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Abstract—Onboard autonomy technologies such as planning and
scheduling, identification of scientific targets, and content-based
data summarization, will lead to exciting new space science
missions. However, the challenge of operating missions with
such onboard autonomous capabilities has not been studied to
a level of detail sufficient for consideration in mission concepts.
These autonomy capabilities will require changes to current
operations processes, practices, and tools. We have developed
a case study to assess the changes needed to enable operators
and scientists to operate an autonomous spacecraft by facil-
itating a common model between the ground personnel and
the onboard algorithms. We assess the new operations tools
and workflows necessary to enable operators and scientists to
convey their desired intent to the spacecraft, and to be able to
reconstruct and explain the decisions made onboard and the
state of the spacecraft. Mock-ups of these tools were used in
a user study to understand the effectiveness of the processes and
tools in enabling a shared framework of understanding, and in
the ability of the operators and scientists to effectively achieve
mission science objectives.
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1. INTRODUCTION
Advanced onboard autonomy capabilities including au-
tonomous fault management [1], [2], planning, scheduling
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Figure 1. Traditional operations workflow (top) and
operations workflow for future autonomous spacecraft

(bottom). Future spaceflight missions are likely to employ
advanced onboard autonomy capabilities; in order to

successfully operate such missions, new workflows and
software tools will be needed to provide intent to the

on-board autonomy, determine why autonomy made its
decisions, and assess the spacecraft state.

[3], and execution [4], selection of scientific targets [5],
and on-board data summarization and compression [6] are
being developed for future space missions. These autonomy
technologies hold promise to enable missions that cannot
be achieved with traditional ground-in-the-loop operations
cycles due to communication constraints, such as high latency
and limited bandwidth, combined with dynamic environ-
mental conditions or limited mission lifetime. Classes of

1

ar
X

iv
:2

11
1.

10
97

0v
1 

 [
cs

.R
O

] 
 2

2 
N

ov
 2

02
1



missions enabled by autonomy include in situ and subsurface
exploration of icy giant moons, coordinated deep space fleet
missions, and fast flybys in which changing features or a lack
of a priori knowledge of position requires fail-operational
capability and autonomous detection and pointing. Onboard
autonomy capabilities can also increase science return, im-
prove spacecraft reliability, and have the potential to re-
duce operation costs. As a compelling example, autonomy
has already significantly increased the capabilities of Mars
rover missions, enabling them to perform autonomous long-
distance navigation and autonomous data collection on new
science targets [5], [7].

While there has been a focus on the development of onboard
autonomy capabilities, the challenges of operating a deep
space spacecraft with these autonomous capabilities and the
impact on ground operations has never been studied to a
level of detail sufficient for consideration in mission concepts.
To enable scientists and engineers to operate autonomous
spacecraft, new operations tools and workflows must be
developed (Figure 1). In this paper, we study the problem
of operations of autonomous spacecraft and, specifically, we
identify workflows and software tools that are well-suited for
this problem. We then apply these workflows and tools to a
realistic mission concept representative of a future ice giant
tour mission.

At a conceptual level, uplink teams must communicate their
science and engineering intent to onboard planning and au-
tonomous science software, and assess the likely impact of
such intent on the spacecraft state. Downlink teams, in turn,
must reconstruct and explain what decisions were made by
autonomy, assess the spacecraft’s state (which is strongly
influenced by onboard autonomy), and identify anomalies
that may otherwise be hidden by autonomous decisions.

The uplink workflow wr propose leverages modeling tech-
nology that facilitates an iterative design process of science
intent, including capturing intent and constructing plans with
that intent. We focus on workflows for outcome/execution
prediction, explanation, as well as advisory techniques (e.g.,
“to fix undesirable behavior, add/change this constraint”), to
facilitate the operators’ learning process, while helping reas-
sure them that the spacecraft will achieve the target intents
and complete the plan successfully.

The proposed downlink workflow focuses on two thrusts. The
first thrust is spacecraft state estimation and propagation, a
challenging problem in presence of onboard autonomy, which
may alter the spacecraft state in response to information that
is not immediately available on the ground. The second thrust
is explanation of the decisions taken by onboard autonomy.
User interfaces must indicate what decisions were made by
the autonomy algorithms and relate why the decisions were
made to the intent provided by ground operators, the space-
craft state (including possible anomalies), and the perceived
state of the environment.

We evaluate the proposed tools through a user study set in
a realistic mission scenario inspired by a notional ice giant
tour mission (science rich, but power and telecom limited).
The tools, workflows, and lessons learned will directly inform
future science and exploration missions across a variety of
mission classes, including surface missions (e.g., Europa and
other Icy World Lander, Mars Sample Return, and Venus
Lander), small body exploration (e.g., fast flybys, Centaur
rendezvous), and farther out concepts.

Contribution

The contribution of this paper is fourfold.

First, to motivate the investigation into operations of au-
tonomous spacecraft, we identify three classes of on-board
science autonomy applications, and a corresponding set of
eight science scenarios in the context of a notional mission
to the Neptune-Triton system (including both nominal and
off-nominal situations), that are enabled by the onboard
autonomy capability and that are likely to challenge current
operations paradigms.

Second, we assess current operations workflows, and identify
changes, including new roles and new tools, that are likely to
be required as more autonomy is introduced on deep space
missions.

Third, we propose a set of user interface and software tools
designed to address the challenges of operations for auton-
omy, providing operators with instruments to express their
intent to on-board planners and to assess the spacecraft’s state
and the autonomy’s decisions.

Finally, we assess the performance of the tools in a user
study with JPL operators, showing that the proposed tools
and workflows are suitable for operations of autonomous
spacecraft, and identifying directions for future research.

Organization

The rest of this paper is organized as follows. In Section
2, we describe the mission and operations concept under
consideration in this work, and identify a set of autonomy-
enabled mission scenarios that challenge current operations
paradigms. In Section 3, we describe current operations
uplink and downlink workflows, and investigate how the
workflows and roles will have to be adapted to accommo-
date onboard autonomy. Section 4 presents a suite of user
interfaces designed to support uplink and downlink operators,
and Section 5 presents software tools developed to provide
data to the user interface (UX) tools. Section 6 reports the
preliminary results of our initial user study that assessed the
suitability and performance of the proposed user interfaces
with JPL spacecraft operators and scientists. Finally, in
Section 7, we draw our conclusions and lay out directions
for future research.

2. OPERATIONS CONCEPT AND MISSION
CASE STUDY

We focus on a concept of operations for a notional spacecraft
exploring the Neptune-Triton system. The selection of a
specific mission concept provides a concrete setting in which
to develop and exercise tools and workflows; the Neptune-
Triton system is an especially interesting setting because
the significant light-speed latency, low available bandwidth,
short duration of flybys, and dynamic scientific phenomena
make autonomy highly attractive to fulfill primary mission
objectives, but also make operations of such a mission very
challenging.

The notional mission concept was informed by several prior
mission concept studies including the Neptune Odyssey mis-
sion concept [8], Trident Mission concept [9] and Ice Giants
Study [10]. We selected a subset of tour orbits, including
several close flybys of Triton, and a subset of representative
instruments, specifically, a wide-angle camera, narrow-angle
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camera, sub-millimeter spectrometer, and plasma and parti-
cles instrument. Figure 2 shows the set of orbits considered
in the study.

Figure 2. The set of orbits considered in the concept of
operations.

Within this notional mission, we identified three classes of
science campaigns and, within these, eight scenarios that
exercise a variety of autonomy capabilities, including au-
tonomous event detection, planning, scheduling and execu-
tion, and failure detection, identification, and recovery.

Science campaign classes and scenarios

The scenarios considered in this work can be separated into
three broad classes of scientific observations that benefit from
onboard autonomy, namely, autonomous monitoring, event-
driven opportunistic observations while mapping, and event-
driven opportunistic observations during targeted observa-
tions.

Monitoring— In monitoring campaigns, an instrument or
suite of instruments monitors a physical system or natural
phenomenon by collecting an extended observational data
set with the goal of characterizing the behavior of the ob-
served system. With onboard autonomy, the data collection
campaign is adapted based on observation data. Within the
monitoring class, we considered two scenarios, namely:

• Magnetospheric Variability Detection. The magneto-
spheric variability detection scenario exercises onboard
adaptive data compression in which the magnetospheric data
readings from the plasma and particles instrument are used
by the onboard autonomy to decide whether to store high-
frequency, losslessly-compressed readings or low-frequency,
binned data (thus leaving more room for other data products)
based on the level of magnetospheric activity.
• Magnetospheric Reconnection Event Detection. Occasion-
ally, magnetospheric field lines reconnect with each other. As
it is difficult to predict these high science value events, in
this scenario, the onboard autonomy monitors high-frequency
data from the plasma and particles instrument, looking for
magnetospheric reconnection events. If such an event is de-
tected, the corresponding data is saved in lossless format for

downlink; if no such event is detected, the data is discarded.

Event-driven opportunistic observations while mapping—
Mapping of a body’s surface is typically a pre-planned
activity; autonomy can enhance mapping by (i) changing
observation parameters on the fly (e.g., camera parameters),
(ii) adjusting the schedule in response to unexpected events
(e.g., a camera reset), and, crucially, (iii) allowing mapping
to be executed in parallel with other opportunistic activi-
ties, scheduling opportunistic observations for high-value but
fleeting events. Within this class of science campaigns, we
considered three scenarios, namely:

• Mapping Triton and Plume Detection. While executing a
pre-planned Triton mapping activity, a plume is detected by
the onboard autonomy software. The autonomy algorithms
then modify the onboard plan to collect observations of the
plume with both cameras as well as the spectrometer, and
replan the mapping task to minimize the loss of coverage
while prioritizing plume observations.
• Fault Detection, Isolation, and Recovery (FDIR) during
mapping. In this scenario, the camera resets in the midst of
executing a pre-planned Triton mapping task. The onboard
autonomy recognizes the interruption, ascertains functional-
ity, and replans the remaining observations so as to maximize
the amount of the target area covered despite the shorter time
available for mapping.
• Mapping Neptune and Storm Detection. An atmospheric
storm is detected while the spacecraft is performing a pre-
planned mapping of Neptune. The autonomy reacts by revis-
ing the spacecraft plan to collect targeted observations of the
storm (whose location may be time-varying and imperfectly
known) with its cameras and spectrometer, and re-planning
the mapping task to minimize the loss of coverage.

Event-driven opportunistic observations during targeted ob-
servations— Similar to mapping, targeted observations are
typically a pre-planned activity; autonomy can provide in-
creased science returns by adapting observation parameters,
revising observation opportunities if more or less time than
expected is available for observations, and, critically, inter-
spersing opportunistic observations with pre-planned obser-
vations. We considered three scenarios within this class:

• Target selection. The spacecraft is given a ranked list of
targets to observe on the surface of Triton. A camera reset
causes an observation to take longer than expected. Onboard
autonomy then replans subsequent observations based on the
priorities pre-specified by ground operators, ensuring that
once-in-a-mission observations are acquired while skipping
lower-priority ones.
• FDIR affects science plan during critical engineering
event. A non-critical camera observation is planned during
an engine burn. During the burn, FDIR intervenes to counter
an unexpected increase in power usage by interrupting the
observation. The interrupted science activity is re-planned
for a later time.
• Instrument tweaks capture parameters autonomously.
While imaging a target, autonomy adjusts the narrow-angle’s
observation parameters (specifically, the exposure time and
number of exposures to stack) based on the level of noise
observed in the images, while ensuring that the resulting
observations will fit the downlink budget.

Table 1 reports in detail the uplink and downlink operations
capabilities exercised by each scenario. Collectively, the
scenarios exercise a number of key capabilities including
planning and scheduling, event detection, and FDIR.
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In the remainder of this paper, we discuss the tools and
workflows that will be used to effectively operate spacecraft
in these scenarios.

3. OPERATIONS WORKFLOW
In this section, we describe current JPL operations workflow
for missions in a class comparable to the concept of opera-
tions under considerations, and highlight areas and roles that
will change with the advent of more autonomous missions.
Figure 3 provides a detailed representation of the new work-
flow, highlighting key roles and interactions between teams
in both uplink and downlink operations.

Uplink Operations

Uplink teams must communicate science and engineering
intent to onboard autonomy software and assess the expected
impact of such intent on the spacecraft state. The proposed
uplink tools leverage previous JPL research on modeling
plans to facilitate an iterative design process of science in-
tent, including capturing intent and constructing plans with
that intent. We focus on a workflow that includes intent
capture/modeling, outcome/execution prediction, explanation
of elements in the predicted outcomes (e.g. undesirable
performance), as well as advisory techniques (e.g., “to fix
undesirable behavior, add/change this constraint”). The
proposed workflow aims to facilitate the operators’ learning
process, while helping reassure them that the spacecraft will
achieve the target intents and complete the plan successfully.
In what follows we elaborate on the uplink workflow and a set
of supporting tools for intent capture and outcome prediction;
tools for explanation and advising will be the subject of future
work.

We used the Europa Clipper operations concept as a starting
point and identified departures required by autonomy. The
revised workflow and the supporting framework includes a
set of key design principles and progression from uplink to
downlink.

In most missions (including for example Europa Clipper,
Perseverance Rover), planning occurs on several different
time horizons, where the cycle time itself is dependent on the
mission. Although the terms for these planning cycles are not
consistent across missions, we will refer to a longer cycle as
“strategic” and to a shorter cycle as “tactical”. The process of
capturing intent starts pre-launch and continues iteratively at
the strategic cadence by defining campaigns and initial goals
for the different flybys and science opportunities. Intent is
updated as necessary at the tactical level based on information
arriving from downlink (e.g. spacecraft telemetry, science
data). While subsequent planning depends on the develop-
ment of these initial conditions from downlink, we have not
yet addressed this part of the process in detail. Herein we
will focus on the workflow for tactical planning, where intent
is revisited and goals might be updated and/or added for the
next flyby (or next set of flybys).

At the beginning of the uplink tactical planning cycle, scien-
tists, engineers and operators go through the process of intent
capture, starting by revisiting the goals for the next flyby(s)
based on the downlink data and analysis. Scientists and
engineers then have the opportunity to make changes to the
goals/plan while getting instant feedback on the viability of
their changes and on their impact on overall mission progress
and performance. The viability and impact analysis here is
based on an initial, low fidelity evaluation of possible onboard

autonomy output, e.g., based on the most likely, nominal
science and engineering scenario.

Scientists can overload the plan with new observations/goals
at this stage, and instead of culling the plan to stay within
resource constraints, science negotiations rank science goals
by priority, with low priority goals unlikely to be executed
onboard. The autonomy engineer oversees the merging of
changes into the main plan. Then the team collectively
reviews these preliminary “low fidelity” outputs, implements
iterations as needed and approves advancing to the “high
fidelity” evaluation of possible outcomes and autonomy out-
put. Such high fidelity evaluation is called here outcome
prediction phase.

At the outcome prediction phase, simulations produce a more
realistic and comprehensive view of the new plan’s impact
to the projected mission progress and performance. Itera-
tions continue, as the team decides to make minor tweaks
or drop problematic goals entirely. The team can inspect
individual cases or “clusters” of related cases to understand
outcomes that might happen onboard and investigate prob-
lematic plans that approach undesired limits. Explanation of
these problematic cases (either by manually inspecting logs,
state history, timelines and traces or by using an automated
supporting system) plays an important role by i) providing
an understanding the causes and circumstances in which
they occur and ii) updating and adjusting goals to avoid or
minimize undesirable outcomes and maximize favorable ones
(possible adjustments can be figured out during the inspection
process or by also having automated advising system to
recommend modifications). When the team converges in this
iterative model-predict-adjust process, the new (or updated)
set of goals is sent to the spacecraft for onboard planning and
execution. Such a model-predict-adjust process is key to help
the team build trust in the onboard autonomy since is allowing
a shared understanding of the autonomous behavior.

Downlink Operations

Downlink teams operating future autonomous spacecraft will
be tasked with explaining what decisions were made by
onboard autonomy algorithms, reconstructing what happened
on board, and identifying anomalies that may otherwise be
hidden by autonomous decisions. New downlink workflows
and tools have been designed that focus on two thrusts. The
first thrust is spacecraft state estimation and propagation
of the spacecraft state (including available energy, tempera-
tures, health of spacecraft subsystems, and consumption of
on-board resources). Enabling ground personnel to gain a
reliable understanding of an autonomous spacecraft’s state
(e.g. health, resources, etc.) is a challenging problem,
as the onboard autonomy may alter the spacecraft state in
response to information that is not immediately available on
the ground; in addition, propagating the spacecraft state is
critical to providing initial conditions to uplink teams. The
second thrust is explanation of the decisions taken by onboard
autonomy, through user interfaces that capture what decisions
were made by autonomy, and relate why the decisions were
made to the intent provided by ground operators, the space-
craft state (including possible anomalies), and the perceived
state of the external environment (e.g., events of interest
detected by the on-board autonomy).

Current downlink operations concepts—Space flight projects
employ teams of downlink engineers to monitor and review
spacecraft system status and report the spacecraft’s status to
uplink planners, as part of a continuous cycle of operations
over the entire course of a mission. The specific downlink

4



Fi
gu

re
3.

U
pl

in
k

an
d

D
ow

nl
in

k
W

or
kfl

ow
:D

es
cr

ib
es

th
e

hi
gh

le
ve

lo
pe

ra
tio

ns
pr

oc
es

s.
It

st
ar

ts
w

ith
th

e
de

ve
lo

pm
en

to
fi

nc
on

s
an

d
id

en
tif

yi
ng

ne
w

sc
ie

nc
e

ob
se

rv
at

io
ns

.
T

he
n,

th
e

te
am

us
es

lo
w

fid
el

ity
m

od
el

s
to

un
de

rs
ta

nd
th

e
im

pa
ct

an
d

vi
ab

ili
ty

of
th

e
ne

w
go

al
s.

W
he

n
th

e
te

am
ac

ce
pt

s
th

e
lo

w
fid

el
ity

pr
ed

ic
tio

ns
,t

he
y

m
ov

e
to

hi
gh

fid
el

ity
m

od
el

in
g,

w
he

re
th

ey
ev

al
ua

te
th

e
im

pa
ct

on
a

la
rg

er
sc

al
e

an
d

w
ith

m
or

e
re

al
is

m
.T

he
y

up
lin

k
th

e
ou

tp
ut

.W
he

n
th

e
do

w
nl

in
k

ar
riv

es
,o

pe
ra

to
rs

co
m

pa
re

th
e

ac
tu

al
s

ag
ai

ns
tp

re
di

ct
s

to
un

de
rs

ta
nd

th
e

on
bo

ar
d

be
ha

vi
or

an
d

ne
w

sc
ie

nc
e.

In
st

ru
m

en
ta

nd
sc

ie
nc

e
te

am
s

de
ve

lo
p

an
d

pr
io

ri
tiz

e
sc

ie
nc

e
go

al
s

to
ac

hi
ev

e
m

is
si

on
sc

ie
nc

e
re

qu
ir

em
en

ts
.T

he
y

m
ai

nt
ai

n
m

od
el

s
of

th
e

en
vi

ro
nm

en
ta

nd
in

st
ru

m
en

tb
eh

av
io

ri
n

su
pp

or
to

fe
ns

ur
in

g
m

is
si

on
su

cc
es

s
an

d
in

st
ru

m
en

th
ea

lth
an

d
sa

fe
ty

.C
ro

ss
cu

tti
ng

ro
le

s
in

cl
ud

e
1)

th
e

m
is

si
on

pl
an

ne
ro

ve
rs

ee
s

th
e

in
te

gr
at

ed
pl

an
an

d
di

sp
os

iti
on

s
bo

th
is

su
es

to
fix

an
d

op
po

rt
un

iti
es

to
im

pr
ov

e
it

to
th

e
ap

pr
op

ri
at

e
te

am
,a

nd
2)

th
e

au
to

no
m

y
en

gi
ne

er
ow

ns
th

e
sy

st
em

le
ve

la
ut

on
om

ou
s

be
ha

vi
or

.T
he

y
su

pp
or

tt
he

de
ve

lo
pm

en
to

fn
ew

au
to

no
m

ou
s

be
ha

vi
or

s
an

d
en

su
re

th
e

pe
rf

or
m

an
ce

of
th

e
au

to
no

m
y.

T
he

sp
ac

ec
ra

ft
te

am
m

em
be

rs
ow

n
th

e
pe

rf
or

m
an

ce
of

th
ei

rr
es

pe
ct

iv
e

su
bs

ys
te

m
s.

T
he

y
m

ai
nt

ai
n

be
ha

vi
or

m
od

el
s

in
su

pp
or

to
fe

ns
ur

in
g

sp
ac

ec
ra

ft
he

al
th

an
d

sa
fe

ty
.

5



operations concept of a given mission is strongly influenced
not only by the mission type, but also by characteristics
such as the available communications bandwidth for space-
craft engineering health and status data (which may be a
small percentage of the total bandwidth available) and the
frequency of downlink opportunities. Generally, the biggest
driver to the downlink operations concept (as realized by the
downlink operations process) is the timing of receipt of down-
link spacecraft engineering telemetry, relative to the need
to feed-forward that information into planning operations.
Another important driver is the light-speed latency between
the spacecraft and the Earth, where long latencies (and the
resulting long operational turn around times) are themselves
drivers for increasing use of onboard autonomy.

Certain missions, particularly Earth orbiters, are capable of
downlinking with very little latency (they can be practi-
cally “joysticked” by operations) and also typically aren’t
restricted in terms of engineering downlink bandwidth. These
missions may have styles of downlink operations ranging
from hands-on “continuous operations” to “lights out oper-
ations” where little operational monitoring is done by people,
outside of anomaly response situations.

Deep space (e.g. Mars) landed missions typically have a
longer downlink latency, often accompanied by a short turn-
around time required to carry forward downlink analysis
results and initial conditions into planning. This is especially
true of rover missions such as Curiosity and Perseverance,
where a large amount of complex data (including both sci-
entific observations and engineering data) must be reviewed
in a very short time span, in order for uplink teams to have
time to perform all planning functions ahead of the final
available uplink of the day. Further, lander missions often
depend on orbital relays for delivery of data to Earth, given
the higher bandwidth capabilities of orbiter relays compared
to direct-to-Earth communications from the landers; this
further constrains the downlink operational process timing
and cadence to be dependent on the available orbiter relay
communications windows. Critically, in anomaly situations,
a lander typically just stops whatever it is doing, allowing
time for ground operations to address the issue.

Deep-space flyby and multi-flyby missions, such as Cassini,
JUNO and Europa Clipper, present all the challenges of
deep space surface operations, and in particular the need
to examine complex science and engineering data to assess
spacecraft health and inform future planning. Deep-space
flyby operations introduce an additional key constraint: if an
anomaly occurs, there is no option to just “stop flying”, and a
failure to respond in a very short time span may cause loss of
mission.

Impact of autonomy on downlink operations concepts— In
general, downlink operations of highly autonomous space-
craft includes all of tasks and challenges associated with non-
or low-autonomy missions, but brings with it the additional
challenge of understanding whether or not actual spacecraft
actions and behaviors are appropriate or anomalous, given a
large possible set of valid outcomes. In non- or low-autonomy
missions, the nominal behavior of the spacecraft is typically
unimodal and therefore more straightforward to characterize,
given the command sequence provided by uplink; in contrast,
in highly autonomous missions, a large number of possible
outcomes may all be compatible with the uplink’s intent,
depending on the spacecraft’s state and on its perceived
environment.

The impact of increased autonomy on downlink for these
different types of missions includes:

• Downlink operations will typically require a high knowl-
edge of uplink intent, both to interpret on-board decisions
(and, specifically, to assess whether the spacecraft’s behavior
is consistent with the provided intent) and to assess the
spacecraft’s state.
• The presence of autonomy results in a large number of
possible outcomes on board, which cannot be fully deter-
mined a priori (indeed, the reason for on-board autonomy is
to act on information that is not available on the ground);
while prediction tools used by uplink operators can help
assess the a priori likelihood and impact of each of these
outcomes, operators will have to interpret telemetry from the
spacecraft (and compare it to predicted outcomes) in order
to fully understand onboard behavior. New tools are likely
to be required to compare predictions (which are likely to be
highly multi-modal) to actual telemetry, so as to assess the
autonomy’s behavior and the spacecraft’s state.
• Operations are likely to require new types of information
related to autonomous behaviors to be downlinked and eval-
uated by operations (e.g., the inputs and execution traces of
autonomy modules). This is a particular area of challenge,
as long latency and low bandwidth, which are key drivers to
adoption of autonomy, may preclude the ability to downlink
large amounts of information related to the behaviors (e.g.,
images analyzed by an event detector, or the full spacecraft
state considered by an on-board planner in each replanning
cycle). This leaves ground operators to decipher the behavior
of on-board autonomy with incomplete information; software
tools are likely to be required to “fill in the gaps” in the data
based on models of the spacecraft, its environment, and the
on-board autonomy.

A Downlink Workflow for Autonomy—Downlink spacecraft
engineers use a variety of software tools to perform their
analysis functions for present-day missions. Tools include
analysis scripts, reporting systems, and a range of graphical
visualizations, including both 2D and 3D views as needed
for specific analysis tasks. Of course the primary data being
analyzed and visualized is the data downlinked from the
spacecraft. Depending on the role of each subsystem engi-
neer, this may include both spacecraft engineering health and
status, as well as science data used in engineering analysis
(e.g. rover camera images).

There are three general types of spacecraft data used in
analysis of JPL missions:

• Time series data representing onboard measurements of
spacecraft state over time. JPL missions generally refer to
this type of data as “channelized telemetry” or “channels”,
with each channel representing a time series of measurements
from spacecraft hardware sensors, as well as data reported
by software components (e.g. onboard memory states).
Channelized telemetry is the most widely used type of data,
going back to the earliest flight missions, and still plays an
important role for current and future missions in the reporting
of spacecraft state. However, over time spacecraft engineers
found the limitations of pure time series data to be a hindrance
to operations, and new data types have emerged over the
years.
• Event Records (EVRs) representing single events that oc-
curred onboard the spacecraft. Rather than the single data
value of a channel record, each ground EVR record contains
a message string, which contains further spacecraft state
information embedded in that message.
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• Engineering Data Products, each containing a range of
types of information, depending on the need. There are a
wide variety of data products used by projects, including
snapshots of state such as memory and data management
states.

All of these data types are packetized for downlink delivery,
and typically, during a downlink communications session or
soon after, data packets are processed by ground telemetry
processing tools. In some cases downlink operators monitor
data via “real time” displays which are updated as data is
processed by the ground system; in other cases, operators
wait until data processing is complete on the ground, and
review the overall spacecraft states via reports and graph-
ical dashboards. Downlink constraint checks (often called
“alarms”) are performed on data both in real time and in
post-processing, checking for violations such as data values
going over limits (e.g. power levels are too high), invalid
behaviors or combinations of behaviors (e.g. activity A can-
not ever overlap activity B), and for other types of undesired
situations. Further, ground systems often include automated
notifications to alert operators of an issue, given there may be
a very short turn around time for mission engineers to respond
to that issue and possibly prevent the loss of science data or
even the spacecraft itself.

Once data is processed on the ground and in the hands of
operators, a variety of tools and techniques are employed to
analyze spacecraft health and performance. System status
dashboards are used by projects to organize and summarize
data by subsystem. Automated and user-triggered reports
help to answer specific types of questions and pass forward
system status to leads and other teams. Interactive tools
are used for exploratory analysis, particularly in response to
anomalous or otherwise unexpected behaviors.

Many missions incorporate prediction of onboard state and
behavior as part of uplink planning, and operators often com-
pare those predicts against actual telemetry during tactical
and strategic analysis of the mission. In most cases there
is only one predict generated for any given system state,
making it fairly straightforward to compare an actual against
a predicts. However with an autonomous system, there
might be a large number of possible predictable outcomes,
which can greatly complicate the ability of an operator to
identify if onboard behaviors are within allowable ranges and
expectations or not.

Furthermore, the combination of autonomous behaviors and
limited downlink bandwidth create a challenge for operators
to understand “why” the autonomous system made certain
decisions. Even if all available engineering data could be
downlinked, along with science results, to put together the
whole story as to what happened onboard, it may still be
a challenge to make sense of that data, especially if such
understanding needs to happen in a short time span in order
to uplink or modify new goals for the spacecraft.

This paper focused on these challenges, and identified two
tools to improve downlink operations for autonomous mis-
sions: (1) an analysis tool capable of visualizing actual
telemetry results against a range of possible predicts in the
context of onboard events, and (2) a tool capable of providing
the information needed to assess “why” the autonomous
component made a given series of decisions.

4. USER INTERFACE TOOLS
In this section, we describe a set of User Interface (UI)
designs (implemented as mock-ups) to support the aforemen-
tioned iterative operations both for uplink and for downlink
operations. We organize them in three groups: Intent Capture
(uplink), Outcomes Prediction (uplink), and Downlink Anal-
ysis.

Intent Capture

The core of this technology is an intent-oriented hierarchical
plan specification, from strategic to tactical, which largely
aligns with current mission practices of large ground planning
teams at NASA JPL. Building on previous work at JPL [11]
[12] [13] [14] we designed a set of UI tools to progressively
capture and specify intent as science campaigns. In this work
campaigns are composed by: a constrained set of goals (a de-
sired state value or a high level activity, e.g. survey the mag-
netosphere, or monitor for plume activity), metrics to evaluate
progress toward the goals (i.e. key performance indicators,
or KPIs) and their valid range for assessment of execution
(e.g. resource usage, frequency of a command cycling due to
delays), execution variability to capture uncertainty related to
the environment and the spacecraft actuation (e.g. exogenous
events, activities run long, short), and relationships between
goals (e.g. priorities). Relationships between goals are a
critical element to codify, and are currently not explicitly
captured on missions, but are rather brought to light through
the process of team discussions. Even the simple choice
between continuing a mapping task or interrupting it to point
an instrument at an unforeseen and valuable opportunistic
target requires the spacecraft to have a complex and fully-
determined decision logic, and requires operators to consider
the possible consequences for the science mission, the space-
craft, and resource budgets onboard.

We specifically designed four UIs to allow scientists, en-
gineers, autonomy engineers and operators to specify cam-
paigns and their respective set of goals: 1) Science Planning
tool, 2) Metric Definition tool, 3) Variability Definition tool,
and 4) Task Networks Modeling tool.

Science Planning tool—This tool provides an intuitive way
for scientists and operators to a) search and for observation
opportunities and b) create/update observation goals and or-
ganize them within the context of a set of campaigns for
the target mission. The UI design in Figure 4 illustrates
the design that allows users to search for science observation
opportunities, for example across different upcoming flybys,
by specifying observation requirements and constraints. For
example, scientists can search for observation opportunities
that meet geometrical and imaging parameters, and preview
potential conflicts. They can click on targets of interest on
a 3D model of the planetary body and inspect the resulting
footprint. Once an opportunity is satisfying, users can add
such observation as a goal in its corresponding campaign.

The tool also allows the direct specification of goals in the
form a set of desired activities (e.g. observation, detection)
without necessarily using the search mechanism. Figure 5
shows an example of the creation of two goals (one con-
ditional on execution of the other) to monitor a particular
location on the surface of Triton, and perform a follow-on
observation if a plume is detected. The figure also shows
the geometric element on the right hand side, which is
an important assistive visual element for creating goals for
observations. During tactical planning, scientists and oper-
ators can rapidly make changes to the plan, and get instant
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Figure 4. Science Planning: Allows scientists to search for
observation opportunities in upcoming flybys

Figure 5. Science Planning: Allows scientists to input
campaigns and their respective goals for the mission.

feedback on the viability of their changes and their impact on
overall mission progress and performance. For viability, the
tool runs a surrogate of the onboard planning capability on
the ground (in this project we use the MEXEC planning and
execution system [4]) in nominal (or most likely) scenarios
to check for constraint violations. With respect to impact, the
small progress bars to the right of the campaign title shows
the impact of that goal in the overall mission compared to the
original set of goals.

It is important to note that these tools are domain depen-
dent, meaning that they are designed to support science goal
specification for a multi-flyby mission for a single spacecraft.
This front end, in particular, is not meant to be used in other
domain such as ground vehicles. Herein we intentionally
designed it to be a familiar visual presentation for scientists
for that particular mission. This helps the user express
their intent more naturally, as opposed to going to mental
efforts to translate their intents to unfamiliar and unnatural
representation languages. In this case, the tools provide
appropriate views and interactions depending on the user role

(e.g., scientist, operator, etc). All the campaigns and goals
are represented and stored in the background in a common
language across the different views and tools. This common
ground representation is called Task Network in this work.
We will later cover a more domain independent modeling
tool for capture campaign and goals. That is, operators
and scientists could also directly work on the Task network
modeling tool if desired.

Metric Definition— This tool allows users to specify a
set of metrics for each campaign, to evaluate spacecraft
progress/performance toward goals achievements and cam-
paign completion. The tool design provides templates for en-
coding the metric, e.g. mapping state variables to thresholds
or bounds (e.g. the minimal number of plumes that must be
detected and observed is 10). It is assumed that users are
able to specify metrics formally and encode the procedure
in which progress and completion are evaluate (such as a
linear function where one plume observed means progress of
10%, and ten plumes observed achieves 100% completion of
that campaign goal). Figure 6 illustrates the UI design for
metric specification, showing the number of plumes metric
as an example. Progress and impact is also shown for each
campaign, based on the inputs given in the Mission Planning
tool. Metrics are key inputs to evaluate both current and
predicted spacecraft performance. Note that most of the
metrics (if not all of them) are usually captured and specified
early in the mission, or at the strategic planning level.

Figure 6. Metric Definition: allows scientists, engineers,
autonomy experts and operators to input the key

performance indicators that are used to evaluate the expected
and actual performance of the spacecraft throughout each

flyby and also throughout the mission.

Variability Definition tool— This tool (shown in Figure 7)
allows scientists, engineers, autonomy engineer and operators
to represent and model uncertainty with respect to a multitude
of aspects that might impact the performance of the onboard
autonomy spacecraft while executing it mission. These as-
pects include environmental uncertainty/variability, such as
the number of plumes or features on the surface of Triton
that might be detected, or engineering uncertainty/variability
such as the probability that a camera will go into a fault state
when in operations, or probability distributions over the dura-
tion or power consumption of activities performed onboard.
Herein, users represent variability by specifying uncertainty
in the form of probability distribution (e.g. Gaussian or Uni-
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form distribution) or discrete percentage. Figure 6 illustrates
the variability definition tool. The variability specification
is fundamental to study the space of circumstances that the
spacecraft might face, and the basis for the prediction phase
proposed in this work. It is from these uncertainty models that
we sample execution scenarios and evaluate the distribution
of possible outcomes.

New additions or updates to variability specification can
occur in any stage of the mission. Updates, for example,
can come from downlink data, both at the tactical level
(e.g. a magnetosphere model might need adjustments), or
at the strategic level with trend and history analysis (e.g.,
the duration of plumes at a certain location can be better
estimated given historical data from previous flybys).

Figure 7. Variability Definition: allows scientists,
engineers, autonomy engineers and operators to input

uncertainty with respect to a multitude of aspects that might
impact the performance of the onboard autonomy spacecraft.

Task Network tool—This tool leverages previous JPL work on
modeling goals [14] using a formalism called Task Networks
(tasknets for short). The tool combines the task network
editing and visualization, an output of the predicted task exe-
cution on a timeline (for a nominal, or most likely, scenario),
and a log of messages including predicted EVRs, onboard
planner decisions, and projected constraint violations. Figure
8 shows the UI design for the Task Network tool.

On the tasknet editing and visualization front (graph view on
Figure 8), operators can visualize state conditions, state im-
pacts (effects), resource constraints, priority constraints, and
ordering constraints across tasks in the task network graph
view in order to identify missing and conflicting resources
and dependencies, or other issues preventing a task from
being scheduled as expected. They can also navigate task
hierarchy by zooming out to review the goals included in
the plan, or zooming in to a specific goal to focus on lower
level tasks. Operators can inspect task details including the
commands, priority, and command parameters that belong
to a task, along with task authorship history. The tool
additionally enables merging tasknets together to combine
goals, with capabilities akin to Git version control.

The predicted data shown in the timeline comes from a surro-
gate of the onboard planner (MEXEC in this work), in order
to check if a nominal plan schedules as expected. Operators

can inspect a moment in time across the different types of
data with a brushing capability in order to correlate events,
the active task, and resource timelines. Warnings and tooltips
draw operators’ attention to goals that failed to schedule (or
to be achieved), and then it offers the most likely explanations
generated by inference (see Section 5 for more details on the
inference mechanism) for factors that led to failures as well
as nominal outcomes. Operators can also choose to view the
final output timeline, or animate individual planning cycles in
order to understand how the schedule evolved.

We expect that operators will most frequently generate
tasknets using templates and parameters from other support-
ing tools (e.g., the Science Planning tool), but in less common
situations, they can manually construct them by pulling in
tasks from a template library. In this work, goals from the
Science Planning tools are translated to task network ele-
ments and added to a master tasknets, where all the goals are
represented and merged. The resulting master task network
is the main data product that is uplinked to the spacecraft and
handed to the onboard planner. The Task Network tool is
central to the intent capture process and will be used both at
the strategic and tactical planning levels.

Figure 8. Task Network: allows engineers, autonomy
experts, and operators to author and check task networks.

Outcomes Prediction

In order to offer the uplink team a more complete overview
of the potential behaviors of the onboard autonomy , we
predict the various outcomes that may result from a given
task network and given uncertainty models by running an
array of high-fidelity simulations. The collected predicted
outcomes can then be used by the uplink team to not only
observe the expected execution, but also attach confidence
values to the various goals and activities within the generated
plans. As such, repeated simulation runs and collection of the
outcomes fit within the proposed iterative workflow of uplink
operations, which ultimately serves the goal of increasing
the confidence of the uplink team in the expected behavior
and performance of the onboard autonomy with the provided
goals.

The software design of the simulation and prediction tool is
described in Section 5; in this section, we focus on UI tools
that allow users to explore the outcome of the simulations.

Simulation Mission Planning Prediction Review tool—This
tool has been designed to show the aggregated summary of
all the simulation runs [15] for a given task network, as well
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as the metrics and variability specifications. Figure 9 shows
the predicted outcomes (for the target tasknet) on the left-
hand side, ordered from most likely to least likely, aiding the
operator in more easily deciphering the expected behavior of
the constructed plans. The green and red arrows inform the
impact of an added goal (in this case, observing Plume X)
on the outcome distribution. For example, the percentage of
cases in which Observation A and B will be both performed
decreased (red arrow pointing down).

The left-hand side panel also presents the option for filtering
the output for specific outcomes. Additionally, the main sec-
tion contains a timeline view showing the scheduled activity
times of the science goals, the modes of all instruments, as
well as important spacecraft states including as storage usage
and battery status. Since this view displays an aggregate of
all outcomes, the charts on the timeline view showcase the
overlaid results in a gradient-like pattern indicating all the
possible values for the various outcomes. All in all, this view
is crucial for the operator in examining all of the possible
outcomes after running through the prediction engine.

Figure 9. Mission Planning Prediction Results tool: shows
the aggregated summary of all simulation runs for a given

task network

Mission impact tool—The mission impact UI view (shown in
Figure 10) provides an overview of the simulations spanning
the whole mission (that is, looking into all flybys) highlight-
ing, the impact of newly-added goals to the the progress and
success of the campaigns and to performance trends. This
view also shows how the plans perform with respect to key
performance indicators, and the uncertainty associated with
them. This view is especially important to operators to ensure
that the constructed plans are accomplishing the higher level
campaigns set out by the mission, and to what degree. It
also highlights the impact of the goal changes for the next
flyby (e.g., the addition of a new goal to observe plume X) at
the strategic level (see the two bar charts on the bottom, with
the impact gap in green). Furthermore, the operators are also
presented with a few recommendations on how improve the
plan to avoid conflicts and aid in campaign success. These
recommendations are essential in fitting in with the iterative
workflow of plan development.

Downlink analysis

Subsystem Downlink Analysis Tool—The subsystem downlink
analysis tool (shown in Figure 11) allows operators to review

Figure 10. Mission Impact tool: shows an overview of the
simulations and the impact of updated or newly added goals

to the mission progress

actual telemetry from downlink and compare it to modeled
predicted data (predicts) to support the analysis of onboard
health and safety and anomaly detection[16]. The tool resem-
bles conventional downlink analysis tools, plotting onboard
state over time overlaid with events, and a list of EVRs. The
predicts are clustered, since the uplink process for autonomy
produces thousands of predicts instead of just one. Operators
can filter down to the cluster that match most closely what
happened onboard in order to confirm that the spacecraft
performed as expected, and identify improvements that they
may need to make to the models. They can also filter EVRs to
show exclusively unexpected EVRs, i.e., actual EVRs that did
not match predicted EVRs for that plan cluster, or predicted
EVRs that did not occur on the spacecraft. The tool can
also display inferred data, i.e., the probabilistic distribution
of key unmeasured states and parameters, reconstructed on
the basis of received telemetry and of models of spacecraft
and its environment (the creation of such data products is
discussed in detail in Section 5). Inferred data can help the
operator explain why certain autonomy decisions were taken;
the comparison of inferred data with predicts can also help
surface the most likely explanation for unexpected outcomes,
which they can use as a starting point for an investigation.
The Subsystem Downlink Analysis tool provides a simple
view of the subsystem performance for nominal cases. In
off-nominal or poorly understood cases, operators can access
more details in the Behavior Performance Analysis Tool.

Behavior Performance Analysis Tool— The Behavior Per-
formance Analysis Tool (Figure 12) allows autonomy ex-
perts and operators to understand the onboard decisions, and
compare them with expected behavior, in order to debug
unexpected outcomes and evaluate the performance of the
autonomy. It repurposes the Task Network tool but, instead of
a modeled preview, it presents downlink data juxtaposed with
the thousands predicts mentioned in the Subsystem Downlink
Analysis tool. In support of this investigation, the tool also
features messages describing onboard decisions, including
(when applicable) previews of images data that was used to
make decisions.

10



Figure 11. Subsystem Downlink Analysis Tool: allows
downlink operators to compare predicts and actuals, and

helps assess what happened on board.

Figure 12. Behavior Performance Analysis Tool: shows the
task network executed on board, juxtaposed with predicts

and with actuals, to support explanation of autonomy
decisions.

5. SOFTWARE TOOLS
New data-processing tools are needed to support the UI
tools presented in the previous sections. In particular, we
developed a performant simulation environment; a prediction
engine that leverages the simulation environment to generate
predicts; and an inference engine that uses telemetry data
and spacecraft models to estimate the spacecraft’s state, in-
cluding, critically, the state of unmeasured or infrequently-
measured variables.

Simulation Environment

We developed a simulation environment to simulate the be-
havior of the autonomous spacecraft, its surrounding environ-
ment, and the on-board autonomy. The simulation environ-
ment captures the spacecraft’s position and attitude, thermal
state, available power and energy, and available on-board
storage; reproduces the behavior of the on-board instruments,
namely, the wide-angle and narrow-angle cameras, the spec-
trometer, and the particles and plasma instrument; simulates
the environment surrounding the spacecraft, in particular,
the magnetic field’s variability and the presence of plumes

on Triton; and integrates with the MEXEC planning and
execution software [4] and with a notional plume detector.
The simulator also interacts with a ground data system by
accepting input commands for the on-board autonomy and
returning simulated telemetry, providing a testbed to for the
tools described in the rest of this paper. The simulation
environment uses SPICE [17] for astrodynamics and plane-
tary ephemerides, and ROS [18] for inter-process communi-
cations. Figure 13 shows the architecture of the simulation
environment.

Figure 13. Software architecture of the proposed simulation
environment. Modules circled in green are implemented; the
remaining modules are slated for implementation in future

work.

Prediction Engine

The high-level approach to predict outcomes consists of 3
main steps, namely, (i) sampling from the variability distri-
butions to construct an input to the simulator, (ii) running
the spacecraft simulator with the sampled input, and (iii)
recording the various states and outputs in a shared database.

We use a Monte Carlo simulation approach, drawing on expe-
rience from the probabilistic prediction methodology used in
the Copilot system [3] for predicting and visualizing the per-
formance of M2020 rover execution with the Simple Planner
autonomy. We extend this methodology to consider not only
uncertainty with respect to activity’s execution run time (e.g.
delays) but also with off-nominal scenario and science event
resource utilization variations (e.g. power/energy/thermal,
data storage).

While the current sampling method uses a simple Monte-
Carlo [19] approach, future research includes testing more ef-
ficient sampling methods such as Latin Hypercube Sampling
[20].

Implementation of the prediction engine presents two key
difficulties. First, each simulation run needs to simulate a
plan that spans many hours; while the simulation can run
faster than real-time, there is a limit to the speed-up that can
be achieved in simulation. Additionally, the prediction engine
needs to be able to support simulating a wide range of runs,
from a handful to hundreds of thousands of runs. As such, we
must include parallelism and ability to configure resources
based on the demand.

In order to overcome these difficulties, we built the prediction
engine on Kubernetes, an open-source container orchestrator
[21]. Not only does Kubernetes enable efficient orchestration
and dynamic scaling, but it also easily allows to deploy the
application on a cloud provider like Amazon Web Services
(AWS) [22], to help meet the large computing power re-
quirements. In order to achieve parallelism, we utilized the
generator-worker method. In this method, the generator is re-
sponsible for generating input requests by sampling from the
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given variability distributions and pushing each input request
onto a queue. Meanwhile, the worker takes an input request
from the queue and runs a simulation based on the input,
while storing data to a shared database. Figure 14 shows the
workflow of the prediction engine, from the sampling to the
storing of outcomes.

Figure 14. Overview of the architecture of the Prediction
Engine.

Inference Tool: Filling in the gaps

A key challenge in downlink analysis is to reconstruct the
spacecraft’s state and the decisions made by autonomy. While
time-series data, EVRs, and engineering data products can
provide a detailed view of the spacecraft’s state and of the
autonomy’s decisions, it is generally non-trivial to correlate
information across multiple time series and EVRs, and to
reconstruct why autonomy made its decisions (that is, what
elements of information influenced the autonomy’s deci-
sions). In addition, the amount of bandwidth available for
engineering data is generally limited, since such information
is in direct competition with scientific data products for
limited downlink opportunities; this compounds the difficulty
of reconstructing the spacecraft’s state and its decisions, since
data-intensive tools are often impractical (e.g., it is may be
infeasible to downlink the entire spacecraft state every time a
planning algorithm is executed).

In order to address the twin challenges of (i) highlighting
correlations in the data sent by the spacecraft, and (ii) “filling
in the gaps” wherever information is not downlinked or down-
linked at lower-than-desired frequency, we advocate for the
use of state estimation and inference algorithms. Such algo-
rithms make use of models of the spacecraft, its environment,
and, crucially, the on-board autonomy; based on these models
and on the downlinked data, the algorithms reconstruct the
joint probability distribution of the spacecraft’s on-board
state over time, enabling operators to assess the state of the
spacecraft, and providing critical insight required to explain
the autonomy’s decisions.

As an added benefit, inference can reconstruct the state of
environment variables that are not directly measured or im-
perfectly sensed by the spacecraft; and, by exploiting models
of the event, inference can help identify possible failures
that may be otherwise masked by autonomy. Consider,
for instance, an autonomous spacecraft tasked with detect-
ing plumes on Triton and, if a plume is detected, perform
follow-up investigations. How should an operator interpret
a negative detection denoting the absence of a plume? The
naive approach of downlinking all the image data support-
ing the autonomy’s decisions is generally infeasible due to
bandwidth constraints; in contrast, inference algorithms can
exploit models of the detection algorithm (specifically, of its
false positive and false negative rate) and of the expected
event of interest (namely, the expected frequency of plume
observations), and telemetry data collected across multiple
observation opportunities, to assess the relative likelihood of
multiple hypotheses, ranging from the absence of plumes to
possible faults (e.g., the detection algorithm’s threshold is too
high, or the sensor gain is improperly set).

Modeling—Models of the spacecraft, of its environment, and
of the on-board autonomy are needed to perform inference.
In order to build such models in a principled way, we
adopt the State Analysis framework [23], and employ state
effect diagrams to represent the spacecraft state, and goal
elaborations diagrams for the on-board autonomy. In this
section, we provide a succint description of state effect and
goal elaboration diagrams; we refer the reader to [23] for a
thorough discussion.

State effect diagrams capture the causal relationship between
the states of the spacecraft and of its environment in a princi-
pled way. While a state effect diagram does not provide an an-
alytical model for the relationship between individual states,
it reduces the problem of capturing the coupled dynamics
of a spacecraft and its environment into the much simpler
problem of capturing how small subsets of states influence
one another.

Figure 15 shows a state effect diagram for a spacecraft captur-
ing magnetometry data, highlighting how the modeling prob-
lem is broken down into a number of much smaller, and more
manageable, subproblems. In addition, the graph structure
of the resulting model is highly amenable to computationally
efficient inference, as discussed in the next section.

Goal elaboration diagrams capture relationships between
goals in the on-board autonomy. By providing an abstract,
synthetic representation of the autonomy’s goals, goal elab-
oration diagrams allow to “peek into” the decisions of au-
tonomy, capturing the reasoning behind autonomy decisions
(which makes such tools especially useful for explanation)
while abstracting away algorithm-specific implementation
details.

Goal elaboration diagrams focus on expressing the relation-
ship between goals and actions - as such, they are well-
suited for goal-based planners which explicitly optimize for
achievement of user-specified goals. In contrast, this ap-
proach can struggle to capture the behavior of heuristics-
based planners, where goals are imperfectly mapped to de-
cisions through heuristics that cannot be properly modeled in
a causal fashion; in such cases, a black-box representation of
autonomy (using the exact same code employed on board the
spacecraft) may be used, resulting in increased fidelity but
much lower interpretability.
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Figure 15. State effect diagram for a spacecraft capturing
magnetometry data. State effect diagrams capture the

topology of causal relationships between states, simplifying
the modeling process and providing models that are

amenable to efficient inference

Figure 16 shows a goal elaboration diagram for an autonomy
module autonomously adapting the sampling rate of a mag-
netometer in response to its measurements.

Figure 16. Goal elaboration diagram for an instrument
autonomously adapting its sampling rate in response to the

measurements. Goal elaboration diagrams capture the
relationship between the autonomy’s goals and commanded
actions in a systematic way, capturing the reasoning behind

autonomy decisions while abstracting away specific
implementation details.

Algorithms—In order to perform inference, we use state effect
and goal elaboration diagrams to build a factor graph [24]
representation of the spacecraft. Like Bayes nets, factor
graphs represent the joint probability distribution of a set of
states as a product of factors; factors, in turn, can be specified
as any function over a subset of state variables (for instance,
the causal relationship between a spacecraft’s attitude and
the likelihood of observing a given region of a body can
be represented as a factor, where the inputs are the space-
craft’s attitude states, and the output is the likelihood that
the spacecraft’s camera points towards the region of interest).
Unitary factors are also possible, where a factor is a function
over a single variable (for example, a direct measurement
of a variable can be added to the graph as a unitary factor,
also called a prior). We adopted the open source library
GTSAM [25] to construct new types of factors based on the

Figure 17. An example of a simple multi-modal factor
graph used for inference. Here we see magnetic field

strength variables we are estimating as circles, connected in
time by black nodes representing how magnetic field

strength is expected to change with time. The blue nodes
connected to each variable represent measurements of the

magnetic field from the spacecraft and their associated
uncertainty. These factors are multi-modal because they are
detachable; MH-ISAM2 considers two hypothesis for each
of these factors and evaluates the respective factor graphs

accordingly. The hypothesis with the least accumulated error
is considered the most likely.

spacecraft’s continuous measurements and on the variables
we would like to infer. The factor graph is then solved as
a nonlinear optimization problem, where we determine the
set of variables that best explain the measurements. GTSAM
does this efficiently by exploiting sparsity (measurements
typically only affect a small portion of the total number of
variables).

To handle discrete variables and measurements, we make
use of a version of GTSAM called MH-ISAM2 [26] which
extends GTSAM by adding multi-modal factors. Multi-
modal factors can be used to represent discrete set of states
or models (e.g., a plume exists or doesn’t exist, the observed
magnetic field conforms to one proposed model or another,
one of the sensors is operating normally or has experienced a
fault) as separate hypothesis; factor graph optimization then
finds the hypothesis which best explains the measurements.
An example of one type of multi-modal factor is shown in
Figure 17 where circles represent the variable of interest (in
this case the magnetic field strength) we are trying to infer
at sequential time steps. Black nodes connecting the vari-
ables represent factors, which have a probability distribution
associated with them. In this example, the factors connecting
sequential variables describe how models say the magnetic
field strength should progress with time. The blue factors
are so-called detachable unitary factors that represent mag-
netometer measurements, with an associated measurement
noise uncertainty. If one of the magnetometer measurements
is faulty (i.e., the model of the magnetic field says that the
magnetic field strength is unlikely to abruptly change in time,
but measurement shows a large temporary change in mag-
netic field strength that can’t be explained by measurement
noise), the factor graph is able to consider this option as a
separate hypothesis, where the measurement is detached from
the graph optimization problem. The set of hypothesis that
result in the least accumulated error between the estimated
states and their associated factors is then considered the most
likely explanation.

Another use case for multi-modal factor graphs are discrete
variables. One example we’ve modeled here is the existence
of a plume on Triton, and the ability to detect plumes with a
camera, shown in Figure 18. To do this, we group together
two parallel sets of variables in time, one where a plume
exists, and one where it does not, and connect these to a
threshold variable representing the properties of the detector
through multi-association factors. These multi-association
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Figure 18. An example of a multi-modal factor graph with
discrete variables. We model discrete variables, in this

example plume existence, as two separate sets of variables.
These are then both connected to the detector threshold

variable through multi-association factors representing the
hypothesis that the plume exists, or does not exist.

factors represent the hypothesis that either mode of the dis-
crete variable for plume existence explains the detection mea-
surement. The discrete variables are also connected in time
through additional multi-association factors that represent the
likelihood of a plume transitioning between existing and not
existing. We also consider the likelihood that the threshold
variable we’ve commanded for the detection algorithm has
not been applied correctly with detachable unitary factors.

The output of the factor graph is a maximum-likelihood
estimate of the state variables considered, and the marginal
distribution of each variable. In future work, this data will be
displayed in the Subsystem Downlink Analysis Tool (Figure
11), providing operators with key insight into unmeasured
variables and, critically, with the likelihood of each consid-
ered hypothesis - helping operators assess the state of the
spacecraft and understand why autonomy made its decisions.

6. USER STUDY
Study Design

In order to qualitatively evaluate the performance of tools
and initial autonomous planning procedures, we conducted
a light-weight simulation of future autonomous operations.
The approach follows the idea of Design Simulation [27], a
design method introduced at JPL to expand the scope of User
Enactments [28], [29], a type of Experience Prototype [30]
to assess the experience of operators, and to provide systems
engineers with insight into how to improve the efficacy of
their operations early in the mission design process. The
immersive effect of Design Simulations provides planners
and operators an opportunity to experience future operations
concepts and software early in a mission life cycle, and
use the feedback from these simulations to inform planning
conversations before final tools are put into practice during
flight. In our case, we took an experimental approach in order
to gather recommendations that could scale to future missions
utilizing autonomous technologies. We developed a loose
impression of our design principles for operational processes
and tools, rather than a specific concept of operations. This
allowed us to focus on a scaleable framework that future
missions can use as a starting point.

The user study needed to compare the strong prior operators
bring to how they understand conventional operations, against
how future autonomy-based missions might deviate from
a more deterministic set of practices. Our early forma-
tive research of operations practices revealed a number of
rich areas to investigate the potential impact of this newly-
experienced autonomy. In particular, we chose to focus on
how scientists would react to probabilistic resource conflicts,
whether operators would trust and accept a non-deterministic
uplink plan, and whether operators would feel confident in
their retrospective reconstruction of onboard behavior and
safety upon downlink.

To study these particular facets of operations, we selected the
previously described “Mapping Triton and Plume Detection”
scenario (see Section 2), and elaborated preliminary tools and
an operations concept that fit this scenario. The user study
introduced operational issues that the participating operators
would have to resolve using the provided tools. The study
began by presenting operators with telemetry that identified
a new, unexpected plume from the previous downlink. We
guided the participants to explore follow-up observations
around this interesting new feature, which created a conflict
with the baseline plan, and included no guarantee that it
would even still exist during that planning window. Then we
guided them to create a plan that would only image the new
feature on the condition that it was determined by the onboard
detection algorithm to still exist.

As the test proceeded, after uplink, the spacecraft confirmed
the existence of the transient feature and imaged it. However,
during data collection, we injected a camera reset into the
scenario, that only allowed the spacecraft to successfully
image the lower priority of the pre-existing features. We
used this unexpected spacecraft behavior as a way to evaluate
operator trust in the autonomous system.

Participants

We recruited six participants, including two from our team
who were already familiar with the scenario (Investigation
scientist, and autonomy engineer), and four practitioners
from flight projects at JPL (Instrument/Investigation scientist,
Instrument engineer, Mission planner, and Data Management
Engineer). We introduced them to our hypothetical mission
concept, the onboard autonomy that the spacecraft would be
using to determine its actions, and the suite of tools that we
created for them to use to command the spacecraft. We then
walked them through an overview of user study procedure,
which we describe below.

Procedure

Our study consisted of three main sections over the course of
three days that represented a loose operations concept: goal
identification and design, high fidelity simulations and up-
link, and downlink analysis. Our participants role played the
operations positions in conversations and decision-making
across those meetings, though we also encouraged them to
break into reflective discussions about the process and tools
along the way. We also collected feedback in the form of
survey responses in a journal they used for each day. We
had implemented the tools as click-through prototypes only,
and user study facilitator needed to “drive” the tools at the the
operator’s request. This dynamic evoked dialogue about what
information they needed to see and why.
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Analysis

Once we concluded the study, we transcribed the audio from
the sessions and compiled the survey responses. To identify
themes, we grouped clusters of related observations into
affinity groups, focusing on topics that related to our research
questions.

Findings

In this section, we describe preliminary themes that emerged
from our analysis. The user study participants in general
successfully used the tools and series of steps to complete
their operations tasks. The operators’ participation, inquiries,
and suggestions highlighted successes and opportunities to
improve our first pass at an autonomous operations experi-
ence. Participants’ behavior also revealed how negotiation
dynamics might change in a highly modeled autonomous
paradigm.

Participants’ requests and expectations exposed that the sys-
tem lacked detailed data on particular screens that our pre-
liminary design hadn’t anticipated. For example, we had de-
signed the system to include progressive disclosure of higher
fidelity science goal prediction details. These predictions
indicated the probability of each goal being successfully
executed, given the order of operations and science targets.
Lower-fidelity predictions, which we made available to par-
ticipants at the activity start, gave operators a rough estimate
of the outcome of the plan, while higher fidelity predictions,
which we made available later in the activity, provided es-
timations based on a Monte Carlo Simulation approach that
modeled the outcomes across 10,000 scenarios/outcomes.

While participants generally accepted the progression from
low fidelity to high fidelity data, conversations with scientist
participants revealed that some wanted higher fidelity data
available at the beginning of negotiations. In this particular
situation, the decision about which observations to prioritize
kicked off a lively discussion about the various possible out-
comes and their combinations. During the later high fidelity
phase scientists focused on the likelihood that the spacecraft
might encounter all the plumes of interest. This favorable
(and with a 2% likelihood , very unlikely) simulation outcome
where the spacecraft delivered all the desired science across
plumes of interest hid in the later high fidelity outcomes. As
one scientist described, “...starting with the premise that we
cannot do all 3 [observations], spending a month of arguing
about which way to go for the plan, to find out there is a
chance to do all 3 that could have led to a lot of arguments
and drama for nothing.” As a takeaway, this observation
opens a space for earlier views to include more Monte Carlo
Simulations to facilitate earlier negotiations, both to be used
in discussions, and as a starting point for trying to improve
favorable outcomes.

In order to discuss what might happen onboard, operators
used the prototype tools to cross-compare possible outcomes,
represented visually as side-by-side resource and task time-
lines. They could toggle between clusters of the predicted,
related, sequential plans. We observed participants using the
summary of all the possible outcomes as a starting point,
using it to identify cases where outcomes came close to the
resource limits, or where certain goals happened at different
times. With this overview knowledge, they could then zoom
into the details of specific plan sequences to understand the
range of details and conditions defining how that plan might
have occurred. For example, one scientist pointed out “[An]
advantage that comes out of being able to toggle between

them [summary and specifics] to is it gives you hints “I’m
running into [a] time [boundary issue] here, or I’m hitting the
power limit”. Those pieces can help people figure out... if
they want to ... change the situation.”. We interpret this to
mean that the ability to access and toggle between possible
and high-probability outcomes facilitated an understanding
of possible outcomes of a variety of plans against a com-
prehensive space of possible outcomes. Additional work
will need to be done to develop meaningful clusters that can
facilitate exploration of more complicated plans, each with
many interacting onboard goals, and overall upwards of 20 or
so related plan clusters.

In a process that followed patterns from conventional ground
operations, we also observed downlink operators taking ad-
vantage of the predicts vs actuals. As part of how downlink
operators built an understanding of what transpired onboard
the spacecraft, they would inspect differences between the
predicts that matched onboard goal profiles, and actuals, to
identify performance and unexpected onboard behaviors. In
our study, operators could make this predicts v. actuals calcu-
lus using different goal clusters. The operators identified their
potential to help them understand cases where data about the
onboard execution is not available or clearly reconstructable
in instances such as data loss. One spacecraft engineer ex-
plained, “[if] we don’t downlink that data or tasknet wouldn’t
know how the plan evolved over time, and if we only have
EVRs and EHA, then the ability on the downlink dashboard
to cycle between the different models could give us a sense
of what the onboard planner chose before we end up getting
that data downlinked and learn the real answer.”

Future software tools based on the prototypes of this study
should reflect the complexity of the behavior and operational
needs of a more robust mission concept. During our study,
the operators focused mostly on the timeline visualization
and less on the graph task network view. The autonomy
engineer elaborated: “I did almost all my analysis using the
Gantt/timeline chart and the little warning or error messages
and comparing to the resource plot to do a sanity check
on error messages.” We believe that while simpler, well
understood plans and behavior (such as the one used in our
study) can leverage timeline views, more complex plans with
poorly understood spacecraft behavior might require addi-
tional views to supplement the timeline such as the network
block diagram.

We observed that the use of models and probabilistic results
influenced the discussion of science priorities. In one exam-
ple, we observed that when one scientist accommodated the
addition of a new autonomy-enabled observation, it reduced
the likelihood of their own observation from almost 100%
to 70%. The impacted scientist felt that the changes had
compromised their original observation even thought it was
still likely to occur, and, as a result, the participants discussed
several strategies to make a compromise or otherwise relax
the plan without using autonomy. The impacted scientist
explained “I would have pushed harder if there was any
indication that [the baseline plumes] or both were super
important and we were not able to image them again.” At the
same time, some scientists noted that while they had to make
decisions based on predictive models, those models attempted
to characterize parts of the solar system that humans don’t
know very much about. Some scientists described this as
somewhat arbitrary and even potentially contentious. While
the Mission Planner responded with equanimity, observing
“Such is planning”, the autonomy engineer suggested that
perceived or actual arbitrariness could be refined throughout
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the ongoing mission.

Finally, we observed a change in how science teams prioritize
observations and discuss their likelihood. While sequence-
based operations teams have to cull observations from the
plan using their implicit understanding of the tradeoffs, our
operations team front-loaded their plan with desired science
observations, ranked them by priority and debated their like-
lihood using clusters of possible outcomes from high fidelity
simulations. As the Autonomy Engineer commented, “It used
to be a discussion or argument about what is more important
to fit in and what’s in and out. With this [autonomous]
planning paradigm it’s a discussion of ranking the activities
because we’re never really sure what’s in and out, we know
the highest priority things will almost certainly happen and
the lowest will almost certainly not, and where the cutoff
is until we run the model and really until we run it on the
spacecraft.”

7. CONCLUSIONS
In this paper, we investigated the problem of operations
for autonomy, i.e., of identifying the tools and workflows
that will be required to effectively operate future highly au-
tonomous spacecraft. We grounded our analysis in a notional
flyby mission to the Neptune-Triton system, a destination se-
lected because the resulting low bandwidth and high latency
makes it attractive for deployment of autonomy, and also
results in highly challenging operations. After identifying
a set of autonomy-enabled science scenarios that are likely
to challenge current operations paradigms, we identified
how operations workflows and roles are likely to evolve
to accommodate onboard autonomy. We then presented
the preliminary design of UX tools and software tools that
respond to the needs of future autonomy workflows; the tools
were evaluated in a user study with JPL mission operators,
resulting in broadly favorable findings.

The work in this paper paves the way for a number of
interesting directions for future research. First, we plan
to directly address the operators’ suggestions that emerged
in the user study by (i) increasing the fidelity of initial
predictions presented to the users (bringing the some of
the benefits of the high fidelity simulations sooner in the
process), (ii) ensuring that the tools developed present past
operational outcomes and long-term predictions of key met-
rics, and (iii) developing clustering tools that support a large
number of possible outcomes. Second, we plan to continue
the integration of inference and UX tools, helping operators
interact with inferred data to assess the spacecraft’s state
and the autonomy’s decisions. Third, we plan to perform
follow-on user studies on scenarios more representative of
real missions’ operational needs, including larger and more
complex task networks, multiple conflicting science objec-
tives, and multiple uplink-downlink cycles. Finally, we plan
to continue the development and integration of the prototypes
presented in this paper with the long-term goal of infusing
the findings of this work in future ground data systems, in
particular AMMOS [31], to support future autonomous space
exploration missions.
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