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Abstract

Achieving consistently high levels of productivity has been a
challenge for Mars surface missions. While the rovers have
made major discoveries and dramatically increased our un-
derstanding of Mars, they often require a great deal of effort
from the operations teams, and achieving mission objectives
can take longer than anticipated. The objective of this work is
to identify changes to flight software and ground operations
that enable high levels of productivity with reduced reliance
on ground interactions. This will enable the development
of Self-Reliant Rovers: rovers that make use of high-level
guidance from operators to select their own situational activ-
ities and respond to unexpected conditions, all without de-
pendence on ground intervention. In this paper we describe
the system we are developing and illustrate how it enables
increased mission productivity.

Introduction
Maintaining high productivity for the Mars exploration rover
missions is very challenging. While the operations teams
have achieved impressive accomplishments with the rovers,
doing so often requires significant human effort in planning,
coordinating, sequencing, and validating command prod-
ucts for the robots. A primary reason for these productiv-
ity challenges is the heavy reliance on interaction between
the rovers and ground operators in order to accomplish mis-
sion objectives. For example, prior rovers depend on oper-
ators to provide a detailed schedule of activities, select sci-
ence targets, navigate around slip hazards, and recover from
anomalies. When combined with the limited communication
opportunities between the rovers and human operators, this
reliance on ground interaction results in under-utilization of
vehicle resources and increased days on Mars to accomplish
mission objectives.

The objective of our work is to identify changes to
flight software and mission operations that improve rover
efficiency and reduce dependency on ground interactions.
This will facilitate the development of Self-Reliant Rovers:
rovers that make use of high-level guidance from operators
to select their own situational activities and respond to un-
expected conditions, all with reduced reliance on human in-
tervention.
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Although our objective is to reduce the reliance on ground
support in order to promote productivity, we are by no means
attempting to remove human operator involvement. To the
contrary, our objective is to increase the scope of operator
input so that operators can effectively guide rover activity
without requiring up to date knowledge of the rover and its
environment.

This paper will present the Self-Reliant Rover design and
illustrate how it enables rovers to maintain high levels of
productivity. In this paper, we will highlight four main com-
ponents of the design:

Campaign Intent: Allows operators to provide the rover
with high-level guidance over the rover’s activity plan-
ning and autonomous science

Slip-aware navigation: Enables the rover to assess the
amount of predicted slip in its environment and plan safe
paths to avoid both geometric and slip hazards.

Model-based health assessment: Improves the rover’s
ability to detect and isolate problems, and increases the
range of problems from which it can recover on its own

Global localization: Enables the rover to remove posi-
tional knowledge error that accumulates during naviga-
tion

Overview of the Self-Reliant Rover Design
We are designing the Self-Reliant Rover system within the
context of the Jet Propulsion Laboratory flight software ar-
chitecture (Weiss 2013). Figure 1 provides an overview of
this architecture and the changes we are introducing.

The Jet Propulsion Laboratory (JPL) architecture consists
of components organized into three layers: behaviors, ac-
tivities, and functions. Each successive layer has a reduced
degree of autonomy, fewer interactions with other compo-
nents, and a narrower scope of system knowledge.

Behavior: Collection of autonomously scheduled activities
in service of an over-arching mission goal. Contains
broad system knowledge.

Activity: Coordinates function invocations to achieve some
high-level spacecraft task. Encompasses knowledge local
to the activity being managed.
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Figure 1: Self-Reliant Rover flight software architecture.

Function: Primitive action required to achieve a single
well-delineated spacecraft objective. Contemplates only
highly-localized function-specific knowledge.
Following is a summary of the changes we are introducing

for the Self-Reliant Rover approach. Subsequent sections
will provide more details on the most significant changes.
Goal Planner: Generates onboard activity plans to accom-

plish mission goals. Improves resource utilization by syn-
chronizing plans with in-situ vehicle resource knowledge.
Responds to new goals identified by onboard autonomous
science.

Executive: Executes plans generated by the Goal Planner
and provides updates to facilitate re-planning.

Autonomous Science: Identifies science targets when the
rover enters an unexplored area. Increases the scope of
guidance that scientists can provide and deepens the inte-
gration with onboard planning, as compared with previ-
ous autonomous science on MSL (Francis et al. 2017).

Mobility Manager: Improves navigation by reasoning
about terrain-dependent slip.

Mobility Health Manager: Increases the robustness of
mobility activities and the scope of faults from which
the rover can autonomously recover by leveraging model-
based fault detection and isolation.

Pose Estimation: Maintains high quality position knowl-
edge over long traverse distances via onboard global lo-
calization (a technique that previously required ground
operator support).

Target Database: Facilitates communication about targets
of interest among scientists, engineers, and onboard au-
tonomous components by leveraging previous ground op-
erations tools onboard.

Data Management: Provides queryable onboard data
product access to autonomous components such as
onboard science analysis.

EH&A: Provides onboard access to engineering, house-
keeping, and accountability telemetry for use by au-
tonomous reasoning components.

Campaign Intent for Operator Guidance
A significant challenge to maintaining high rover productiv-
ity under reduced operator interaction is conveying operator
guidance and objectives without requiring operators have up
to date knowledge of the rover and its environment. Our
approach is motivated by prior operations practice. In tra-
ditional operations, each planning cycle begins with a reca-
pitulation of the current long term objectives of the mission
presented in the context of the latest available rover state
data (Chattopadhyay et al. 2014). The human operators as-
similate all the various objectives, state data, and mission
knowledge in order to synthesize a high quality plan that
makes progress toward the goals while respecting limited
rover resources such as time, energy, and data volume.

The team will typically have several high-level objectives
to pursue. For example, during MSL’s Pahrump Hills Walk-
about campaign, the primary focus of the mission was to col-
lect observations of exposed outcrop forming the basal layer
of Mount Sharp (Gaines et al. 2016). This required driv-
ing the rover to several locations and acquiring high qual-
ity Mastcam and ChemCam observations selected locally at
each stop.

Concurrently, the team also pursued a variety of supple-
mentary objectives. During this campaign, Siding Spring
(Comet C/2013 A1) would pass Mars closer than any other
known comet flyby of Earth or Mars. The operations team
thus incorporated comet observations into the rover plans.
In addition, the team planned ongoing periodic observations
to study clouds, dust devils, and atmospheric opacity. A
wide range of recurring engineering activities also had to be
included: instrument calibrations, telemetry collection, and
system configuration management.

Importantly, the quality of the plan is not just a function
of what activities are scheduled; it depends on how well they
relate to the current objectives and to each other. Each indi-
vidual outcrop observation was valuable, but understanding
the geology of the region required accumulation of a vari-
ety of observations that were spatially distributed through-
out the area. Periodic tasks such as atmospheric measure-
ments and engineering activities had similar preferred tem-
poral patterns that the team must try to match.

We developed the concept of campaign intent to convey
such information to the rover so that it may generate its own
prudent in-situ plans when human guidance is prohibitively
delayed. Campaign intent specifies a set of goals for the
rover and the relationships among those goals. We gleaned
three initial types of campaign intent from MSL scenarios,
as summarized in Figure 2:

Class sampling: Choose observation targets that best ex-
emplify a particular feature (e.g. layering). Once iden-
tified, the targets form a goal set. Value typically accumu-
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Figure 2: Summary of campaign intent types.

lates with additional samples from the set, but eventually
reaches a point of diminishing returns.

Temporally-Periodic sampling: Schedule goals to match
a repeating temporal pattern (e.g. hourly). The preferred
goal cadence typically allows at least some timing flexi-
bility.

State-based sampling: Trigger goals based on the evolu-
tion of the rover/terrain state (e.g. at every 50m traveled).
The state criteria is typically expressed as a preferred ca-
dence with some flexibility.

Using Campaign Intent to Guide Planning
Our approach to plan generation is based on branch-and-
bound search. Starting from the empty plan, each iteration
of search expands a chosen partial plan into many possible
successor plans (the branches). Each potential successor is
scored and must exceed a running threshold of plan quality
(the bound) in order to be retained for future expansion; oth-
erwise it is pruned (along with all its descendants). Specif-
ically, the optimistic maximum quality of any plan based
on the candidate partial plan must exceed the pessimistic
minimum quality prediction of all other candidates already
considered. Plan quality is evaluated as the degree of satis-
faction of the campaign intents, which may be both priority
tiered and utility weighted by the user. The frontier of un-
expanded partial plans is periodically sorted by estimated
final plan quality, yielding a hybrid of depth-first and best-
first expansion order.

Partial plans are always expanded forward in time by ap-
pending one of the possible subsequent actions to the grow-
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Figure 3: Example generated plan illustrating a long-range
drive objective that was split up to support two different
types of campaign objectives.

ing plan. The possible actions include mandatory goals
(such as communication passes), auxiliary actions (such as
sleep periods), as well as all the possible goals introduced
by campaign intents. For temporal and state-based cam-
paigns, this is just the next instance of the periodic goal,
timed within its allowed cadence. For unordered goal set
campaigns, each remaining un-attempted goal becomes a
possible addition. In the limit, the search will thus evaluate
(or justifiably prune) all possible combinations and order-
ings of campaign goals.

The complete search can be very time intensive, but is
guaranteed to return an optimal plan according to the ex-
pressed campaign preferences. Even without running to
completion, the search can return the best plan encountered
so far. This anytime algorithm feature allows the rover to
limit its planning time and proceed to be productive with
a reasonable (but not provably optimal) plan. Minor plan
perturbations during execution are accommodated by time-
efficient repair strategies (for example, to shift actions for-
ward after a small driving delay), while major disruptions
(such as an insurmountable obstacle in a drive, or the injec-
tion of an entirely new goal) invoke a full replanning cycle
so that all goals are reconsidered.

Figure 3 shows an example plan generated by the search
algorithm. The planning model derives from the operational
MSL activity model and features important mission aspects
such as science campaign activities, communication win-
dows, regenerative sleeping, and device heating.

The campaign objectives provided to the rover in this ex-
ample include: a goal set campaign with a distant MastCam
target (entailing a long-range traverse), a temporal campaign
with recurring atmospheric opacity (tau) measurements ev-
ery 3 hours, and state-based campaign with mid-drive sur-
vey actions after every 75 meters traveled. The resultant
plan demonstrates how the planner synthesizes the campaign
relationships to coordinate rover activity, including pausing
the ongoing drive action to interleave other objectives.



Using Campaign Intent to Guide Autonomous
Science
The system also leverages high-level campaign objectives
to introduce additional in-situ goals based on scientist guid-
ance. This improves rover productivity when the operations
team does receive data about the rover’s environment in time
to select their own local targets for that day.

For example, scientists may be interested in remote-
sensing composition measurements of a rock formation en-
countered previously and known to exist in a region the
rover is approaching. The scientists can train a Texture-
Cam (Thompson et al. 2012) model to detect that rock for-
mation by labeling examples in previous navigation camera
images (Figure 4, left). The rover then runs that TextureCam
model onboard to compute a probability map of locations in
the new region that likely contain the rock formation of in-
terest (Figure 4, center). The probability map can be used to
select the best targets for measurement, as well as the like-
lihood that each measurement satisfies the scientific intent
of characterizing the rock formation (Figure 4, right). Each
proposed target becomes a new goal in the campaign set for
the planner. The planner may also use the probability in-
formation to reason about the trade offs between the various
generated goals.

Slip-Aware Navigation
The Navigation systems equipped on the Mars rover mis-
sions, Mars Exploration Rover (MER) and Mars Science
Laboratory (MSL), rely on the Grid-based Estimation of
Surface Traversability Applied to Local Terrain (GESTALT)
algorithm (Goldberg, Maimone, & Matthies 2002) to detect
and avoid geometric hazards and the D∗ algorithm (Stentz
& Mellon 1993) to plan global paths to goals. These meth-
ods have enabled operators to provide high-level autonomy
goals to the rovers, increasing mission efficiency.

However, geometry alone is not sufficient to guarantee
safe traverses on the surface of Mars in every environment.
Both MER and MSL operators have experienced hazardous
conditions due to otherwise geometrically benign terrain
such as sand dunes, and small rocks. These hazards can cre-
ate adverse conditions such as wheel slip, sinkage, and dam-
age. When current rovers pass through these hazardous envi-
ronments, operators control the rovers manually with slow,
deliberate commands, resulting in a loss in efficiency. In
response, this paper proposes a navigation system that can
reason about geometry and terrain type to plan safe reliable
paths to science targets and enable a larger role in autonomy
for future Mars Rovers.

System Overview The slip-aware navigation system,
highlighted in Figure 5, is built upon the GESTALT system
(Goldberg, Maimone, & Matthies 2002) and contains the
following components: i) stereo vision, ii) visual odometry,
iii) traversability assessment, iv) terrain classification, and
v) path planning. The input to system is a synchronized pair
of stereo images from the rover’s navigation cameras. Image
data is sent to the OpenCV (Bradski 2000) block matching

algorithm to obtain dense 3D information about the environ-
ment. In parallel, the left stereo image is sent to a speeded-
up version of the Soil Property and Object Clasification
(SPOC) (Rothrock et al. 2016) terrain classifier more suited
for on-board computation requirements. This segments the
image into three classes: i) sand, ii) soil, iii) flagstone. Both
texture and depth information are then sent to the JPL Visual
Odometry (VO) method detailed in (Howard 2008) to com-
pute the relative motion between images. This information
is the incorporated into the 3D map and assessed for both
geometric and slip hazards in the traversability-assessment
module. Geometric Hazards are assessed and mapped using
the Morphin algorithm (Goldberg, Maimone, & Matthies
2002), a predecessor to the GESTALT method running on
the Mars rovers To plan safe paths around geometry- and
terrain-based hazards, we employ the RRT# sample-based
planner (Arslan & Tsiotras 2016) to make informed deci-
sions on adding new samples using the computed geometry,
terrain, and rover motion information.

Slip-Aware Planning Our navigation system plans paths
on a map that builds upon the data structure detailed in
(Goldberg, Maimone, & Matthies 2002)—an occupancy-
grid map fitted to a local ground plane with point-cloud
statistics. The slip-aware navigation system improves on this
map structure by adding terrain information information for
each point in the stereo point cloud. Point clouds are accu-
mulated to compute geometry and terrain statistics at each
cell in the map. To assess the traversability of the map at
each cell, a plane the size of the rover is centered and fitted
to the containing points. Each cell in the map contains the
following information: i) maximum step-size, ii) roughness,
iii) slope, and iv) terrain information. Terrain information
comes in the form of a discrete probability distribution for
the three terrain types of interest: soil, sand, and flagstone.

The slip-aware navigation system plans safe paths that
avoids geometric- and terrain-based hazards by employing
the sample-based planner, RRT# (Arslan & Tsiotras 2016)
and the traversability map to make informed decisions on
expected wheel slippage. The sample-based planner con-
structs a random graph where vertices contain robot poses
and edges link poses by vehicle-constrained motion primi-
tives (Pivtoraiko, Nesnas, & Kelly 2009). During planning,
new vertices are considered as viable if they do not intersect
with any geometric obstacles in the map (step-size or rough-
ness). The cost of edges in the graph is a function of the
motion primitive distance weighted by an expected slip pro-
file for each terrain type. Terrain slip profiles map slope to
expected rover slip for a given terrain type. This planner fur-
thermore takes into account direction of travel when adding
a new sample.

Model-Based Health Assessment
The autonomous science scenario discussed in previous sec-
tions is only practical under two strong assumptions: First,
that the rover protects itself from any problems during auto-
generated activities; and second, that the rover can reli-
ably detect and recover from problems that are routine but



Figure 4: An example showing how scientists can use TextureCam to express intent to autonomously generate new goals on
board. The left image shows hand-labeled regions of a geological formation of interest. The center image shows the estimated
probabilities that regions in a new image are of the same formation, given a model trained from labels. The right image shows
the top five software-selected locations for diverse observations of the rock formation, each corresponding to a new goal for the
planning system.
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Figure 5: Illustration of the slip-aware navigation pipeline.
This navigation system uses both geometry and texture from
stereo images to map and assess hazards to the rover and
plan safe paths in challenging environments with high slip
risks. This will allow rover operators to plan longer au-
tonomous traverses in difficult terrain.

currently require ground-in-the-loop resolution. Both chal-
lenges exceed the current state of practice for rover health
assessment. We must assume an autonomous rover will have
only limited knowledge of the terrain due to its more aggres-
sive exploration, and thus the autonomous rover will be un-
able to avoid some hazards that a traditional rover would by-
pass. Existing rover fault protection can be elaborate – Mars
Science Laboratory (MSL), for instance, has over 1,000 dis-
tinct fault monitors – but is defensive in nature, aimed at
maintaining rover safety and preserving capability rather
than ensuring efficiency of operations.

In current operations it is not unusual for even a routine
activity (such as a drive) to ”fault out,” i.e., halt prematurely
or exit with errors that requires ground analysis before re-
suming operations. These are typically benign, caused by
factors such as slower progress than expected or incorrect
assumptions about activity timing. Nonetheless, the Self-
Reliant Rover must be able to discriminate recoverable prob-
lems from more serious ones, it must solve the simpler prob-
lems without ground input, and it must do both reliably.

It is clear that we are unlikely to achieve this by simply
expanding the scope of fault protection. Instead, to compen-
sate for uncertainty in the environment, the plan, and in the
rover performance itself, we turn to model-based methods
and reasoning systems. The Self-Reliant Rover prototype
incorporates Model-based Off-Nominal State Identification

Figure 6: MONSID model of Athena mobility components

and Detection (MONSID) (Kolcio & Fesq 2016), which an-
alyzes command and sensor data in real-time to construct an
estimate of system health.

MONSID utilizes a simplified physics model comprised
of a network of numerical constraints, describing the phys-
ical laws and relationships between sensed and internally-
computed parameters. The model also relates these con-
straints to physical or logical components of the host sys-
tem, allowing inconsistencies found to be linked to their root
cause. MONSID was applied to an example rover electrical
power subsystem in a previous experiment (Kolcio, Fesq,
& Mackey 2017), illustrating the suitability and unique ad-
vantages of the approach while exposing model details and
algorithm behavior.

For integrated testing with Athena, MONSID concen-
trates on the mobility systems and associated sensors. A
summary of the MONSID model is shown below in 6.

In the diagram above, orange boxes represent rover com-
ponents or pseudocomponents that aggregate different state
variables. Blue ovals indicate command or sensor values,
used to enable or verify computation of system state vari-
ables. Connections between components as indicated by
ports (green boxes) represent constraints, evaluated sepa-



rately in each direction.
Each of the six wheels incorporates separate steering and

drive motors, while the wheel assembly interacts with the
controller via a pair of position encoders. Rover position
and orientation is provided by visual odometry, analyzing
images captured by Athena’s mast-mounted cameras, and
a notional Inertial Reference Unit (IMU). Additionally, the
model supports variation in rocker and bogie position, as re-
ported by four angle sensors. Note that in the current imple-
mentation both IMU and suspension sensors are not present.

During execution MONSID must detect faults and distin-
guish which are autonomously recoverable in a manner that
other autonomy components can interpret. To support our
evaluation, the Athena team has developed a fault injection
capability enabling us to simulate drive and steering motor
failure, failure of on-board controllers, and failure of mobil-
ity sensors. The most relevant cases to the autonomous rover
science scenario can be summarized as follows:
Detect and classify recoverable mobility faults: If a drive

is interrupted by an unexpected event, determine whether
this is terrain-induced or caused by mechanical failure,
and whether the rover should autonomously retreat and
avoid the problematic terrain.

Recognize errors in terrain knowledge: If drives com-
plete but leave the rover far from its expected position,
determine whether the problem is caused by mechanical
failure, sensor failure, or incorrect assessment of terrain.
In the latter case, attempt to recover terrain knowledge by
comparing to alternate models of terrain behavior.

Identify emergent, unknown, or surprise behavior: A
significant hurdle to adoption of autonomy technologies
in general is the persistent risk of unexpected behavior
in the system leading to an unpredictable response.
However, due to its reliance upon physical principles
instead of purpose- built monitors, model-based health
assessment is often capable of detecting and correctly
classifying even novel system behavior.
An example of the last class of behavior was observed by

the Athena team in early 2018, when driving up a steep slope
led unexpectedly to one of the front wheels rising off the sur-
face. We quickly replicated this behavior in our testing, find-
ing it was caused by unexpectedly high traction in Athena’s
center wheel coupled with slippage of the rear wheel. This
resulted in the center wheel driving forward relative to the
rover as a whole, rotating the bogie in the process. A brief
summary of this behavior is shown in 7.

This behavior is interesting because, while undesirable,
all individual rover components are operating in familiar
and acceptable ways. The root cause is instead a violation
of a more fundamental assumption about the rover, namely
the rover wheel geometry is changing while on flat terrain.
These assumptions are incorporated into the MONSID con-
straints, and as a result, the novelty of this situation is de-
tected without difficulty, despite the fact that this behavior
had gone unnoticed after years of testing and experience
with Athena.

Unlike the other types of faults, it is likely that we would
halt operations after observing this for the first time in flight

Figure 7: Athena drive position error during unusual
”wheelie” behavior

to permit thorough analysis of newly revealed design vul-
nerabilities. MONSID’s responsibility in this case ends with
detection and classification as a non-recoverable event, how-
ever MONSID also provides diagnostic information to assist
in event analysis. In this case the fault is correctly isolated
to the center and rear wheels instead of any control fault, or
any fault in the wheel that actually rises from the surface.

Global Localization
One of the key goals in improving autonomy for mobility
is extending the distance the rover can drive per sol. Local-
ization errors accumulate as a function of driving distance,
however, due to drift in visual odometry and the integration
of inertial measurements. The magnitude of this error de-
pends on the terrain, but can be on the order of 5% of the
drive distance. For MSL operations, the typical drive dis-
tance is on the order of 30m, resulting in fairly small drift in
position estimate that could be several meters.

For MSL, this drift is corrected manually by visual align-
ment of navcam imagery to orbital HiRISE imagery. To es-
timate the alignment, a mosaic of navcam stereo images are
taken to cover a full panoramic around the rover. These im-
ages are then orthographically projected and salient surface
features are manually tie-pointed to compute a correction
offset.

The self-reliant rover design utilizes both longer drives
as well as multi-sol operations without the involvement of
ground operators to perform these corrections. To achieve
this, a similar alignment method is used in an automated
manner onboard the rover. Instead of keypoint tie-pointing,
the images are aligned using a matching criteria on both the
image intensities and the elevation map. Both the surface
and orbital images are orthographic projections, created by
projecting the image onto the elevation map using HiRISE
DEMs (digital elevation models) for the orbital images, and
stereo disparity from the surface navcam images. The orbital
image products are georeferenced and stored on the rover.

The matching criteria for the imagery uses mutual-
information, or relative entropy, between the images (Ansar
& Matthies 2009). This measures the statistical dependence
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Figure 8: Global localization utilizes automated alignment of navcam image and elevation maps to onboard orbital maps.
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Figure 9: Overview of simulated mission area. Operator
inputs include a specific target selection (orange) near start-
ing area A along with only high-level campaign guidance for
areas B, C, and D. Automated science analysis injects addi-
tional targets (cyan) during execution. The initial planned
route (blue) is dynamically adjusted (green) to avoid unan-
ticipated terrain hazards (red).

between corresponding pixels of a candidate alignment. Mu-
tual information is used instead of more conventional corre-
lators such as SAD or SSD for robustness to varying con-
ditions from when the orbital image was acquired such as
lighting or surface changes. The elevation map alignment
uses a conventional SSD correlator. The overall matching
score is simply a weighted sum between the image and ele-
vation scares. The maximum drift of the position estimate is
largely bounded, and the alignment search can be performed
using a conventional sliding window approach.

Illustrative Scenario
The Self-Reliant Rovers system was demonstrated on the
JPL Athena test rover within a mission scenario that ex-
plores the JPL mini-Mars Yard robotic testing facility. The
primary science objective was to characterize the rock out-
crop materials embedded in the sandy soil using the rover’s
mast-mounted cameras. The mission spans a period of lim-
ited communication with operators, so the rover must oper-
ate almost entirely autonomously in order to remain produc-
tive toward its high-level goals.

Figure 9 shows the overhead layout of the mission area,
as might be available to mission planners from orbital im-
agery. The operations team selects several regions of inter-

Figure 10: Initial generated plan and final as-executed plan
for the simulated mission scenario. Many new targeted sci-
ence goals are suggested at run-time by automated image
analysis and then integrated into the schedule in service of
science campaigns. Drive estimates are also updated during
execution, thus correcting initial approximations.

est (indicated by letters) from this coarse data, but is unable
to identify specific targets or terrain obstacles beyond a few
meters from the rover, for which the team has local imagery
obtained from the rover. Previous local imagery allows the
operators to set one precise outcrop target nearby the starting
location at A. In prior operations, the team would have to be
satisfied with filling the rest of the communication-limited
period with various in-place tasks and perhaps one drive at-
tempt toward the next area. Instead, using the Self-Reliant
Rover system, the team can entrust the rover with enough
campaign intent to continue conducting detailed science on
its own.

First, the operators create a goal for each area of interest



that entails driving to a specified vantage point in that area,
acquiring a contextual wide-angle image, and then running
the appropriate automated science algorithms. These sur-
vey goals become part of their own goal set campaign, and
the planner will stitch together an optimal drive ordering to
achieve as many as possible. In addition, the scientists cre-
ate initially empty goal set campaigns for each of the desired
outcrop observations (light flagstone, dark flagstone, and
multiple-contact) at each area. The campaign intents provide
guidance for the rover’s autonomous science behavior by in-
dicating the algorithms to perform and the types of follow-
up observations to suggested based on the results. During
subsequent automated analysis, the previously trained on-
board science classifiers will inject their newly identified
follow-up targets as goals into these campaign containers for
consideration during replanning.

Scalable campaign satisfaction criteria are described as a
utility scored range over the number of observations desired.
The planner and automated science cooperate to identify the
best candidate targets to include in the plan so as to max-
imize expected utility score. When a campaign cannot be
minimally satisfied with available targets, it may be skipped
over in order to include lower priority campaigns. Likewise,
only the best observation targets up to the desired maximum
for a campaign will be scheduled. In this demonstration sce-
nario, campaigns request follow-up mast camera imaging of
the 2-5 best outcrop specimens in each category at each lo-
cation.

Several additional relevant campaign types were demon-
strated in separate scenarios. The operators can specify on-
going temporal periodic campaigns; for example, visual at-
mospheric opacity (τ ) measurements every 20±2 minutes.
Mandatory downlink relay communication passes can also
be enforced at specific times in the schedule, representing a
exogenous orbiter overflights.

All of the various goals are provided to the rover at its
morning communication pass at the start of the mission sce-
nario. Thereupon, the onboard planner generates a plan
to image the specifically requested target near A, and then
travel in turn to B, C, and D to conduct survey observations
(Figure 10, top, and Figure 9, blue path). The plan adheres to
all standing rover resource limits (such as battery energy and
data volume), as well as incorporating any required heating
(such as needed for instruments or mobility mechanisms).

The actual path driven by the rover undergoes refinement
by the onboard terrain classification and autonomous navi-
gation so as to best avoid geometric obstacles. Due to a lack
of terrain diversity and slopes in the testing environment, the
slip avoidance aspect of the planner was disabled.

Depending on terrain, drives may also perform better than
expected by the initial approximation. Diversion delays and
expeditious travel cause minor perturbations to the plan,
which are accommodated by an agile plan repair strategy
that shifts actions within some threshold as long as they still
meet their requirements.

On arriving at B, and later C, the rover acquires the re-
quested contextual images and analyzes them using the on-
board science detectors. In turn, the analysis software identi-
fies both light and dark flagstone outcrops, as well as contact

Figure 11: Automated detection of geologic formation con-
tact in a survey image (top, contacts highlighted in red) trig-
gers follow-up detailed imagery of the contact area (inset).

between the two (Figure 11, top, with contact areas high-
lighted in red.) These specific follow-up targets are then
automatically injected as new goals in their respective cam-
paigns, and a replanning cycle is initiated. The planner’s
updated solution includes each of the newly suggested ob-
servations, which are duly collected (Figure 11, inset) before
proceeding to the next area.

Upon driving toward D, the rover’s automated terrain
classification identifies a major obstacle, and the navigation
system must divert significantly. The planner assimilates up-
dated drive estimates from the navigation engine to ensure
that the plan can accommodate the delay without conflict.
After planning a safe path around the observed obstacles and
eventually reaching D, the system once again identifies flag-
stone features and conducts the requested follow-up obser-
vation. At this point the mission period ends.

As seen in the final plan (Figure 10, bottom), the produc-
tivity benefits of additional onboard rover autonomy are evi-
dent even within the limited scope of this demonstration sce-
nario. Traditional operations would have accomplished just
one initial outcrop observation and a first drive.The com-
bined autonomy of the Self-Reliant Rover system produced
three survey panorama images throughout the mission area,
toured several unexpectedly difficult terrain routes, and ac-
crued fifteen additional targeted outcrop observations. The
Self-Reliant Rover system also allows the rover to incor-
porate periodic objectives into its generated activity plans.
Overall, the scenario demonstrates the ability of the Self-
Reliant Rover approach to increase mission productivity.

Related Work
Shalin, Wales, & Bass, (2005) conducted a study of Mars
Exploration Rovers operations to design a framework for ex-
pressing the intent for observations requested by the science
teams. Their focus was the use of intent to coordinate plan-
ning among human operators and the resulting intent was not
captured in a manner that would be conducive for machine
interpretation. Our approach codifies some of the fields in
their framework in a way suitable for the rover. In partic-
ular, the authors defined a “Related Observations” field as
a way for scientists to identify relationships among differ-
ent observations, which need not be in the same plan. Our
work on campaign intent can be seen as a way of defining a
specific semantics to these types of relationships to facilitate
reasoning about these relationships by the rover.

Their framework also includes information that we agree
is essential for effective communication among operators



but that we do not currently express to the rover. For ex-
ample, the “Scientific Hypotheses” field is used to indicate
what high-level campaign objective is being accomplished
by the requested observation. We are not yet providing these
higher-level campaign objectives to the rover, though it is an
interesting area of future research.

Mali (2016) views intent as a means for a user to place
constraints on the types of plans a planner is allowed to pro-
duce such as only generating plans that have at most one
instance of a class of actions or that plans must limit the use
of a particular action. The primary role of our use of intent is
to allow the planner to assess the value of achieving a given
set of goals. However, some of our campaign intent does im-
ply constraints and preferences on how, or more specifically,
when goals are accomplished. For example, the periodic
campaign intent specifies a timing relationship among goals
and a preference on how close to comply with the desired
timing.

There are some similarities between our campaign defi-
nitions and those used for Rosetta science planning (Chien
et al. 2015). Both use campaigns to express requests for
variable-sized groups of observations with relationships and
priorities. Rosetta plans covered much longer time periods
(e.g. weeks) and required more complex temporal patterns,
such as repeating groups of observations. But observation
patterns were primarily driven by the predictable trajectory
of the spacecraft, allowing relationships to be expressed as
temporal constraints. This is not sufficient for rovers, where
many observations are dictated by the rover location and sur-
rounding terrain, and the duration of many activities cannot
be accurately predicted. State-based and goal set relation-
ships more accurately represent some of the science intent
found on surface missions.

There have been a variety of autonomous science systems
deployed or proposed for rovers including the AEGIS sys-
tem running on the Opportunity and Curiosity rovers (Fran-
cis et al. 2017), and the SARA component proposed for an
ExoMars rover (Woods et al. 2009). These systems allow
the rover to identify targets in its surroundings that match
scientist-provided criteria. The introduction of campaign re-
lationships broadens the scope of the type of guidance that
scientists can provide these systems, allowing scientists to
express the amount of observations they would like for their
different objectives along with the relative priorities of the
high-level objectives.

There have been several integrated rover systems with
similar objectives to our work including PRoViScout (Paar
et al. 2012), Zoe (Wettergreen et al. 2014) and OASIS (Cas-
tano et al. 2007). The PRoViScout project has similar ob-
jectives to our work (Paar et al. 2012). These systems It
include autonomous science capabilities to enable onboard
identification of science targets. Similar to our approach,
they select follow-up observations for identified targets and
submits these requests to an onboard planner to determine
if there are sufficient resources to accomplish these new ob-
jectives. The campaign intent concepts we have developed
would also be applicable to PRoViScout as a way to increase
the expressivity for providing scientist intent to the rover.

There is an active area of research in intent recogni-

tion (Sukthankar et al. 2014). The general goal of this area
is to identify the objectives of other agents (human or other-
wise) from observations of the agents’ actions. In contrast,
in our work, it is acceptable for users to explicitly identify
their intent, rather than require the system to attempt to in-
fer intent. Indeed, there is interest in the operations team
to clearly document their intent for the purpose of commu-
nication among teams and as a record of what activity was
planned for the rover and why. As such, rather than try to in-
fer user intent, our objective is to increase the expressivity of
the rover’s interface in order to more closely reflect mission
intent.

The Mars 2020 mission is planning to incorporate on-
board scheduling to improve resource utilization of the
rover (Rabideau & Benowitz 2017). Similar to the Self-
Reliant Rover approach, the use of onboard scheduling is
intended to allow the Mars 2020 rover to use current vehicle
knowledge when generating schedules to accomplish mis-
sion objectives. This will reduce the loss of productivity that
results from the difficulty in predicting how much resources
(e.g. time and energy) activities will consume. The Self-
Reliant Rover approach is addressing additional productiv-
ity challenges by improving the ability of rovers to identify
their own objectives, to incorporate a richer set of guidance
from operators and to reason about slip hazards as it navi-
gates.

The navigation system presented in this paper is most
similar to the system presented in (Helmick, Angelova, &
Matthies 2009). They propose a system with the same high-
level machinery: i) a GESTALT-based vision pipeline, ii)
a terrain classifier, and iii) a slip-aware planner. However,
their system is not capable of making decisions based on di-
rection of travel. When direction of travel is not considered,
then the system is forced to make more conservative plans.
An example is if the rover is planning a path on a steep slope
containing soil, it might be too dangerous to drive up the
slope due to expected slippage, but driving downhill would
be safe.

Conclusions
We have presented an approach for increasing the authority
of autonomous rovers to increase mission productivity. Our
approach includes the ability for ground operators to provide
guidance to the system without requiring up to date knowl-
edge of the rover’s state and its surroundings.

We have implemented a prototype of this approach on the
Athena test rover. Over the next year we will be conducting
mission-relevant, multi-sol scenarios with the rover at the
JPL Mars Yard to evaluate its ability to support productive
operations with limited ground-in-the-loop interactions.
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