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Abstract 

Hyspiri is evaluating a X-band Direct Broadcast 
(DB) capability that would enable data to be delivered to 
ground stations virtually as it is acquired.  However the 
HyspIRI VSWIR and TIR instruments will produce 1 
Gbps data while the DB capability is 15 M bps for a 
~60x oversubscription.  In order to address this data 
volume mismatch a DB concept has been developed that 
determines which data to downlink based on both: 1. The 
type of surface the spacecraft is overflying and 2. 
Onboard processing of the data to detect events.  For 
example when the spacecraft is overflying polar regions 
it might downlink a snow/ice product.  Additionally the 
onboard software will search for thermal signatures 
indicative of a volcanic event or wild fire and downlink 
summary information (extent, spectra) when detected.. 

1 Introduction 

Future space missions will produce immense 
amounts of data.  A single image from the HiRise 
camera on the Mars Reconaissance Orbitter (MRO) 
spacecraft is 16.4 Gigabits (uncompressed).  The future 
HyspIRI mission under study is proposed to have two 
instruments - the HyspIRI thermal infrared imager (TIR) 
instrument producing 1.2 million pixels per second with 
8 spectral bands at 4 and 7.5-12 microns per pixel and 
the HyspIRI visible shortwave infrared (VSWIR) 
producing 300 thousand pixels per second with 220 
spectral bands per pixel in the 0.4-2.5 micron range.  
Keeping up with these data rates requires efficient 
algorithms, streamlined data flows and careful systems 
engineering.  HyspIRI is also considering using Direct 
Broadcast technology to rapidly deliver this data to 
application users on the ground.  However, in order to 
leverage the existing DB network, this downlink path is 
limited to approximately 15 million bits per second.  
The question is – which data to downlink when, in order 
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to maximize the utility of the DB system? 
We are studying the desired products and spectral 

bands required by volcanic, wildfire, flood and 
ocean/coastal, snow/ice, dust, and vegetation/ecosystem 
applications to assess onboard processing and band 
selection strategies for the mission.  Three baselines for 
study are being investigated:  

 
1. downlink of the MODIS bands over all target 

areas;  
2. downlink of specially selected subsets of the bands 

based on overflight targets; and  
3. onboard development of custom products based on 

overflight masks. 
 

Volcanic applications include thermal detection and 
signature analysis as well as plume tracking applications.  
These volcanic techniques enable spatial subsampling to 
the areas of interest for dramatic downlink reduction.  
Onboard (EO-1) detection and ground-based (MODIS, 
AVHRR) detection algorithms are well understood.  
Wildfire applications include active fire mapping based 
on thermal signature (onboard EO-1, ground-based 
MODIS) as well as development of burned area products 
(significant heritage with Landsat ETM+, prior work 
with EO-1/ALI).  A significant range of other 
applications with strong heritage in MODIS, AVHRR, 
GOES, and other rapid data delivery sensors exist in a 
range of disciplines.  Ocean/coastal applications include 
products such as such as sea surface temperature and sea 
color applications such as harmful algal bloom tracking 
and Chl indices.  Snow/Ice applications include 
trafficability and commerce route safety products as well 
as science cryosphere uses.  Dust applications include 
aviation hazard assessment and environmental 
applications.  Vegetation applications include plant 
stress, fire hazard, and disease vector applications based 
on measures of plan health and species identification. 

 These applications were derived from existing 
DB applications, discussions with the HyspIRI working 
groups, and others working in the relevant areas.  
Processing algorithm under consideration were assessed 



for adaptability and heritage 
from relevant prior sensors 
including MODIS, AVHRR, 
ASTER, Hyperion and 
others.  These products are 
being refined with science 
and applications inputs and 
tested on current datasets 
and missions (such as EO-1) 
as well as being tested on 
relevant flight processing 
hardware and software 
configurations.  

 In the remainder 
of this paper we describe the 
operations concept being 
developed for the direct 
broadcast option for 
HyspIRI, outline 
applications for this concept, 
and ongoing benchmarking 
on potential flight hardware. 

. 

2 A Direct Broadcast 
Operations Concept for HyspIRI 

The HyspIRI DB operations concept key drivers are: 
 
1. Low or no sustaining operations costs 
2. Low or no system development costs 
3. Maximize utility of returned data 
4. Graceful degradation/ high reliability of 

operations concept 
5. Low risk, high heritage 
 
With these drivers in mind, we have developed a 

highly automated operations flow for the DB component 
on HyspIRI consisting of the following steps.  In order 
to reduce cost and risk we have used mature software 
systems. 

 
1. Specification of geographical regions of 

interest (ROIs) by the DB applications team.  In this 
step, the applications team has a set of geographical 
regions (in essence polygons on a map of the Earth).  
For each polygon there is an algorithm and a priority.  
These polygons may also be seasonal (e.g. January to 
March of each year) and may be derived based on 
external information (e.g. reports of flooding, or rainfall, 
or the National Interagency Fire Center (NIFC) fire 
reports. 

2. The spacecraft operations team provides the 
current best projection of the orbit of the spacecraft (e.g. 
a ground track file).   

3. The spacecraft orbit is combined with the 

ROIs using knowledge of the spacecraft instrument 
swaths (150km wide for VSWIR and 600km wide for 
TIR) using the CLASP coverage planner [Knight 2009].  
This produces a timeline of overflights for each of the 8 
instrument swaths. 

4. The ASPEN [Chien et al. 2000] is then used to 
determine the top priority products/spectral bands to 
process for each timestep, respecting the product 
priorities as specified by the applications team.  ASPEN 
produces an activity plan/sequence for the onboard 
processing module. 

  
Thus the spacecraft orbit determines the type of 

terrain that will be overflown (e.g. land, ice, coastal, 
ocean, etc.).  The TIR instrument has a 600km swath 
under the spacecraft and the VSWIR a 150km wide 
swath.  In order to satisfy the high data rate from the 
instruments there are four interfaces from the instrument 
to the onboard processing.  The VSWIR data is divided 
into four across track swaths of 37.5 km each.  The TIR 
data includes four swaths matching the VSWIR swaths 
with the remaining 450km with of TIR only data divided 
into another four data paths  (see Figure 1).  Therefore 
each of the interface paths receives one 37.5km swath of 
VSWIR and TIR data and one   112.5k swath of TIR 
only data. 

  
Each of the terrain masks implies a set of requested 

modes and priorities. And is evaluated based on the eight 
swaths from the instruments.  For example, when 
overflying polar or mountainous regions, producing 
snow and ice coverage maps can provide valuable 
science data.  Additionally, the science team can adjust 



these priorities based on additional information (e.g. 
external information that a volcano is active, knowledge 
of a flooded area, an active wildfire, or a harmful algal 
bloom).  The mission planning tool accepts all of these 

requests and priorities, and determines which onboard 
processing algorithms will be active by selecting the 
highest priority requests that will fit within the onboard 
processing CPU resources, band processing limitations, 



and downlink bandwidth. 
 The automated planning model tracks the 

limited spacecraft resources that in this case include: # of 
bands processed, onboard CPU (each algorithms places a 
different load on the CPU), and downlink bandwidth.  
These operations constraints represent the onboard 
restrictions that: 1) only a limited number of bands of the 
instrument data can be processed onboard (for example, 
on EO-1 we can only process 12 of the bands per image), 
2) that we have limited CPU processing capability 
onboard and this may limit the products we can generate 
at any one time, and 3) that the downlink transmission 
rate is limited to 15 Megabits per second.  Accounting 
for these operations constraints, the mission planning 
system chooses the highest priority products that can be 
produced. Figure 3 shows the instrument processing 
swaths and Figure 4 shows a sample mission plan 
generated based on CPU and downlink resources. 

 Onboard processing algorithms can use a wide 
range of techniques.  Past algorithms have consisted of: 
expert derived decision tree classifiers, machine learned 
classifiers such as Support Vector Machines (SVM) 
classifiers and regressions, classification and regression 
trees (CART), Bayesian maximum likelihood classifiers, 
spectral angle mappers, and direct implementations of 
spectral band indices and science products.   

For example, SVM’s have been applied to learn to 
classify EO-1 Hyperion images into Snow, Water, Ice, 
Land, and Cloud pixels [Castano et al. 2005]. 

CART techniques [Breiman et al. 1984] have been 
applied to a wide range of classification problems 

including remote sensing [Castano et al. 2006].  CART 
techniques recursively split the decision classification or 
estimation problem until a stopping criterion of goodness 
of fit is met.  Maximum likelihood classifiers have also 
been applied to classification of remote sensing imagery 
(e.g., [Goodenough et al. 2003]).  Given a presumed 
parametric probability distribution, these techniques find 
the parameters that maximize the likelihood of the 
observed training set.  Spectral angle mapping (SAM) is 
an instance-based classification technique.  If one 
considers each pixel as an n dimensional vector if the 
remote sensing imagery has n spectral measurements, 
SAM selects as the matched class the one whose 
prototype spectral vector is closest in angular distance to 
the vector of the pixel in question. 

In other cases the science disciplines have already 
developed science products (e.g. measures) to track a 
physical phenomenon.  In oceanography, Flourescent 
Line Height and Maximum Chlorophyll Index are 
indicative of biological activity such as algal bloom.  In 
vegetation and ecosystem monitoring Normalized 
Difference Vegetation Index and Photochemical 
Reflectance Index (PRI) are indicative of plant health. 

3 Rapid Response Science and 
Applications 

In this section we describe in greater detail a number of 
applications for rapid delivery data.    



Fire Products   
The HyspIRI instruments are useful in producing a variety 
of fire products to support as active fire mapping and burn 
severity assessment for burned area reclamation.  
MODIS rapid response imagery has demonstrated this 
utility in providing fire location information that can be 
used by relevant agencies to allocate scarce assets.  For 
example, the RapidFire active fire mapping project of the 
MODIS land rapid response team [Justice et al. 2002] 
provides data to a number of organizations including the 
National Interagency Fire Center (NIFC).  Other 
products and data can be used provide broad coverage 
burn assessments such as difference normalized burn 
ratios (NBR) and Composite Burn Index (DCI) that assess 
burn damage to vegetation and the environment for 
reclamation planning.  Such measures allow agencies to 
quickly assess the damage in an area and implement 
reclamation plans in a matter of days. 
Operationally, active fire mapping algorithms would 
operate over large amounts of the Earth’s surface (likely 
all land masses).  These algorithms would use a small 
number of TIR channels (likely 3) to estimate the surface 
temperature and signal pixels that are likely to be hot.  
Performing active fire mapping onboard represents a 
tremendous data reduction because only an extremely 
small proportion of the landmass is burning at any one 
time, therefore the data volume required to downlink 
active fire data is tiny. 

Burn scar data is likely to be requested based on external 
fire information.  This could occur manually (e.g. an 
application user requests the data for a burned area 
explicitly) or automatically by requesting the data for all 
burned areas as reported by other agencies and 
electronically compiles (e.g., such as the NIFC site).  
Again, the total area that has recently burnt (e.g. the past 
fire season) while a large area is not large relative to the 
total landmass.  Therefore request-based burn scar 
information represents a huge downlink savings 
compared to bringing down all of the data. 

Volcano Applications  
The HyspIRI TIR and VSWIR instruments have great 
applicability to volcano monitoring.  The HyspIRI 
instruments can be used to measure the thermal 
signature of volcanic sources.  While significant 
prior work has tracked thermal signatures of volcanic 
activity from space [Harris et al. 2000, Wright et al. 
2003, 2004], HyspIRI offers more sensitive detection 
capability.  The EO-1 Hyperion instrument has been 
used operationally with onboard software to track 
volcanic thermal activity [Davies et al. 2005] and 
automatically downlink full spectra of thermally 
active pixels.  HyspIRI could use a similar capability 
to detect and summarize volcanic activity enabling the 
spacecraft to pick out the few key pixels of data out of 
literally billions of non-relevant pixels.  Such an 
algorithm would use several TIR bands to estimate 



surface temperature and flag pixels likely to be hot 
due to volcanic activity.  When such pixels are 
detected a notification with TIR and selected VSWIR 
data would be downlinked for each flagged pixel. 
 Onboard processing of volcanic data represents a huge 
win from both a data volume and timeliness perspective.  
Because volcanic eruptions represent a small number of 
pixels (even a major eruption might only cover a few 
hundred pixels), localization of the volcanic activity 
means analysis can focus on a relatively small fraction of 
pixels).  Volcanic activity also represents an extreme 
example of timeliness.  Given the large number of people 
living close to volcanos, accurate and timely information 
is critical to informed assessment of current and future 
risk to both lives and property.   

Other Applications  
 
Snow and Ice Products 
  The Hyspiri instruments (both VSWIR and 
TIR) will be useful for studying and monitoring Snow, 
Water, Ice, and Land (SWIL) phenomena.  SWIL 
classification is important for monitoring climate change, 

assessing environmental sustainability, and regulating 
both land-based and sea traffic.  Ice and snow products 
have been developed on the ground using a range of 
instruments including MODIS [MODIS Snow Ice] and 
onboard spacecraft using Hyperion [Doggett et al. 2006].  
Because of the impact of snow and ice on commercial 
activities rapid delivery of this remote sensed data is 
important.   
 
Flooding 
 HyspIRI instruments are useful for tracking 
surface water extent with applications to flooding and 
disaster response.  Because flooding is the greatest 
natural hazard (both in terms of lives lost and property 
damage), any real-time capability to assist in 
humanitarian efforts is of tremendous importance.  Both 
the Dartmouth Flood Observatory [Brakenridge and 
Anderson 2005] and the University of Maryland [Carroll 
et al. 2009] have used MODIS to provide near real-time 
flood mapping.  EO-1 Hyperion has also been 
employed to detect floods using onboard software that 
enables rapid alert generation and retasking [Ip et al. 



2006].  Because of the tremendous human and 
economic impact of flooding, rapid delivery of flooding 
data is critical.   
 
Dust Products 
 HyspIRI instruments can be used to track 
large-scale dust storms using both color (VSWIR) and 
thermal (TIR) information.  These dust storms are 
hundreds of kilometers in extent and threaten human 
health and aircraft safety as well as having significant 
environmental impacts.  Because of these major 
impacts and the dynamic nature of dust storms rapid 
delivery of relevant satellite data is key. 
 
Vegetation 
 The HyspIRI instruments can be used to 
measure plant stress [Perrry and Roberts 2008] as well as 
identify plant species.  Monitoring vegetation pigment 
levels with VSWIR in the 500-1200 nm range can 
identify plant stress to assist in predicting crop failures – 
a key rapid response application.  VSWIR can also 
identify plant species with rapid response applications 
for disease risk estimation.  Thermal plant stress as 
measured by the TIR instrument can also be used to 
estimate evapotranspiration (ET) [Anderson & Kustas 
2008], a key indicator in predicting crop failure.  
Timely products from MODIS are currently being used 
by the USDA to assess crop health and yield (e.g., as 
affected by drought, fires, volcanic eruptions, or storms).  
For example, the U.S. Department of Agriculture’s 
Foreign Agricultural Service (FAS) is using MODIS data 
to estimate predicted crop yields.  This data enables 
FAS to make accurate crop-yield estimations, which 
ultimately affect decisions impacting U.S. agriculture, 
trade policy and food aid.  All of the above applications 
require timely delivery of data for decision making based 
on crop and disease models. 
 
Ocean/Coastal 
 The HyspIRI VSWIR and TIR instruments are 
useful for studying a wide range of oceanographic 
applications, many of which significantly benefit from 
rapid data delivery.  Ocean color measurements using 
VSWIR can be used to detect and track harmful algal 
blooms (HAB’s) and other biological events, and 
sediments that pose a threat to both exposed people and 
wildlife.  Because of these hazards, rapid data delivery 
is of great value.  Ocean/coastal applications present 
unique challenges because of the subtlety of the ocean 
signals.  Image corrections (e.g., atmospheric 
correction) are critical and present tremendous 
challenges for onboard processing. 

4 Benchmarking Onboard Algorithms in 
Flight Testbeds 

As the HyspIRI mission is still in concept development, 
several hardware options are being evaluated for onboard 
procesing for the Direct Broadcast component.  These 
platforms in clued the Space Cube [Flatley 2008], Isaac 
and follow on packages [He 2008], both based on the 
Vertex chipset, and the Opera [Opera 2008] package 
based on the Tilera chipset.  All of these options provide 
significantly more computing power than conventional 
CPU’s which is needed due to the very high data rates 
from the HyspIRI TIR and VSWIR instruments. 

5 Discussion, Related Work, Conclusions 

A number of prior missions have performed some aspect 
of onboard data processing to manage downlink.  The 
Autonomous Sciencecraft on EO-1 [Chien et al. 2005] 
produced summary products for Volcano, Cryosphere, 
and Flooding science events.  The Mars Exploration 
Rovers WATCH system processed images to summarize 
and detect dust devils and clouds in rover imagery 
[Castano et al. 200X].  The Mars Odyssey mission 
averages down THEMIS data to manage downlink 
product size [Odyssey 2007].   
   We have discussed a concept under development for 
Direct Broadcast for the HyspIRI mission.  Because the 
HyspIRI TIR and VSWIR produce 1 Gbits per second of 
data and the heritage X band direct broadcast link can 
only downlink 15 M bits per second, onboard data 
reduction is required.  We have presented a hybrid 
approach that uses scientist specified regions of interest, 
onboard processing and event detection, and product 
generation all as methods to reduce the amount of data for 
downlink.  This approach is currently under refinement 
and evaluation using the EO-1 mission as a testbed and 
simulations.  Prototype algorithms are also being 
benchmarked on flight option hardware. 
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