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Abstract

This document contains additional information and empirical data for the paper Embedding a Scheduler in
Execution for a Planetary Rover (Chi et al. 2018).
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Additional Materials
Detailed Sol Type Data
Below we provide the execution and scheduler data for sev-
eral individual sol types for completeness.

Figure 7 shows results for the Medium drive sol type. Fig-
ure 8 shows the Short Drive sol type. Figure 9 shows the
Long Drive sol type. Figure 10 shows the Workspace sol
type. Figure 11 shows the Survey Remote Sensing sol type.

(a) Makespan gain for varying scheduler run times (Tsc) and
methods averaged across a Medium Drive Sol Type.

(b) The predicted total loss + makespan gained is equal to the
theoretical best makespan gain (if we had an instantaneous
scheduler) for the Medium Drive Sol Type.

Figure 7

In the above Figures 7b, 10b, and 11b the predicted loss
does not well correlate with the actual loss.

For all of them, the model overestimates the predicted
loss. There are several reasons for this overestimation. Fig-
ure 12 shows specific instances from the sol types that vio-
late the loss model assumptions.

1. Setup Activities. In sol types, activities may require earlier
activities including preheats. When an earlier activity A
completes early, this may allow a later activity B to move
earlier, but if B has a preheat or setup activity it may pre-
vent B from moving earlier. However, the computational

(a) Makespan gain for varying scheduler run times (Tsc) and
methods averaged across a Short Drive Sol Type.

(b) The predicted total loss + makespan gained is equal to the
theoretical best makespan gain (if we had an instantaneous
scheduler) for the Short Drive Sol Type.

Figure 8

loss model will still calculate the loss although even the
optimal scheduler is unable to recoup the loss. Figure 12b
shows an example in the Workspace sol type where an ac-
tivity setup prevents the scheduler (including the optimal
scheduler) from benefiting from an activity ending early.

2. Parallelism. In a non serial schedule, there may be ac-
tivities not in the critical path. When activities are not in
the critical path, no matter how early they finish they do
not affect the makespan. As a result, any loss predicted
from those activities is an overestimation as even the op-
timal scheduler cannot convert the early completion into
makespan reduction. Figure 12a shows parallel activities
in the Long Drive Sol Type.

3. Execution Time Constraints. Execution time constraints
can limit activities from being rescheduled earlier. As a
result, any time before that activity cannot be gained back
anyways and may result in a loss overestimation. Figure
12c shows an execution time window constraint in the
Medium Drive Sol Type that prevents the scheduler from



(a) Makespan gain for varying scheduler run times (Tsc) and
methods averaged across a Long Drive Sol Type.

(b) The predicted total loss + makespan gained is equal to the
theoretical best makespan gain (if we had an instantaneous
scheduler) for the Long Drive Sol Type.

Figure 9

taking advantage of an early completing activity.

(a) Makespan gain for varying scheduler run times (Tsc) and
methods averaged across a Workspace Sol Type.

(b) The predicted total loss + makespan gained is equal to the
theoretical best makespan gain (if we had an instantaneous
scheduler) for the Workspace Sol Type.

Figure 10



(a) Makespan gain for varying scheduler run times (Tsc) and
methods averaged across a Survey Remote Sensing Sol Type.

(b) The predicted total loss + makespan gained is equal to the
theoretical best makespan gain (if we had an instantaneous
scheduler) for the Survey Remote Sensing Sol Type.

Figure 11

(a) Many sol types are not fully serial. In the Long Drive Sol Type,
activities run parallel.

(b) In the Workspace Sol Type, a preheat prevents even the optimal
scheduler (Tsc = 0) from scheduling the next activity earlier.

(c) In the Medium Drive Sol Type, the Medium Drive has an exe-
cution time constraint that prevents it from being scheduled earlier.

Figure 12: Three issues with predicting loss



Model for Activity Execution Durations
To simulate execution we derive a model for actual execu-
tion duration of an activity given a conservative scheduling
model activity duration. We use predicted and actual dura-
tions from the MSL Submaster data (Gaines et al. 2016) to
generate such a model. First, each of the actual execution du-
rations provided are scaled by dividing by the corresponding
predicted execution durations. We use a linear regression on
the scaled data values to derive a mean and standard devi-
ation presuming the ratio of predicted to actual execution
times is normally distributed. The value on the regression
line for the given conservative duration is used as the mean.
A scaled prediction of the actual duration is generated from
a normal distribution using this mean and the standard devia-
tion of the scaled durations. This value is then scaled back by
multiplying by the given conservative duration. Empirically
this model indicates that on average activities will complete
32 percent early.

(a) The trend represents the actual duration compared to its
predicted durations. We use the actual durations derived as
the mean for a normal distribution. We then randomly choose
an actual duration from that distribution.

(b) The trend is based on the means derived from the regres-
sion of the scaled actual durations.

Figure 13: Mars Science Laboratory Curiosity Rover execu-
tion data used to develop a model activity execution shortfall
compared to their predicted durations (Gaines et al. 2016).
We use that data for the shortfalls in our schedules.
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