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Abstract—Instrumented ocean moorings are the gold standard for gath-
ering in situ measurements at a fixed location in the ocean. Because they
require installation by a ship and must be secured to the seafloor, moorings
are expensive, logistically difficult to deploy and maintain, and are con-
strained to one location once installed. To circumvent these issues, previous
studies have attempted to utilize autonomous underwater gliders as plat-
forms for virtual moorings, but these attempts have yielded comparatively
large station-keeping errors due to the difficulty of glider control in dynamic
ocean currents. We implemented an adaptive planner using a vehicle motion
model and a predictive ocean circulation model to improve station-keeping
performance by incorporating anticipated currents into glider control. We
demonstrate improved station-keeping performance using our planner in
both simulation and in-field deployment results, and report smaller av-
erage station-keeping error than the Monterey Bay Aquarium Research
Institute’s M1 mooring. Finally, we utilize our simulation framework to
conduct a feasibility study on using an array of autonomous gliders as
virtual moorings to conduct critical calibration and validation (CalVal)
for the upcoming National Aeronautics and Space Administration, Surface
Water and Ocean Topography (SWOT) Mission, instead of using perma-
nent moorings. We show that this approach carries several advantages and
has potential to meet the SWOT CalVal objectives.

Index Terms—Adaptive control, autonomous systems, oceanographic
techniques, predictive control, predictive models, unmanned underwater
vehicles.

I. INTRODUCTION

M ANY of the critical science questions facing the oceanographic
community require sustained spatial sampling to not only mea-
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sure the mean state of the system but also high-frequency changes that
can have disproportionately large effects on the physics, biology, and
chemistry. This is difficult and cost prohibitive using traditional sam-
pling approaches based on ships or moorings. Ships cannot maintain
a sustained spatial presence at sea, and as moorings can maintain an
excellent sustained temporal presence in the sea, they are expensive.
Fortunately, autonomous underwater vehicles (AUVs) have matured
and are becoming reliable tools to collect data for sustained periods of
time, filling a critical gap in sampling the ocean [1], [2]. These vehicles
have many advantages as they are easier/less expensive to deploy and
more versatile once deployed. For example, multiple vehicles can be
deployed at a single location or directed to conduct spatial surveys. The
challenge is to develop a scalable approach that allows for sustained
deployment of multiple vehicles given the significant shoreside human
effort required to pilot the fleet of vehicles in the field. For large fleets
of gliders operated during large field campaigns, this often requires
a dedicated team of AUV “pilots” with the number of personal tied
directly to the number of vehicles deployed [3]. For campaigns that
utilize many vehicles (tens and even more), the availability and cost
of the personnel become the bottleneck and there is a critical need
to develop automation and tools to assist in the managing fleets of
vehicles.

To overcome this hurdle, the community has focused on devel-
oping coupled vehicle and numerical model networks that provide
a potentially scalable path forward by allowing for automated com-
mand/control [4]–[6]. Developing scalable approaches will be in-
creasingly important given several large planned field efforts. For
example, Surface Water and Ocean Topography (SWOT) is a future
NASA/CNES mission set to launch in 2021, aimed at better un-
derstanding earth’s oceans and its terrestrial surface waters. SWOT
will conduct a global survey of earth’s surface water with unprece-
dented resolution, allowing scientists to better understand subjects
from water supply to oceanic circulation to climate change [7]. A
vital aspect of the mission involves calibrating and validating the sen-
sors aboard the satellite using in situ measurements acquired by as-
sets in the ocean (CalVal). A conventional approach would require
deploying instrumented moorings at specific locations in the overflight
path of the satellite, but physical moorings are expensive to deploy and
maintain. SWOT’s CalVal requirement specified on wave number spec-
tra imposes significant difficulty for an ocean in situ observing system.
Due to the quickly changing ocean surface topography (timescale of
several hours), approximately 20 measuring locations are required to
capture the synoptic field to serve as ground truth to satellite measure-
ment taken within tens of seconds [8]. An array of 20 instrumented
moorings would be very expensive in the standard of satellite CalVal.
As an alternative approach, a dynamically controlled marine vehicle
can act as a “virtual mooring” by attempting to station keep in one

0364-9059 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.kiss.caltech.edu/new_website/techdev/seafloor/seafloor.html
http://www.kiss.caltech.edu/new_website/techdev/seafloor/seafloor.html
mailto:evan.clark@jpl.nasa.gov
mailto:steve.a.chien@jpl.nasa.gov
mailto:faiz.mirza@global advance �reakcnt @ne penalty -@M jpl.nasa.gov
mailto:faiz.mirza@global advance �reakcnt @ne penalty -@M jpl.nasa.gov
mailto:andrew.branch@jpl.nasa.gov
mailto:jfarrara@remotesensingsolutions.com
mailto:jfarrara@remotesensingsolutions.com
mailto:ychao@remotesensingsolutions.com
mailto:fratantoniglobal advance �reakcnt @ne penalty -@M @remotesensingsolutions.com
mailto:fratantoniglobal advance �reakcnt @ne penalty -@M @remotesensingsolutions.com
mailto:dkaragon@marine.rutgers.edu
mailto:oscar@marine.rutgers.edu
mailto:oscar@marine.rutgers.edu
mailto:andrewt@caltech.edu
mailto:marf@caltech.edu


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF OCEANIC ENGINEERING

location despite the presence of ocean currents [9], and an array of
such vehicles could cover the 20 locations required by SWOT.

There are a number of vehicles to consider for the task of sta-
tion keeping with varying costs and capabilities. These range from
inexpensive vertically profiling floats with no horizontal control and
deployment times on the order of years [6] to more expensive short-
range AUVs with significant control authority—approximately 2.5 m/s
horizontally—with deployment times on the order of hours [10] to
ships carrying sensor packages lowered on cables. Each platform has
its advantages and disadvantages, and ultimately, the best choice of as-
set type(s) to use will be determined by the scientific question at hand.
Underwater autonomous gliders are a promising choice for virtual
moorings since they are inexpensive compared to permanent instru-
mented moorings, capable of being deployed for months at a time, and
can travel horizontally at approximately 0.25 m/s.

To enable the virtual mooring array concept for calibrating the
SWOT mission, our approach uses a predictive model of ocean circu-
lation and a greedy search algorithm to simulate each vehicle’s future
motion and select the control action that results in the best station-
keeping performance in the presence of dynamic ocean currents. The
remainder of this paper is organized as follows: First, we present results
of a station-keeping field deployment conducted off the California coast
near Monterey Bay using the station-keeping planner as well as baseline
(no planner) control. Second, we develop the conceptual framework for
conducting simulated station-keeping deployments, compare and con-
trast the simulation results to results from the field, and use simulations
to study the effect of planning model accuracy on station-keeping per-
formance. Third, we use simulations to study the viability of our virtual
mooring approach as applied to the SWOT CalVal requirements: sta-
tion keeping much further off the coast at the location of the SWOT
overflight path and for significantly longer durations—and use these
results to generate recommendations for SWOT mission planners. Fi-
nally, we discuss the next steps needed for further improvement and
validation of our method.

A. Related Work

Many literature works exist relating to general path planning of
underactuated marine vehicles. Thompson et al. [11] use the Regional
Ocean Modeling System (ROMS) model with wavefront propagation
to control gliders in the presence of currents. Rao and Williams [12]
employ rapidly exploring random trees to plan glider paths over long
distances. Pereira et al. [13] use path planning to prevent gliders from
surfacing in dangerous locations. Dahl et al. [14] utilize a number
of planning algorithms to optimize float coverage across all oceans.
Alvarez et al. [5] use a genetic algorithm with no ocean model to control
a network of floats and gliders. Leonard et al. [4] use coordinated
feedback control laws to implement cooperative sampling patterns for
a heterogeneous fleet of marine assets. Jones and Hollinger [15] use
ROMS for planning energy efficient trajectories for an autonomous
boat in the presence of uncertainty and limited data.

Some works have been done regarding station keeping with under-
actuated marine vehicles. Hodges and Fratantoni [9] and Rudnick et al.
[16] both use gliders as virtual moorings, but they do not use an ocean
circulation model to anticipate and counteract ocean currents before
each dive although they do generate control sequences. Hodges and
Fratantoni [9] achieve an average distance from the mooring location
of 2.0 km and Rudnick et al. [16] achieve an average distance of 3.6
and 1.8 km in two separate experiments. Troesch et al. [6] present
an approach for station keeping with vertically profiling floats using
ROMS by taking advantage of different current directions at different

depths, and investigate this concept in terms of the effect of planning
model accuracy and batch versus continuous planning.

The concept of using underwater gliders as virtual moorings for
SWOT CalVal has been investigated by Wang et al. [8] who conducted
a study characterizing CalVal performance using both traditional and
virtual moorings in simulation. The simulation found that only tradi-
tional moorings are suitable to meet the SWOT mission requirements
although virtual moorings implemented with gliders come close. How-
ever, the gliders in this simulation did not actively compensate for con-
trol disturbances due to currents—they only attempted to dive straight
back toward the target and changed their dive path angle from 60° to
30° when the glider-to-target distance crossed a 6-km threshold—so
it is likely that their station-keeping performance could be improved
with more sophisticated control schemes. Although the simulated glid-
ers did not meet the standards set by the SWOT CalVal requirements,
Wang et al. [8] acknowledged that there was room for improvement in
the glider control scheme and recommended that the virtual mooring
concept merits further study and development.

B. Vehicles

Our approach employs two types of vehicles, the Kongsberg
seaglider [17] and the Teledyne Webb Research Slocum glider [18].
Both vehicles are similar in function and operate using the same loco-
motion principle. Each vehicle is equipped with a variable buoyancy
engine and wings. Changing the buoyancy of the vehicle negative or
positive allows the vehicle to glide up or down in the water column us-
ing very little energy, resulting in a “sawtooth” trajectory. This energy
efficiency allows the vehicle to operate for months at a time and travel
thousands of kilometers on a single battery charge. The Slocum glider
and seaglider have nominal through-water speeds of 0.35 and 0.25 m/s
while diving, respectively. The Slocum glider may also optionally be
equipped with a rear-mounted propeller (thruster) to enable horizon-
tal flight or supplement the glider’s velocity through the water during
buoyancy-driven dives.

The station-keeping planner algorithm requires a vehicle motion
model to compute the trajectory of the vehicle through the water during
a simulation. We used a simple geometric vehicle motion model that
assumes a fixed through-water speed for both the seaglider and the
Slocum glider. The vehicle motion model for the seaglider was given
by

sx = 0.25 cos (α) (1)

sy = 0.25 sin (α) (2)

where α is the dive path angle, and sx and sy are the horizontal and ver-
tical components of the through-water speed of the glider, respectively,
in meters per second. The Slocum glider may optionally spin a rear-
mounted thruster to increase its through-water speed, so the vehicle
motion model for the Slocum glider was modified to

sx (pT ) = (0.35 + se (pT )) cos (α) (3)

sy (pT ) = (0.35 + se (pT )) sin (α) (4)

se (pT ) = 0.0951pT (5)

where se is the extra through-water speed contributed to the Slocum
glider by the thruster, and pT is the power set point of the thruster, in
watts. The value of 0.0951 in (5) was determined empirically through
field testing by the Teledyne Webb Research [19].

While more sophisticated vehicle motion models, such as in [20]–
[22], could be employed to simulate the vehicle dynamics, for purposes
of our planner, we choose to simulate the vehicle as a point object
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and treat all dive trajectories as idealized geometry for simplicity. It is
likely that a more accurate vehicle motion model could further improve
station-keeping performance, but as a first pass, the planner only needs
to better estimate vehicle trajectories in the presence of currents than
the naive baseline approach without the planner. Using a more accurate
vehicle motion model is a promising avenue for future improvement to
the planner.

The Spray glider is a similar type of buoyancy-driven glider [23]. We
did not include it in our study because we did not have a Spray glider
available for physical deployments and it has very similar performance
specifications on paper to the seaglider, so we did not feel that it would
add significant value to the simulation results.

C. Ocean Circulation Models

Our approach requires an ocean circulation model with predicted
currents at sufficient spatial and temporal resolutions (on the order
of kilometers in the horizontal direction, meters in the vertical direc-
tion, and hours in the time dimension) and a sufficient timespan for
the duration of the mission. Some widely used ocean models that fit
this criteria include the ROMS [24], the Harvard Ocean Prediction
System (HOPS) [25], the Princeton Ocean Model (POM) [26], the
Hybrid Coordinate Ocean Model (HYCOM) [27], the Massachusetts
Institute of Technology General Ocean Circulation Model (MITgcm)
[28], and the Nucleus for European Modelling Ocean Engine [29]. We
used the ROMS. Within Monterey Bay, the horizontal resolution of the
ROMS model we used was 300 m × 300 m grid spacing, and outside
it was 3 km × 3 km. The depth resolution for the 300-m model was
24 depths ranging from 0 to 1200 m with nonuniform spacing. The
depth resolution for the 3-km model was 14 depths ranging from 0 to
1000 m with non uniform spacing. Atmospheric forcing for the ROMS
model is derived from hourly operational forecasts of the NCEP 5-km
North American Model [30]. Tidal forcing is derived from the TPXO.6
global barotropic tidal model [31]. Other inputs are archiving, valida-
tion and interpretation of satellite oceanographic (AVISO) sea surface
height data, advanced very high resolution radiometer (AVHRR) and
moderate resolution imaging spectroradiometer (MODIS) sea surface
temperature, high frequency (HF) radar surface current data, and in-
strumented measurements from the Monterey Bay Aquarium Research
Institute (MBARI) M1 mooring and ships. Every day by 1200 coor-
dinated universal time (UTC), ROMS produces a two-day forecast of
ocean conditions using a nowcast at 0300 UTC incorporating the latest
data as its initial state. Each forecast consists of 48 time slices at 1-h
intervals. For purposes of our simulations lasting longer than one day,
we use the prediction given by the most recent ROMS forecast. More
information about the ROMS model can be found in [32].

D. Station-Keeping Algorithm

Present approaches to station keeping with gliders either do not take
control disturbances due to ocean currents into account (effectively
assuming that there are zero ocean currents) or use an estimate of
ocean currents built up from the error between the vehicle’s expected
and actual surfacing locations on recent previous dives. Our station-
keeping algorithm uses a predictive model of ocean currents and a
vehicle motion model to anticipate the control disturbances that will be
observed by a glider on its next dive, and then select a control scheme
that will compensate for those disturbances during the dive. It should
be noted that to improve station-keeping performance, the predictive
ocean current model and the vehicle motion model do not have to be
perfect, they only need to enable the planner to better estimate vehicle

Fig. 1. Visualization of dive types available to each vehicle. For the deploy-
ments and simulations discussed in this paper, seagliders may perform V dives
and helix dives and Slocum gliders may perform V dives and box helix dives.
Controllable parameters for V dive are dive path angle, heading, and depth.
Controllable parameters for helix dive are dive path angle, depth, and helix
radius. Controllable parameters for box helix dive are dive path angle, depth,
box center and side length.

trajectories in the presence of currents than the (implicit) assumptions
of the baseline approach.

The station-keeping planner requires a vehicle motion model, a pre-
dictive model of ocean circulation, and a station-keeping target location
as inputs. The goal is to minimize the average station-keeping error,
where error is defined as the distance between the glider surfacing
position after each dive and the target station-keeping location.

We employ a continuous, greedy planning algorithm to generate the
required control sequences for the glider. At each surfacing, the glider
may pick from a variety of dive types to execute next, a “V dive,” a
“helix dive,” or a “box helix dive,” where a dive is defined as the set of
control actions between two surfacings, i.e., both descent and ascent
through the water. The various dive types are detailed in Fig. 1 and each
is defined by a number of parameters, including dive heading. Gener-
ally speaking, the V dive is best for moving quickly back to the target
location when far away, since it covers larger horizontal distances, and
the helix and box helix dive are better for staying tight around the target
when the currents are weak. Additionally shorter (in time) dives may as-
sist station-keeping performance because they allow for a faster control
feedback cycle in terms of opportunity to recommand the vehicle back
toward the station-keeping target. For the purposes of this paper, only
seagliders may use the helix dive and only Slocum gliders may use the
box helix dive for firmware reasons. Optionally, Slocum gliders may
also spin a thruster mounted at the rear of the vehicle at variety of speeds
that each add a constant offset to the vehicle’s through-water velocity.
For each dive, the station-keeping planner discretizes a search angle
centered around the bearing of the station-keeping target waypoint into
N discrete headings. Then, it simulates every possible combinatorial set
of dive parameters for dives using these headings using the vehicle mo-
tion model and the predictive ocean circulation model. The simulation
is conducted by applying the selected dive parameters to the vehicle
motion model to compute the vehicle velocity vector. At specified time
intervals, the currents affecting the glider are updated based on the pre-
dictive ocean model by linearly interpolating the current velocity vector
based on the glider latitude, longitude, depth, and time in the simula-
tion. This velocity vector is added to the velocity vector computed from
the vehicle motion model, and the combined vector is used to compute
the location of the glider at the next time step. This is repeated until the
glider completes its dive by surfacing. The algorithm then selects
the dive parameter combination that results in surfacing closest to
the station-keeping target location. Finally, the planner sends the dive
command with the best parameters to the glider, which executes the
command in the ocean. A visualization of the algorithm is shown
in Fig. 2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF OCEANIC ENGINEERING

Fig. 2. Visualization of the adaptive station-keeping algorithm in the presence
of dynamic ocean currents. Before each dive, the planner simulates the trajectory
for the next dive using the vehicle motion model and the predictive ocean
circulation model. The dive parameters are chosen that results in the simulated
dive that surfaces closest to the station-keeping target waypoint, then sent to the
vehicle to be executed in the ocean.

Fig. 3. Data flow timeline for one surfacing of the glider. The planner server
may be run on a dedicated computer or on the existing infrastructure that
processes incoming glider data during a normal glider deployment, in which
case the planner workstation and glider workstation are the same computer.

The station-keeping algorithm is run off-board the vehicle, on a shore
(or ship) based station-keeping planner server, which may be imple-
mented with a standard Internet-connected laptop. The predictive ocean
circulation model, vehicle motion model, and planner software are
stored on the planner server. Communication with the vehicle is estab-
lished via Iridium satellite link when the vehicle surfaces. At each sur-
facing, the planner receives the current GPS location of the glider, com-
putes the next dive command based on this new location and the state of
the predictive ocean current model, then sends the next dive command
back to the glider. All of this occurs on one surfacing, allowing for a
closed-loop control. The planner conservatively requires 15 s to gener-
ate a plan from when the glider first connects to the shore-based control
workstation, which includes retrieving the vehicle location and loading
the required model data. The planner workstation does these computa-
tions in parallel while the glider is sending back its other science data, so
the only time cost incurred by the glider is to downlink the plan, which
takes about 1 s (see Fig. 3). The glider is nominally on the surface for
approximately 5 min total, depending on the amount of other science
data it is sending to shore and the quality of the satellite data link, thus

Fig. 4. Map of operations area for 2017 deployment.

incorporation of the planner does not add significant time spent at the
surface.

The station-keeping algorithm is greedy and only looks one dive
ahead. Although it would be easy to extend the planner to look more
than one dive ahead, we found that doing so does not significantly im-
prove performance because the planner has a chance to revise the plan
at each surfacing. The latest plan will always be best for the next dive
because the most information is available, so any plans made further
in the past get overwritten. This is analogous to if you were making a
decision to carry an umbrella due to possible rain today given today’s
weather forecast versus a three-day old weather forecast for today. You
would always listen to today’s forecast because it incorporates the latest
information.

During (nonsimulated) deployments, temperature, salinity, and
depth-averaged current velocity data measured by the vehicle’s sen-
sors are assimilated back into the predictive current model inputs to
improve future predictions by providing in situ forcing. In our case,
because ROMS forecasts are only produced once a day, in practice,
this means that the feedback does not show up for the planner until the
next forecast is published the following day. Such feedback is not as-
similated during simulated deployments because those run faster than
real time and it would be impractical to recompute the ROMS model to
incorporate feedback, and also it is unclear what such feedback would
mean in the context of simulated ocean environments.

II. STATION-KEEPING DEPLOYMENT

To test the station-keeping algorithm on real vehicles in an ocean
environment, we conducted a station-keeping deployment from June
23rd to July 24th, 2017 near the M1 mooring operated by the MBARI
(36.75° N, 122.03° W). The deployment location is shown in Fig. 4.
We utilized two types of vehicles, the Slocum glider and the Kongs-
berg seaglider, and conducted station-keeping experiments using both
planner control and baseline control (without the planner). The Slocum
glider did not use its thruster for this experiment. The dive depth was
fixed at 500 m for all experiments, because this is likely what would be
used for a future glider-based SWOT virtual mooring CalVal campaign.
The depth of 500 m was chosen as a balance between measuring as
much stratified ocean as possible (to reduce error in estimating dynamic
sea surface height) while also maximizing the profiling rate (to reduce
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Fig. 5. M1 ADCP measured current speed at 15-m depth for the duration of
the 2017 glider station-keeping deployment. Dotted and dashed lines show the
timeline of the type of control used by each vehicle (planner or baseline control).

temporal smearing). The planner was allowed to select the best dive
type (V dive or helix dive for seaglider and V dive or box helix dive
for Slocum glider), dive path angle and heading for V dives, and dive
path angle for helix dives and box helix dives, centered at the current
location. Helix dives had a fixed angular turn rate set in firmware to
1 deg/s, causing approximately 8-m radius helixes nominally. Due to
a mix-up in the field, box helix dives had a fixed side length of 100 m
under planner control and 150 m under baseline control. The box sides
were oriented along the cardinal directions. Vehicle-measured temper-
ature, salinity, and depth-averaged current velocities were assimilated
(fed back) into the predictive ocean current model as part of the cycle
preparing for the next day’s forecast.

Fig. 5 shows the 15-m depth current speeds measured by the acoustic
Doppler current profiler (ADCP) mounted on the MBARI M1 mooring
for the duration of the deployment. Only 15-m depth is shown for
visual simplicity because the currents were generally fast near the
surface, so this is meant to represent an approximate upper bound
on current speed experienced by the vehicles. Over the course of the
deployment, the 15-m depth current magnitudes at M1 ranged from
0.004 to 0.366 m/s with an average magnitude of 0.150 m/s. For the
seaglider, the average magnitude was 0.159 m/s during the baseline
control phase, and 0.141 m/s during the planner control phase. For
the Slocum glider, the average magnitude was 0.212 m/s during the
baseline control phase and 0.159 m/s during the planner control phase.
The average current magnitude was well under the nominal through-
water speed of both the seaglider and Slocum during all phases of the
deployment.

Several baseline control experiments were conducted where the ve-
hicle attempted to station keep without use of the planner. In the case
of the seaglider, this meant that the vehicle performed fixed 30° V
dives aimed back toward the station-keeping waypoint with current
compensation implemented by the proprietary onboard Kalman filter
that applies current compensation control based on errors between ex-
pected and actual surfacing locations on recent previous dives. In the
case of the Slocum glider, the vehicle performed naive box helix dives
centered at the station-keeping target location. The dive path angle was
fixed to 30° in all baseline experiments.

Station-keeping experiments were also conducted using the planner
using a 300-m ROMS model. The amount that the planner can improve

Fig. 6. Surfacing locations for the seaglider and Slocum glider under planner
control during the 2017 deployment. GPS locations for the MBARI M1 mooring
are also shown. The station-keeping waypoint for each asset is co-located to a
shared origin for ease of visualization.

station-keeping performance is highly dependent on the accuracy of
the current model with respect to the real currents experienced by the
vehicle. In addition to the 15-m depth currents measured by the M1
ADCP, Fig. 5 also shows the 15-m depth currents predicted by ROMS.
The error vector magnitude e between the current measured by the M1
ADCP and the current predicted by the ROMS model at a given time t
is given by the following equation:

et =
√

(uM 1 t − uROM S t )
2 + (vM 1 t − vROM S t )

2 . (6)

Then, the root mean square (RMS) error of the ROMS 15-m depth
predicted currents with respect to the measurements made by M1 is
given by

RMSE =
√∑

t
e2

t / |t|. (7)

The RMS error between ROMS and the M1 measurements was
0.234 m/s over the course of the whole deployment. For the seaglider,
the error was 0.249 m/s over the baseline control phase and 0.218 m/s
over the planner control phase. For the Slocum, the error was 0.185 m/s
over the baseline control phase and 0.249 m/s over the planner control
phase. Although the errors of the ROMS model were relatively large
over the course of the deployment, it is important to remember that
in order for the planner to improve station-keeping performance, the
predictive current model does not need to be a perfect representation of
the true ocean state, only a better model than the one that is implicitly
used if the planner is not employed (Kalman filter based on previous
surfacing error for seagliders or zero current model for Slocums).

Fig. 6 shows the surfacing locations of the vehicles under planner
control during the deployment. The location of the M1 mooring during
the same time period is also shown. M1 is anchored to the seafloor on
a long tether, but does not stay directly above the anchor because it
drifts according to the currents until the end of its tether is reached.
The axes have been converted into meters northing and easting from
the station-keeping waypoint to co-locate the plots on the same origin,
although the vehicles did not station keep at the exact same location
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Fig. 7. Estimated probability density function for surfacing error for the
seaglider and Slocum glider under both planner and baseline control during
the 2017 deployment. The station-keeping error of the MBARI M1 mooring is
also shown.

to prevent collisions. Fig. 7 shows the estimated probability density
function of surfacing error for each vehicle under both planner and
baseline control, as well as for the M1 mooring.

The seaglider performed better under planner control than baseline
control, with a station-keeping error of 0.692 km for the period from
July 10–23 under baseline control and 0.464 km for the period from
June 25 to July 10 under planner control—a 49% reduction in station-
keeping error. To attribute this performance gain to the planner, we must
discount two other possibilities: first, that the current regime was sig-
nificantly easier during the planner control phase, and second, whether
use of the planner just opened up another dive option that was used
exclusively (and thus the same performance gain could be achieved
by just statically choosing this option if it was known ahead of time)
or planner was actually adaptively making different choices according
to the needs of the situation. Addressing the first possibility, current
speeds in the M1 area were similar during the baseline and planning
control phases, with an average magnitude of 0.159 m/s over the base-
line control phase and 0.141 m/s over the planner control phase, both
well under the glider’s through-water operating speed. Although the
average current speed was slightly slower during the planner control
phase—0.018 m/s or 12.8% slower—It is unlikely that such a small cur-
rent difference could account for the 49% reduction in station-keeping
error observed. Addressing the second possibility, Fig. 8 shows a his-
togram of the different dive parameters chosen by the seaglider planner
over the course of the planner control phase. The planner did not ex-
clusively settle on one dive option, but rather chose a variety of dives
based on the situation, likely using the helix dives when the seaglider
was close to the station-keeping target because helix dives have less
overshoot, and using V dives with progressively shallower angles, the
further it was from the target, as V dives are better at covering large
horizontal distances. Thus, as designed, the planner anticipated control
disturbances due to currents and adaptively responded to the opera-
tional situation at hand, significantly improving the station-keeping
performance of the seaglider and reducing the average station-keeping
error by 49%.

It should also be noted that the planner was able to improve station-
keeping performance even though the RMS error of the ROMS model
with respect to the M1 measured currents was relatively high, at

0.218 m/s over the seaglider planner control phase. This is a demonstra-
tion of how the ocean current model used by the planner does not need
to be perfect to improve station-keeping performance, it just needs to
be better than the (implicit) assumptions made by the baseline control
scheme.

The Slocum glider was able to station keep extremely precise under
both planner and baseline control, but actually performed better under
baseline control than planner control, with an average surfacing error
of 0.120 km for the period from July 6–10 under baseline control and
0.201 km over the period of July 10–24 under planner control, or about
67.5% worse under planner control.

There are three plausible explanations for this. The first possibil-
ity is that the current regime was easier during the baseline control
phase. However, the average current speed was actually faster during
the baseline control phase than the planner control phase, at 0.212 and
0.159 m/s, respectively, so this does not explain the discrepancy. The
second explanation is that the currents predicted by the planning model
were not representative of the true ocean state, so utilizing them for
planning did not help, or in fact hurt, station-keeping performance.
This explanation may have some merits—the ROMS predictions were
less accurate over the course of the Slocum planning phase than that
of the seaglider planning phase, with RMS errors of 0.246 and 0.218
m/s, respectively, a difference of about 11%. It is hard to know ex-
actly the extent to which the increase in planning model error could
have adversely affected station-keeping performance (although this
phenomenon is studied in simulation in Section III), but it is unlikely
that the relatively small increase in planning model error could cause
the 67.5% increase in station-keeping error. The third explanation is the
one best upheld by the evidence: the Slocum’s faster speed and the rel-
atively weak currents during the deployment (very rarely greater than
the Slocum’s through-water operational speed of 0.35 m/s) allowed
station-keeping performance to be so good that the planner could not
improve it further, and the observed results are mostly noise. Examin-
ing the frequency of dive choices in Fig. 7 supports this hypothesis: the
planner chose only to execute box helix dives and never V dives, pre-
sumably because the vehicle never moved far enough from the target to
justify a V dive. Although the planner did choose slightly different dive
angles for some of the box helix dives, this would have had relatively
little effect on the end result of the dive (it just would have taken more
or less time to complete). Thus, the planner was in essence of execut-
ing the same control scheme as followed during the baseline control
phase, so the planner contributed little to station keeping for better or
for worse, and any observed difference was mostly noise.

The M1 mooring achieved an average station-keeping error of
0.694 km from its nominal anchoring position over the period June
24 to July 10, greater than both the seaglider and the Slocum under
planner control.

The 2017 deployment successfully demonstrated usage of the
station-keeping planner on two different vehicles in a real ocean en-
vironment. The planner improved station-keeping performance on the
seaglider but not on the faster Slocum glider. It is likely that the plan-
ner helped the seaglider but not the Slocum because the planner can
only accrue noteworthy benefits to station keeping if the current regime
provides a significant but surmountable amount of antagonism to the
vehicle’s intended control. In this case, the station-keeping environment
was not challenging for the Slocum, so the Slocum could station keep
very precisely without use of the planner, and the planner could not
improve it further. Overall, both vehicles were able to achieve smaller
average station-keeping error using the planner than the MBARI M1
mooring fixed to the seafloor, and achieved better performance than the
2.0-km results achieved by Hodges and Fratantoni [9] and the 1.8 and
3.6-km results achieved by Rudnick [16] in two separate experiments.
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Fig. 8. Frequency of dive selections for the seaglider (left) and Slocum glider (right) during the planner control phase of their deployment. In the x-axis labels,
letters signify dive type (H: helix dive, V: V dive, and BH: box helix dive) and numbers signify dive path angle in degrees.

III. STATION-KEEPING SIMULATIONS

Ocean deployments are expensive and time consuming, so we de-
veloped a simulation framework to allow us to conduct virtual deploy-
ments without going into the field. The virtual deployment simulation
operates on the same principle as the planner simulation—it applies
the currents from the predictive ocean circulation model to the vehicle
motion model—except with one more layer of simulation. The planner
conducts planning on one predictive ocean circulation model (known
as the “planning model”), then the simulation is executed on a dif-
ferent ocean circulation model (known as the “nature model”). The
two different models allow us to simulate the fact that in the field the
planning model will never truly replicate the real ocean conditions, so
there will always be some disparity in what the vehicle believes it will
encounter on its next dive versus what it actually does. Furthermore,
by varying the difference between the planning model and the nature
model, we can directly study how planning model accuracy affects
station-keeping performance. To study the effect of planning model
accuracy, we generated a nature model, on which the simulation was
executed, and a set of planning models where the planner conducted
planning. Each planning model was “degraded” by a discrete amount
to create a disparity between the nature model and the planning model.
The degradation must be representative of how the planning model dif-
fers from the ocean in a real deployment, so not just any method (e.g.,
adding random noise) could be used. To degrade the planning model in
a representative way, we used the following approach: the nature model
was an archived nowcast ROMS model for a given day that integrated
the most up-to-date model predictions and in situ data available on that
day. The planning models were archived forecasts for that day that had
been predicted further in the past. This is analogous to how one would
expect the weather forecast for tomorrow to be more accurate than the
weather forecast for tomorrow as predicted one week ago.

A. Simulations at M1

The first simulation experiment we conducted aimed to investigate
how planning model accuracy effects station-keeping performance. For
this experiment, we used an archived nowcast ROMS 300-m model as
the nature model, and archived ROMS 300-m forecast models with 2,
4, 6, 8, 10, 14, and 20 days of advance prediction as degraded planning
models. We conducted the station-keeping simulation at the location of

Fig. 9. Planning model RMS error with respect to nature model versus plan-
ning model degradation at M1. RMS error was calculated for a 10-km side
length square centered around M1 down to 500 m. The period of calculation
was July 1st to August 31, 2016. The RMS error of 0.207 m/s between the nature
model and the M1 15-m depth currents over the same time period is shown as a
horizontal dashed line for reference.

the MBARI M1 mooring to have some comparison with in situ currents
measured by the mooring and also to be able to make rough parallels
to our 2017 field campaign. However, 2017 300-m ROMS degraded
models were not available for our use, so we ran the simulations over
the same dates in 2016 to minimize the effects of seasonality on the
currents.

Fig. 9 shows the RMS error of the planning model compared to
the nature model for 0–20 days of degradation. The RMS error was
computed by differencing all corresponding cells in the planning and
nature models in a 10-km side length square centered around M1 down
to 500-m depth for a period from July 1 to August 31, 2016. We chose
this two-month time period to be long enough to get a representative
average error between the models, and also to contain the same dates as
the 2017 deployment for running comparative simulations. The error
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Fig. 10. Average simulated surfacing error versus planning model RMS error
at M1. Error bars represent one standard deviation in surfacing error. Purple
numbers represent the number of days of degradation for each planning model.
The station-keeping simulation period was July 10th–24th, 2016. As in Fig. 9,
the corresponding RMS error between the nature model and the M1 measured
currents is shown as a dashed line (this time vertical) and most closely corre-
sponds to the error of the 20-day degraded model.

vector magnitude e between the current predicted by the nature model
and the planning model for a given time t, latitude lat, longitude lon,
and depth d is given in (8) shown at the bottom of this page, where u
is the zonal current speed and v is the meridional current speed of the
appropriate cell in the two models. Then, the RMS error between the
two models is given by

RMSE =

√∑
t , lat , lon ,d e2

t , lat , lon ,d

|t| |lat| |lon| |d| . (9)

The RMS error of the planning model increases roughly linearly
with the number of days of degradation, meaning that the planning
model increasingly diverges from nature model as desired.

After acquiring degraded planning models in this way, separate in-
dependent simulated deployments were planned using the degraded
planning models but executed on the same nature model, and the
station-keeping errors of the resulting simulations were compared. The
period of simulation for all models was July 10th–24th, 2016 to match
the 2017 Slocum planner deployments (2017 300-m ROMS degraded
models were not available for our use). Fig. 10 shows the average
station-keeping error of each simulation versus the planning model
RMS error. In all cases, the planner improved the station-keeping per-
formance of the vehicles by several hundred meters. We can see that for
both the seaglider and the Slocum, the average station-keeping error

increases as the planning model becomes more degraded, increasing
by several hundred meters across the 0–20 days of degradation. This
is in line with our expectations—the more accurate the current model
available to the planner is, the more the planner can improve station
keeping. The planning model accuracy has no effect on the baseline
control scheme because that does not take the planning model into
account.

Next, we compare the results of our simulation framework to the
results we obtained from the 2017 field deployment. This comparison
should be taken with a grain of salt because the simulation was calcu-
lated for July 10–24, 2016 but the (Slocum) deployment was conducted
July 10–24, 2017, and the simulation was planned on an artificially de-
graded planning model and executed on the nature model, whereas the
deployment was planned on the nature model and executed on the real
ocean. However, the metric that actually matters for the accuracy of the
simulation results is not the accuracy of the nature model itself, but that
the error between the planning model and the nature model was similar
to the error between the nature model and the true ocean currents. So
as long as these errors were similar, the simulation should produce
similar results to a real world deployment in terms of station-keeping
performance.

Using (7), the RMS error of the 15-m depth currents predicted by
the nature model compared to truth M1 measurements over July 1st to
August 31, 2016 was 0.207 m/s. This is drawn as a horizontal dotted
gray line in Fig. 9 and a vertical gray line in Fig. 10, and corresponds
most closely to the error of the 20-day degraded planning model, which
has an RMS error of 0.193 m/s compared to the nature model using
(9). Therefore, the simulation using the 20-day degraded model as the
planning model is the simulation whose planning model error most
closely represents the true experience of the vehicles during the 2017
deployment. The 20-day degraded simulation produced seaglider plan-
ner average station-keeping error of 0.355 km and a Slocum planner
average station-keeping error of 0.243 km. This is quite close to the av-
erage station-keeping errors of 0.464 km for the seaglider and 0.201 km
for the Slocum observed in the 2017 deployment, showing that the sim-
ulation framework can provide reasonable proxy results to an in situ
deployment. These results are similar enough to the results from the
real deployment to merit further simulation study of the virtual moor-
ing concept out at the SWOT crossover area, where we cannot (easily)
perform large-scale in situ deployment experiments.

B. Simulations at SWOT Crossover Segments

Next, we conducted simulations at locations important for SWOT
CalVal to assess the feasibility of the glider-based virtual mooring con-
cept as an alternative to installing instrumented moorings. The SWOT
satellite will carry a Ka-band radar interferometer designed to pre-
cisely measure water topography along dual 50-km swaths directly
underneath the satellite’s flight path, with a 20-km gap centered on the
nadir track [33]. To effectively utilize the instruments aboard SWOT,
calibration and validation must be performed after launch using in situ
data collected contemporaneously with remote observations from a
SWOT overflight. To maximize the value of the in situ data, it should
be collected near an intersection of ascending and descending SWOT
orbital tracks, furthermore known as a “crossover location.” For logisti-
cal reasons, the most likely crossover location is located about 420 km
off the California coast at (125.40° W, 35.55° N), and is known as the
SWOT crossover C-Site. At any crossover location, the overlap of the

et, lat , lon ,d =
√(

uM 1 t , l a t , l o n , d
− uROM S t , l a t , l o n , d

)2 +
(
vM 1 t , l a t , l o n , d

− vROM S t , l a t , l o n , d

)2
. (8)
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Fig. 11. Operations map for SWOT CalVal C-site crossover locations. Light
blue bands show radar swaths for ascending and descending orbits. Dots show
proposed virtual mooring locations. Each leg of the diamond represents one
virtual mooring array (crossover segment) with locations chosen to maximize
overlap between SWOT remote sensing observations and in situ mooring
measurements. Twenty moorings are placed evenly along the crossover segment
(7.5-km spacing). Crossover segment 1 (yellow) was chosen for further study
in simulation.

dual radar swaths from each orbital track forms a diamond shape. To
maximize spatial overlap of remote and in situ data, the most valuable
place to collect data is centered along-track one of the radar swaths
and across-track the other two radar swaths from the opposing orbit.
This geometry creates four segments of interest, furthermore known as
“crossover segments” 1–4. The science requirements specified by the
SWOT mission nominally require 20 evenly spaced moorings (7.5-km
spacing) along one of the crossover segments to acquire data continu-
ously for 90 days and achieve an average station-keeping error of less
than 1.0 km for the duration of the deployment to achieve CalVal [8]. A
map of the crossover segments and the candidate virtual mooring loca-
tions is shown in Fig. 11. To study the feasibility of the virtual mooring
concept for SWOT, we conducted 90-day station-keeping simulations
at the 20 candidate mooring locations of crossover segment 1 for the
period July 1, 2017 to September 30, 2017.

For this experiment, we used the 3-km California coast configuration
of ROMS. As always, the reliability of our simulation is bounded
by the accuracy of the ROMS ocean current predictions with respect
to reality at the site of the simulation. Because we have no in situ
data available at the C-site, this accuracy is unknown. However, Chao
et al. [32] performed validation of depth-averaged currents for this
ROMS configuration using data from Spray gliders performing long
transects off the California coast. They found that ROMS qualitatively
reproduces the flow patterns associated with major current systems
such as the California Current and California Undercurrent/Davidson
Current, as well as their seasonal variations. They also found that
there is tendency for the predicted ROMS currents to be stronger that
those observed in situ, which would imply that our simulations may
underestimate station-keeping performance.

First, we wanted to get a sense of the relative difficulty of station
keeping at each virtual mooring location in case one crossover seg-
ment was more favorable for operations than the others. Fig. 12 shows
the simulated 500-m depth-averaged current speed measured in ROMS
over the duration of the simulation. The depth of 500 m was chosen for
the same reasons as in the 2017 deployment. We can see that generally
speaking, currents get stronger for virtual mooring locations further
north, suggesting that station keeping would be more difficult in those

Fig. 12. Effect of virtual mooring location on 500-m depth-averaged current
speed for the period July 1, 2017 to September 30, 2017. Virtual moorings are
indexed south to north for their respective crossover segment (see Fig. 11).

locations too. The average current speed data also show that some
virtual mooring locations are significantly more difficult than others,
for example, virtual mooring location 10 for crossover segment 3 expe-
riences almost double the average current speed than virtual mooring
location 10 in crossover segment 2. Overall, crossover segment 2 is the
most favorable for station keeping and crossover segment 3 is the least
favorable for station keeping for the period of simulation.

We chose to simulate the SWOT CalVal virtual mooring array
on crossover segment 1 because it represented the best diversity of
station-keeping difficulty in terms of 500-m depth-averaged current
speed, covering almost the full range of difficulty observed in the
other crossover segments. This segment is also the same segment that
was studied in [8]. Fig. 13 shows the average station-keeping error
for crossover segment 1 for both seagliders and Slocums with no
model degradation (planning model = nature model). The simula-
tions were conducted with baseline control, regular planner control,
and also extended planner control where the Slocum gliders had a sim-
ulated rear-mounted thruster that could be spun at various speeds to
increase the vehicle’s velocity through the water at the cost of additional
energy expenditure. In the case of the thruster using simulations, the
planner was allowed to select the set point of the thruster for each dive,
with one group of set points available within a 3-km watch circle radius
of the station-keeping waypoint (0–3 W, in increments of 1 W) and an
expanded set allowed outside the 3-km radius (0–8 W, in increments
of 1 W).

The Slocum gliders with thrusters were able to station keep well
under the 1-km target threshold for all virtual mooring locations, with
station-keeping errors of 0.061–0.113 km. The Slocum gliders without
thrusters could successfully station keep at virtual mooring locations
1–11, but could not maintain the 1-km average error threshold further
north than that, as the stronger currents blew the vehicles off station.
Having less control authority, the seagliders fared worse and were only
able to station keep within the 1-km average error boundary at a handful
of locations, and only when using the planner. Generally, as expected,
we observed that the larger the 500-m depth-averaged current speed
for a virtual mooring location, the more trouble vehicles had for station
keeping at that location, sometimes being blown off course tens to
hundreds of kilometers in the most extreme cases. Only the Slocum
glider using both planner and thruster was able to maintain average
station keeping under the 1-km error boundary for all virtual mooring
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Fig. 13. Average surfacing error for virtual mooring locations on crossover segment 1 for the simulation period July 1, 2017 to September 30, 2017, using
planning model = nature model. (Left) Average surfacing error as a function of virtual mooring location number, from south to north. (Right) Average surfacing
error as a function of the 500-m depth-averaged current speed at each virtual mooring location. Virtual mooring location 12 is selected for more detailed study as
a virtual mooring location where the SWOT station-keeping requirements are achievable using a thruster-equipped Slocum glider, but not without a thruster.

locations. Interestingly, especially for the seaglider with planner, we
saw that even a small change in initial conditions (e.g., two adjacent
virtual mooring locations separated by 7.5 km) could affect the average
surfacing error by up to tens of kilometers. This is most likely explained
by the fact that the seagliders are operating in a chaotic system at the
edge of their abilities—even a 7.5-km change in initial position could
make the difference between staying relatively on target or being swept
away into a more challenging current regime, which further dooms
any chance for successful station keeping. It should be noted that the
results in Fig. 13 represent an upper bound on performance, because
the planning model was identical to the nature model.

One worry for vehicles using thrusters is that although their addi-
tional control authority may allow them to stay closer to the station-
keeping location, they will run out of battery during the deployment and
then drift away. The total vehicle energy expenditure over the course
of the deployment is given by

E =
∫ end

start
pT (t) + pN )dt (10)

where pT (t) is the thruster power set point as a function of time and pN

is the nonthruster power usage of the vehicle during normal operation.
The nonthruster power usage for a station-keeping G2 Slocum glider
was empirically determined to be pN = 2.43 W through field trials.
Leaving 10% of the total battery capacity for recovery, the default
operational battery capacity of a G2 Slocum glider is approximately
6.55 kW·h, or the battery module can be extended to increase the op-
erational capacity to about 8.87 kW·h. We found that in simulations
using the thruster, the Slocum always used more energy than opera-
tionally available, from about 9.92 kW·h in the best cast scenario to
10.52 kW·h in the worst, of which 5.25 kW·h was spent on nonthruster
functions of the vehicle, and the rest was spent on the thruster. The
energy usage could likely be improved by better planning, since the
planning algorithm is a greedy algorithm that always prioritizes im-
mediate station-keeping performance over energy usage or long-term
station-keeping performance. Additionally, we observe that, because

station keeping with less than 1.0 km average error is achievable
without thruster usage for many of the virtual mooring locations, in
some cases, much of the thruster energy is being spent in a regime
where the additional station-keeping performance gains are unneces-
sary to fulfill the SWOT CalVal requirements. Unfortunately, this is
more true at the easier virtual mooring locations and less true at the
problematic ones. Nevertheless, the energy usage issues could be im-
proved as a first pass by tuning the thruster set point values available
to the planner and the watch circle radius, or more optimally by imple-
menting a more sophisticated planner that plans further ahead and takes
energy usage into account in its utility function. Furthermore, the next
generation of Slocum gliders will incorporate larger pumps, leading
to increased speed from the buoyancy engine, which could mean less
necessity for supplementing speed using the thruster. Still, if thrusters
are used for Slocums in the final SWOT CalVal virtual mooring con-
figuration, it is likely that the vehicles will require the extended battery
capacity modification.

Virtual mooring location 12 on crossover segment 1 represents an
interesting opportunity to further study because station keeping under
1.0-km average error was achievable there with use of the thruster but
not without it. The next several plots delve more deeply into the reasons
for station-keeping failure without use of the thruster. Since we do not
have enough in situ data near the SWOT crossover C-site to reliably
know the nature model RMS error compared to reality, we proceed
the investigation with planning model = nature model. It should be
remembered that this represents an upper bound on station-keeping
performance.

Figs. 14 and 15 show the station-keeping error of the vehicle and the
current speed and direction experienced by the vehicle as a function
of time throughout its mission for simulation with planning model =
nature model. As expected, we can see that the Slocum under planner
control with a thruster performs the best station keeping, never even
straying across the 1-km error boundary. Under planner control, but
without a thruster, the Slocum stays under the 1-km error boundary most
of the time, but experiences several discrete periods up to approximately
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Fig. 14. Surfacing error versus time for crossover 1, virtual mooring location 12, and planning model = nature model.

9 days long where it is blown significantly off course (up to nearly
80 km) before recovering. Observing Fig. 15, we see that these periods
are characterized by stronger and more consistently directed currents,
with magnitude often greater than the Slocum’s maximum through-
water speed of 0.35 m/s without thruster assistance. The seaglider fares
poorer, spending the majority of the mission tens of kilometers from
the station-keeping waypoint, even under planner control.

Overall, we find that precise station keeping is more difficult in
locations with stronger and more persistently directed currents. The
SWOT crossover C-site provides a much more challenging station-
keeping environment than the area near M1, and there is significant
variation in station-keeping performance even along a single-crossover
segment, suggesting that careful selection of virtual mooring locations
will be important for any future virtual-mooring-based SWOT CalVal
efforts. We find that the dominant controllable factor in station-keeping
performance is the top speed of the station-keeping vehicle, but that an
adaptive planner compensating for ocean currents can improve station-
keeping performance so long as the currents are not so strong as to
make the situation hopeless or so weak as to make the effect of control
disturbances due to currents negligible. We show that station keeping
under the 1-km average error threshold is possible in simulation for
all SWOT crossover segment 1 virtual mooring locations for Slocum
gliders equipped with thrusters, and possible for the southern half of
the crossover segment for Slocum gliders not equipped with thrusters
for the period simulated. Given these results, we believe that a pilot
study of the virtual mooring concept using real vehicles at the SWOT
Crossover C-site is merited to further develop the concept.

IV. FUTURE WORK

The work discussed here could be extended in many directions. First
and foremost, more in situ deployments would help to establish the

applicability of the virtual mooring concept in real-world conditions
and provide real data for validating the station-keeping simulation and
ocean circulation model results. Specifically, an in situ pilot study of
the virtual mooring concept at the SWOT crossover C-site is merited,
especially because ROMS is less accurate that far from the coast due
to lack of available input forcing by permanent sensors (e.g., high-
frequency radar surface current data). If possible, within bounds of
cost, physical moorings should also be deployed at some of the station-
keeping locations to directly compare the data gathered from virtual as
opposed to permanent moorings.

Weaknesses in predictive ocean circulation modeling could poten-
tially be addressed by utilizing an ensemble model that includes pre-
dictions from other ocean models besides ROMS, for example, HOPS,
POM, HYCOM, and MITgcm, and also by assimilating in situ data
from the virtual moorings back into the model at a faster feedback rate
than once a day.

The motion model we used for both seagliders and the Slocum glider
is geometry-based and quite simplistic. A better physics-based motion
model would improve simulation accuracy.

There are several dive parameters that were assumed or set to be
fixed for planning purposes, for example, helix dive radius, box helix
dive side length, and thruster watch circle radius. With some changes
to the vehicle software, the planner could also be allowed to control
buoyancy throw, which would allow it to select from a range of different
dive speeds through the water. Allowing the planner to control these
additional parameters may improve station-keeping performance.

The assets implementing the virtual moorings were assumed to be
homogeneous, evenly spaced, and independent. Further studies should
investigate how hybrid formations of heterogeneous assets (e.g., tra-
ditional moorings, AUVs with more control authority, virtually pro-
filing floats, ships, and even aerial vehicles) could be coordinated to
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Fig. 15. Asset-experienced current speed (top) and bearing (bottom) versus
time for crossover 1, virtual mooring location 12, and planning model = nature
model.

create more adaptive and effective observation constellations. To study
this, more sophisticated measures of holistic station-keeping perfor-
mance for the entire constellation should be realized, not just average
station-keeping error for individual assets as independent virtual moor-
ing platforms.

The station-keeping planner has much room for improvement. The
planning algorithm is greedy and only looks one dive into the future
and treats each individual vehicle as independent. In the case of virtual
moorings as applied to SWOT CalVal, a more sophisticated planner
should be implemented that plans further into the future and optimizes
for net data quality collected over the course of the deployment (min-
imizing SWOT CalVal uncertainty), not just the immediate station-
keeping performance on the next dive of one vehicle. This might be
particularly relevant in regions where there are strong tidal velocities
that may have long periods, but are easy to predict. A more sophisti-
cated planner could also help with energy management for the thrusters,
coordinating the virtual mooring array as a coupled observing constel-
lation, or enable more advanced techniques such as forcing all assets

to be underwater collecting data at the moment of satellite overflight
(instead of transmitting or receiving data on the surface), or biasing the
initial starting locations of the virtual moorings based on expected drift
over the course of the deployment. The planner could also ingest more
sources of information to assist its task. It was assumed that the only
information transmitted from the virtual moorings to the planner was
the latest surfacing location. Transmission of other information such as
sensor measurements tracking vehicle-experienced current velocities
or water density could assist the planner in reasoning about the uncer-
tainty in its planning model, and thus inform control recommendations.
For example, the planner could model the expected currents for the next
dive as some sort of fusion of the currents predicted by the predictive
ocean circulation model and the currents measured by the vehicle on
recent dives.

The simulation could be used to conduct a much better uncertainty
quantification and characterize how various variables affect station-
keeping performance, such as current speed, location, time of year,
bathymetry, current temporal consistency and spatial distribution, dive
frequency, vehicle motion model errors, data transmission latency, and
loss of vehicles or duplications of vehicles observing the same location
for robustness, among many other possible scenarios.

Even if further study of the virtual mooring concept proves the ap-
proach capable of fulfilling the SWOT CalVal requirements in nominal
scenarios, SWOT mission planners should conduct a detailed trade
study balancing the benefits and risks of the novel failure modalities
introduced by the new approach. For example, unlike with a fixed tradi-
tional mooring array, an unexpected extreme current event could blow
away all gliders during the CalVal period, which could significantly de-
lay CalVal. Likely, in the end, some sort of homogeneous CalVal array
using both gliders and traditional moorings could provide a compro-
mise between the benefits of virtual mooring approach and the proven
reliability of the traditional mooring approach.

Finally, the virtual mooring concept could easily be adapted to track
moving features, as in [34], or maintain more complex formations, as
in [4], for example, by moving the target waypoint of each vehicle
to follow an oceanic feature or maintain geometry with respect to
other vehicles. This could have numerous scientific applications for
the oceanographic community, for example, autonomous tracking and
sampling of ocean fronts, upwelling, eddies, plankton blooms, icebergs,
oil spills, and hydrothermal vent plumes, to name a few.

V. SUMMARY AND CONCLUSION

This paper presents the development and characterization of
an adaptive planner using a vehicle motion model and a
predictive ocean circulation model to improve station-keeping perfor-
mance of autonomous underwater gliders in the presence of dynamic
ocean currents. We build off of previous underwater glider station-
keeping work conducted in [9] and [16], but improve it through the
incorporation of predictive current modeling into vehicle control.

A field deployment was conducted in the summer of 2017 to test
the planner’s performance on real vehicles in a field environment. The
field deployment achieved smaller average station-keeping error than
the fixed M1 MBARI mooring, and the adaptive planner improved sta-
tion keeping in situations where the control disturbances due to currents
were challenging but surmountable with respect to the station-keeping
vehicle’s top speed. A simulation framework was developed to inves-
tigate the effects of various variables on station-keeping performance
that would be difficult to test in the field. To compare the results of the
field test to those in simulation, a simulation study was conducted at the
same location as the 2017 field deployment and produced usably simi-
lar results. Finally, the simulation framework was utilized to study the
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viability of using “virtual moorings” implemented with autonomous
underwater gliders in place of traditional moorings for calibration and
validation of primary instrumentation aboard the upcoming NASA
SWOT mission. The study found that unmodified Slocum gliders could
fulfill the SWOT station-keeping requirements at about half of the vir-
tual mooring locations, but required a thruster add-on for increased
speed for the other half, which would require careful battery manage-
ment. The study concluded that further investigation into the virtual
mooring concept is merited, including a trial field campaign at the
SWOT C-site to gather in situ data. The methodology developed here
could be applied to many oceanic monitoring scenarios: any task where
an AUV must stay close to a feature of interest to take measurements,
despite the presence of significant control disturbances by currents.
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