAT Spacecraft Autonomy with TensorFlow Lite,
Unsupervised Learning, and Online Machine Learning. In 2022 IEEE Aerospace
Conference (AERO), 1–17.

Lemaître, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-M.; and Bataille, N. 2002. Selecting and
scheduling observations of agile satellites. Aerospace Science and Technology, 6(5):
367–381.

Lenzen, C.; Woerle, M. T.; G¨ottfert, T.; Mrowka, F.; and Wickler, M. 2014. Onboard Planning
and Scheduling Autonomy within the Scope of the FireBird Mission. In SpaceOps
Conference.

Liao, D.-Y.; and Yang, Y.-T. 2005. Satellite Imaging Order Scheduling with Stochastic
Weather Condition Forecast. In IEEE International Conference on Systems, Man and
Cybernetics, volume 3, 2524–2529 Vol. 3.

Ogut, M.; Bosch-Lluis, X.; Kangaslahti, P.; Ramos-Perez, I.; Munoz-Martin, J. F.;
Cooperrider, J.; Yue, Q.; Swope, J.; Tavallali, P.; Chien, S.; Pradhan, O.; Deal, W.; and
Cooke, C. 2022a. Autonomous Capabilities and Command and Data Handling Design
for the Smart Remote Sensing of Cloud Ice. In IEEE International Geoscience and
Remote Sensing Symposium, 7119–7122.

Ogut, M.; Bosch-Lluis, X.; Kangaslahti, P.; Ramos-Perez, I.; Munoz-Martin, J. F.;
Cooperrider, J.; Yue, Q.; Swope, J.; Tavallali, P.; Chien, S.; Pradhan, O.; Deal, W.; and
Cooke, C. 2022b. Autonomous Capabilities and Command and Data Handling Design
for the Smart Remote Sensing of Cloud Ice. In IEEE International Geoscience and
Remote Sensing Symposium, 7119–7122.

Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R. O.; Butz, A.; Haun, M.; Buijs, H.; Shiomi,
K.; Imai, H.; and Kuze, A. 2021. Thermal and near-infrared sensor for carbon
observation Fourier transform spectrometer-2 (TANSO-FTS2) on the Greenhouse
gases Observing SATellite-2 (GOSAT2) during its first year in orbit. Atmospheric
Measurements Techniques, 14.

Sutton, R. S.; and Barto, A. 2020. Reinforcement Learning: An Introduction. The MIT Press.

Swope, J.; Chien, S.; Bosch-Lluis, X.; Yue, Q.; Tavallali, P.; Ogut, M.; Ramos, I.; Kangaslahti,
P.; Deal, W.; and Cooke, C. 2021. Using Intelligent Targeting to increase the science
return of a Smart Ice Storm Hunting Radar. In International Workshop on Planning &
Scheduling for Space.

Thompson, D. R.; Green, R. O.; Keymeulen, D.; Lundeen, S. K.; Mouradi, Y.; Nunes, D. C.;
Castaño, R.; and Chien, S. A. 2014. Rapid spectral cloud screening onboard aircraft
and spacecraft. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 6779–
6792.

Wei, L.; Chen, Y.; Chen, M.; and Chen, Y. 2021. Deep reinforcement learning and parameter
transfer based approach for the multi-objective agile earth observation satellite
scheduling problem. Applied Soft Computing, 110:107607.

