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Abstract—Computation load sharing across a network
of heterogeneous robots is a promising approach to in-
crease robots’ capabilities and efficiency as a team in ex-
treme environments. However, in such environments, com-
munication links may be intermittent and connections to
the cloud or Internet may be nonexistent. In this article,
we introduce a communication-aware, computation task-
scheduling problem for multirobot systems and propose an
integer linear program (ILP) that optimizes the allocation
of computational tasks across a network of heterogeneous
robots, accounting for the networked robots’ computational
capabilities and for available (and possibly time-varying)
communication links. We consider scheduling of a set of in-
terdependent required and optional tasks modeled by a de-
pendency graph. We present a consensus-backed schedul-
ing architecture for shared-world, distributed systems. We
validate the ILP formulation and the distributed implemen-
tation in different computation platforms and in simulated
scenarios with a bias toward lunar or planetary exploration
scenarios. Our results show that the proposed implementa-
tion can optimize schedules to allow a three-fold increase
in the amount of rewarding tasks performed (e.g., science
measurements) compared to an analogous system with no
computational load sharing.

Index Terms—Autonomous robots, concurrency control-
scheduling algorithms, distributed computing, multi robot
systems, space exploration.

I. INTRODUCTION

MULTIAGENT systems hold great promise for science
exploration in extreme environments. Correspondingly,

there has been a proliferation of national programs aimed at ex-
panding multiagent networked systems for caves [1], oceans [2],
and low-earth orbit [3], [4]. These environments can be consid-
ered the “extreme edge,” far from the robust computation and
omnipresent communication networks of connected cities.

In planetary exploration, there is an emerging push toward
more extreme environments, and therefore multiagent systems
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because single, flagship robots are limited to less-hostile op-
erating areas. Therefore, access to Recurring Slope Lineae or
planetary caves [5], [6] may be possible with multiple small,
potentially expendable rovers. Not surprisingly, we see potential
systems being demonstrated in the Mars helicopter [7], and the
“PUFFER” rover (Pop-Up Flat-Folding Explorer Robots) [8].
There is also evidence that next-generation spaceflight comput-
ing employed on these systems will be more like our current
mobile devices [7], [9], [10], [11], [12]. Finally, it is likely
that, in the future, multiple collaborating robots, astronauts, and
base stations will themselves be a complex and time-varying
processing and communication network (see, e.g., [13]).

The key metric of these system concepts is throughput of
observations and data. A compelling paradigm to increase the
throughput of heterogeneous multirobot systems is computa-
tional load sharing: By allowing robotic agents to offload com-
putational tasks to each other or to a “computational server”
(e.g., an overhead orbiter, a flagship rover, or a stationary lander),
computational load sharing can give access to advanced analysis
capabilities to small, low-power rovers with limited on-board
computing capabilities, or allow agents to do more memory-
or CPU-intensive work by leveraging nearby idle nodes. Pre-
vious work [14], [15] has shown that computational sharing
in robotic systems with heterogeneous computing capabilities
(e.g., Mars exploration scenarios) can lead to significant in-
creases in system-level performance and science returns.

These self-reliant, edge robotic systems share commonali-
ties that motivate our study. The first is an emphasis on en-
ergy conservation due to their remote, self-sustaining design.
The second is the possible use of heterogeneous systems, in
which some nodes contain more resources (power, computing,
communication, mobility, sensing, etc.) than others. The final
factor is intermittent and periodic loss of connectivity between
nodes. While the benefit of edge computation supporting mobile
phone networks continues to be well investigated (see the highly
influential [16]), the intermittent loss of communications and
time-varying position of the agents make it more challenging to
employ these concepts directly. This is true because it is chal-
lenging to route through a changing network, but also because
the source and destination change over time because agents are
collaborating and assisting each other (Fig. 1). The resulting
solution must tolerate partitions to the network or long delays
before data can be sent between nodes or back to a data center.

In this article, we formalize the communication-aware com-
putation task-scheduling problem and present an integer linear
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Fig. 1. Illustrative MOSAIC scenario. A set of processing tasks (on the
left as dependency graph) must be mapped to multiple assets with het-
erogeneous computing, communication, and energy capacities. Each
asset is also available over a fixed time window due to terrain effects
or orbital parameters. The goal is to compute all the required tasks as
quickly as possible.

program (ILP) that optimizes the allocation of computation and
communication tasks to heterogeneous agents, accounting for
the computational capabilities and time-varying communication
links. Because data and computation are shared among many de-
vices, we dub the resulting local computation-sharing network a
Multirobot Onsite Shared Analytics Information and Computing
(MOSAIC)) network.

We model and test with networks that use delay- and
disruption-tolerant networking (DTN) which provides transpar-
ent store-and-forward, multihop data routing between arbitrary
endpoints and negotiates intermittent interruptions and delays
in connectivity [17], [18]. Unlike mobile phone networks which
respond to arbitrary consumer actions, in cooperative multiagent
networks, agents can explicitly share their goals and constraints
with each other. Thus, we consider the robots’ intended actions
as part of the scheduling problem so that the robots can schedule
data-intensive tasks when assistance is available. Our evaluation
scenarios are biased toward multirover systems for Mars or the
Moon. However, the results generalize to arbitrary time-varying
communication graphs, such as vehicles on known street routes
or constellations in orbit. In a multirover scenario, we show
that distributed computation can increase the amount of science
performed three-fold compared to the same system with no
computational load sharing . We show that the solution includes
intuitive results such as designated relay nodes and “assembly
line” behaviors.

A. Related Work

The core computational problem addressed in this work
is communication-aware task scheduling. Task scheduling is
known to be NP-complete [19]; furthermore, while polynomial-
time approximation schemes for the problem exist, to the best
of the authors’ knowledge, no such schemes are known for the
task-scheduling problem when computing nodes have hetero-
geneous computational capabilities, i.e., the same task requires
different computation runtimes on different nodes [20]. A large
number of heuristic algorithms have been proposed to solve
the task-scheduling problem. Heuristics may be classified as
list-scheduling heuristics (e.g., [21]), which rely on greedily

allocating tasks according to a heuristic priority task assign-
ment; clustering heuristics (e.g., [22]), which identify groups of
tasks that should be scheduled on the same computing node;
and task duplication heuristics, which duplicate some tasks
to reduce communication overhead (e.g., [23]). In addition,
a number of guided random search algorithms are available,
including genetic algorithms [24] and ant colony optimization
algorithms [25]. See the survey in [26] and introduction in [27]
for a thorough review.

In particular, the heterogeneous earliest-finish-time (HEFT)
heuristic algorithm [27] provides excellent performance for
heterogeneous task-scheduling problems, and a number of varia-
tions of HEFT have been proposed [28], [29], [30]. However, the
HEFT algorithm and its derivatives generally assume that com-
putation nodes are able to perform all-to-all communication and
that the availability of communication links does not change with
time; they also do not capture access contention or bandwidth
constraints on communication links, and do not accommodate
optional tasks which are not required to be scheduled but result
in a reward when added to the schedule.

Heuristic approaches are also used in model-based schedu-
lers/temporal-planners that rely on activity-centric represen-
tations such as timeline-based modeling languages [31] and
the Planning Domain Definition Language (PDDL) [32], [33],
[34]. Research on PDDL temporal planners, for example, has
focused on domain-independent heuristics and has deployed
planning systems to several robotics applications, especially
those that require both planning and scheduling capabilities [35],
[36]. One of the main state-of-the-art temporal planners is
OPTIC [37]; OPTIC not only reasons about actions’ precon-
ditions and effects to determine the set of actions required
to achieve a given goal state, but also considers an action’s
temporal and resource constraints as well as soft state con-
straints (preferences) and continuous objective functions. Due
to its generality in the input representation, we compare the
performance of our approach with the OPTIC planner in
Section IV-B.

Several heuristics are also available for the online schedul-
ing problem, where computational tasks appear according to a
stochastic process, and are not revealed to the scheduler in ad-
vance [38], [39], [40]; recent work extends such schedulers to ac-
commodate communication latency constraints [41]. However,
online approaches generally perform poorly compared to offline
algorithms when the list of tasks to be executed is known in ad-
vance or in batch, a typical scenario for robotic exploration mis-
sions; in addition, even state-of-the-art online algorithms assume
that all-to-all communication between the computation nodes
is available. In contrast, the approach proposed in this article
does adapt to realistic time-varying communication constraints,
explicitly represents multihop communications between nodes,
and accommodates optional tasks, while offering sufficiently
fast computation times to make the approach amenable for field
use, as we show.

The problem of resource-aware scheduling in space applica-
tion has seen a significant amount of interest in the adaptive space
systems community. However, existing solutions tend to focus
on reconfigurability within an individual vehicle (see e.g. [42]);
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solutions applicable to multiagent systems generally assume that
all-to-all communication is available [43].

B. Contribution

Our contribution is three-fold. First, we design a task-
scheduling and task allocation algorithm based on integer
programming that accounts for time-varying, bandwidth-
constrained, multihop communication links and optional tasks,
and that returns high-quality solutions quickly. We also pro-
vide a distributed implementation of the algorithm based on a
shared-world, consensus-backed model. Second, we validate the
performance of the algorithm with extensive benchmarking on
several hardware architectures, including embedded architec-
tures such as PPC 750 and Qualcomm Flight, and with human-
in-the-loop field tests. Third, we explore and highlight emergent
load sharing behaviors produced by the scheduling algorithm,
and we quantitatively show that sharing of computational tasks
can result in significant increases in science throughput for a
notional multirobot mission. Finally, we provide an open-source
implementation of the core results for the community’s use.

Collectively, the results in this article show that sharing
of computational tasks among heterogeneous agents greatly
enhances heterogeneous multiagent architectures, resulting in
higher utilization of computational resources, lower energy use,
and increased scientific throughput for a given hardware archi-
tecture.

A preliminary version of this article was presented at the 2019
International Conference on Automated Planning and Schedul-
ing (ICAPS) [15]. In this extended version, we i) provide an
in-depth discussion of the ILP problem and several additional
extensions (including additional cost functions and first-order
modeling of network interference), ii) rigorously show that a
flooding-based algorithm can be used to provide a distributed
implementation of the scheduling algorithm for systems with
moderate numbers of agents, iii) report extensive benchmarking
results showing that the ILP can be solved effectively on em-
bedded hardware architectures suitable for robotic systems, and
iv) present an extended discussion of experimental results.

C. Organization

The rest of this article is organized as follows. In Section II,
we rigorously describe the multirobot, communication-aware
computation task-scheduling problem solved in the article. In
Section III, we provide a detailed description of the proposed
scheduling algorithm. In Section IV, we present experimental
results from a field test performed at Jet Propulsion Laboratory
(JPL) and highlight a number of interesting emerging orga-
nization behaviors. We also report benchmarks showing that
the proposed scheduling algorithm performs well on several
embedded hardware architectures. Finally, Section V concludes
this article.

II. PROBLEM DESCRIPTION

We now describe the communication-aware computation
task-scheduling problem for heterogeneous multirobot systems.

Fig. 2. Notional software network for the PUFFERs rovers.

A. Tasks and Software Network

We wish to schedule a set T of tasks, with |T | = M (that is,
the number of tasks in T is M ). Computational tasks of interest
can include, e.g., localizing a robot, computing a motion plan
for a robot, classifying and labeling the content of an image [44],
[45], or estimating the spatial distribution of a phenomenon
based on point measurements from multiple assets [46], [47].

Tasks may be required or optional. Required tasks, denoted
as R ⊆ T , must be included in the schedule. Optional tasks
T \ R are each assigned a reward score, denoted as r(T ) for each
optional task T ∈ T \ R, which captures the value of including
the task in a schedule.

The output of each task is a data product. Data products for
taskT are denoted as d(T ). The size (in bits) of the data products
are known a priori as s(T ) for task T .

Tasks are connected by dependency relations encoded in a
software network SN . Let PT ⊂ T be a set of predecessor tasks
for task T ∈ T . If task T̂ ∈ PT (that is, T̂ is a predecessor of
task T ), task T can only be executed by a robot if the robot
has data product d(T̂ ). If T̂ is scheduled to be executed on the
same robot as T , d(T̂ ) is assumed to be available to T as soon
as the computation of T̂ is concluded. If T̂ and T are scheduled
on different robots, d(T̂ ) must be transmitted from the robot
executing T̂ to the robot executing T before execution of T can
commence. An example ofSN used in our experiments is shown
in Fig. 2.

To ensure a solution exists, we require two assumptions.
Assumption 1 (Feasibility): There exists a schedule where

all required tasks are scheduled.
Assumption 2 (No circular dependencies): The software

network SN does not have cycles.
1) Agents: Agents in the network represent computing

units. Let there beN ∈ Z+ agents in the network. The agents are
denoted by A1, A2, . . . , AN . Each agent has known on-board
processing and storage capabilities.

The time and energy cost required to perform a taskT on agent
Ai are assumed to be known and denoted, respectively, as τi(T )
and Ce

i (T ). Depending on the application, time and energy cost
can capture the worst-case, expected, or bounded computation
time and energy; they are all considered to be deterministic.

2) Contact Graph: Agents can communicate according to a
prescribed time-varying contact graph CG, which denotes the
availability and bandwidth of communication links between the
robots.
CG is a graph with time-varying edges. NodesV inCG corre-

spond to agents. For each time instant k, directed edges Ek model
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Fig. 3. Contact graph for three agents showing connectivity time win-
dows and bandwidths available.

the availability of communication links; that is, (i, j) ∈ Ek if
node i can communicate to node j at time k. Each edge has a
(time-varying) data rate ranging from 0 (not connected) to ∞
(communicating to self), denoted by rij(k) for the rate from Ai

to Aj at time k. An example timeline representation for three
agents with available bandwidths can be seen in Fig. 3.

A key feature of DTN-based networking is contact graph rout-
ing (CGR) [17], [48]. CGR takes into account predictable link
schedules and bandwidth limits to automate data delivery and
optimize the use of network resources. Accordingly, by incor-
porating DTN’s store-forward mechanism into the scheduling
problem, it is possible to use mobile agents as robotic routers to
ferry data packets between agents that are not directly connected.

Communicating the data product d(T ) from Ai to Aj at time
k requires time

τij(T ) = min
τ

(
τ such that

∫ k+τ

κ=k

rij(κ)dκ ≥ s(T )

)

that is, τij(T ) is the shortest time required to transmit a total
of s(T ) bits at an instantaneous data rate rij(·) starting at time
k. If the data rate rij(·) is constant through the communication
window and sufficiently long for the transmission to occur, the
expression can be simplified to τij(T ) = s(T/)rij(k).

We model agents as single-threaded computers. If a robot
actually has multiple processors, even of different types, these
can be accommodated by modeling each processor as a comput-
ing agent, and connecting physically colocated processors with
infinite-bandwidth, zero latency communication links.

Assumption 3 (Computational resource availability):
Agents can only perform a single task at any given time, in-
cluding transmitting or receiving data products.

Assumption 4 (Communication self-loops): Agents take 0
time to communicate the solution to themselves.

3) Schedule: A schedule is (a) a mapping of tasks to
agents and start-times, denoted as S : T → (Ai, k), where
i ∈ [1, . . . , N ] and k ≥ 0, and (b) a list of interagent com-
munications (Ai, Aj , d(T ), k) denoting the transmission of
d(T ) from Ai to Aj from time k to time k + τij(T ) :

(
∫ k+τij(T )

k rij(κ)dκ = s(T )).
4) Optimization Objectives: We consider several optimiza-

tion objectives (formalized in the following section), including
1) Optional tasks: maximize the sum of the rewards r(T )

for optional tasks T that are included in the schedule;

2) Makespan: minimize the maximum completion time of
all scheduled tasks;

3) Energy cost: minimize the sum of the energy costsCe
i (T )

for tasks included in the schedule;
5) Scheduling problem: We are now in a position to state

the communication-aware computation task-scheduling prob-
lem for heterogeneous multirobot systems.

Problem 1 (Communication-Aware Computation Task-
Scheduling Problem for Heterogeneous Multirobot Sys-
tems). Given a set of tasks modeled as a software network SN ,
a list of computational agents Ai, i ∈ [1 . . . N ], a contact graph
CG, and a maximum schedule length C�, find a schedule that
satisfies

1) the maximum overall computation time is no more than
C�;

2) all required tasks T ∈ R are scheduled;
3) a taskT is only scheduled on agentAi at timek if the agent

has received all the data product d(T̂ ) for predecessor
tasks T̂ ∈ PT ;

4) every agent performs at most one task (including trans-
mitting and receiving data products) at any time;

5) the selected optimization objective is maximized.

B. Notes on Problem Assumptions

The assumption that a feasible schedule including all required
tasks exists (Assumption 1) is appropriate for multirobot systems
where each required task “belongs” to a specific robot (i.e.,
the task is performed with inputs collected by the robot, and
the output of the task is to be consumed by the same robot).
Examples of such tasks include localization, mapping, and path
planning. In such a setting, it is reasonable to assume that each
robot should be able to perform all of its own required tasks with
no assistance from other computation nodes; on the other hand,
cooperation between robots can decrease the makespan, reduce
energy use, and enable the completion of optional tasks.

In most relevant space applications, e.g., surface-to-orbit
communications, orbit-to-orbit communications, and surface-
to-surface communication in unobstructed environments, the
contact graph is predicted to a high degree of accuracy before the
mission begins, and is updated regularly. In obstructed environ-
ments where communication models are highly uncertain (e.g.,
subsurface voids such as caves, mines, tunnels), a conservative
estimate of the channel capacity could be used. Extending Prob-
lem 1 to explicitly capture uncertainty in the communication
graph is an interesting direction for future research.

Finally, Problem 1 also assumes that the communication
graph is not part of the optimization process. The problem of
optimizing the contact graph by prescribing the agents’ motion
is beyond the scope of this article (for a good example of the
vast literature, see [49], [50]); note the tools described in this
article can be used as an optimization subroutine to numerically
assess the effect of proposed changes in the contact graph on the
performance of the multirobot system.
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III. SCHEDULING ALGORITHM

A. Integer Linear Program (ILP)

We formulate Problem 1 as an ILP. We consider a discrete-
time approximation of the problem with a time horizon of C�

d

time steps, each of duration C�/C�
d , corresponding to the maxi-

mum schedule lengthC�. As is common in ILP formulations, the
number of time steps can be set to any value that balances runtime
vs. granularity. The optimization variables are as follows.

� X , a set of Boolean variables of size N ·M · C�
d .

X(i, T, k) is true if and only if agent Ai starts computing
task T at time k.

� D, a set of Boolean variables of size N ·M · C�
d .

D(i, T, k) is true if and only if agent Ai has stored the
data products d(T ) of task T at time k.

� C, a set of Boolean variables of size N2 ·M · C�
d .

C(i, j, T, k) is true if and only if agent Ai communicates
part or all of data products d(T ) to agent Aj at time k.

The optimization objective R can be expressed as follows.
� Maximize the sum of the rewards for completed optional

tasks

Rr =
N∑
i=1

∑
T∈T\R

C�
d−τi(T )∑
k=1

r(T )X(i, T, k). (1a)

� Minimize the makespan of the problem

RM = − max
i∈[1,N ]

max
T∈T

max
k∈[1,C�

d ]
(k + τi(T ))X(i, T, k). (1b)

� Minimize the energy cost of the problem

Re = −
N∑
i=1

∑
T∈T

C�
d∑

k=1

Ce
i (T )X(i, T, k). (1c)

Therefore, Problem 1 is formulated as follows.

maximize
X,D,C

R (2a)

subject to

N∑
i=1

C�
d−τi(T )∑
k=1

X(i, T, k) = 1 ∀T ∈ R (2b)

N∑
i=1

C�
d−τi(T )∑
k=1

X(i, T, k) ≤ 1 ∀T ∈ T \ R (2c)

X(i, T, k) ≤ D(i, L, k) (2d)

∀i ∈ [1, . . . , N ], T ∈ [1, . . . ,M ], L ∈ PT , k ∈ [1, . . . , C�
d ]

M∑
T=1

⎡
⎣ N∑
j=1

(C(i, j, T, k) + C(j, i, T, k))

+

k∑
k̂=max(1,k−τi(T ))

X(i, T, k̂)

⎤
⎦

≤ 1 ∀i ∈ [1, . . . , N ], k ∈ [1, . . . , C�
d ] (2e)

D(i, T, k + 1)−D(i, T, k)

≤
k∑

τ=1

N∑
j=1

rji(τ)

s(T )
C(j, i, T, τ) +

k−τi(T )∑
τ=1

X(i, T, τ)

∀i ∈ [1, . . . , N ], T ∈ [1, . . . ,M ], k ∈ [1, . . . , C�
d − 1] (2f)

C(i, j, T, k) ≤ D(i, T, k)

∀i, j ∈ [1, . . . , N ], T ∈ [1, . . . ,M ], k ∈ [1, . . . , T ] (2g)

D(i, T, 1) = 0 ∀i ∈ [1, . . . , N ], T ∈ [1, . . . ,M ]. (2h)

Equation (2b) ensures that all required tasks are performed
and (2c) ensures that optional tasks are performed at most once.

Equation (2d) requires that agents only start a task if they have
access to the data products of all its predecessor tasks. Equa-
tion (2e) captures the agents’ limited computation resources
by enforcing Assumption 3. Equation (2f) ensures that agents
learn the content of a task’s data products only if they i) receive
such information from other agents (possibly over multiple time
steps, each carrying a fraction rij(k)/s(T ) of the data product)
or ii) complete the task themselves. Equation (2g) ensures that
agents only communicate a data product if they have stored the
data product themselves. Finally, (2h) models the fact that data
products are initially unknown to all agents.

The ILP has N2MC�
d + 2NMC�

d Boolean variables
and M(N(3C�

d − 1) +N) +NC�
d constraints; instances with

dozens of agents and tasks and horizons of 50–100 time steps
can be readily solved by state-of-the-art ILP solvers, as shown
in Section IV.

B. Modeling Extension: Capturing Network Interference

The ILP formulation can be extended to capture network inter-
ference as follows. In (2), link bandwidths rij are assumed to be
fixed and independent of each other: that is, the communication
bandwidth rij on a link is assumed to be achievable regardless
of communication activity on other links. This may not hold
for systems with robots in close proximity that share the same
wireless channel. In such a setting, interference introduces a
coupling between the achievable bandwidths on different links,
and the amount of data that can be exchanged by interfering
links is limited by the channel capacity of the shared physical
medium.

The formulation in (2) can be extended to capture a first-order
approximation of this effect, letting individual link bit rates be
decision variables subject to constraints on the overall channel
capacity. Effectively, agents are allowed to use less than the full
capacity of individual links to ensure that their transmissions do
not cause interference on other links sharing the same wireless
channel.

To accommodate, define an additional set of real-valued deci-
sion variables R of size N2 ·M · C�

d . R(i, j, T, k) denotes the
amount of bits of the data product of task T that is transmitted
from agent Ai to agent Aj in time interval k.

Under this model, the interfering links’ channel capacity
r(I, k) (that is, the overall amount of bits that links in I can
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Fig. 4. Distributed implementation of the ILP relies on a broadcast–
plan–execute cycle. First, agents exchange information about their own
state through a message-passing algorithm and achieve a consensus
on the system state. Next, all agents solve Problem (2) with the system
state as input and with a deterministic stopping criterion. Finally, all
agents execute the tasks assigned to them by the solution to Problem
(2).

simultaneously transmit) is known, for each discrete time in-
terval k and each subset I ∈ I ⊂ 2N

2
of links that is subject

to mutual interference. In order to avoid introducing an ex-
ponential number of constraints, it is desirable to consider a
modest number of sets of interfering links based on the agents’
geographical proximity. For instance, if all robots are operating
in close proximity and can interfere with each other, the overall
bandwidth of all links should be constrained to be smaller than
the capacity of the shared channel, resulting in the addition of a
single interference constraint.

Equation (2f) is replaced by the following equations:

R(i, j, T, k) ≤ ri,j(k)C(i, j, T, k)

∀i, j ∈ [1, . . . , N ], T ∈ [1, . . . ,M ], k ∈ [1, . . . , T ] (3a)

D(i, T, k + 1)−D(i, T, k)

≤
k∑

τ=1

N∑
j=1

1

s(T )
R(j, i, T, τ) +

k−τi(T )∑
τ=1

X(i, T, τ)

∀i ∈ [1, . . . , N ], T ∈ [1, . . . ,M ], k ∈ [1, . . . , C�
d − 1] (3b)∑

i,j∈i

∑
T∈[1,...,M ]

R(j, i, T, k) ≤ r(i, k) ∀i ∈ I, k ∈ [1, . . . , T ].

(3c)

Equation (3a) ensures that the effective bit rate on a link
is nonzero only if a communication occurs on the link; (3b)
models the process by which robots learn data products through
communication, closely following (2f); and (3c) ensures that the
sum of all effective bit rates on interfering links does not exceed
the channel capacity.

C. Distributed, Real-Time Implementation

In order to provide a distributed, real-time implementation of
the scheduler presented above suitable for field use, we leverage
a shared-world approach using a “broadcast, plan, and execute”
cycle (shown in Fig. 4).

Agents are assumed to have access to a common clock and
have preexisting knowledge of the duration of the broadcast,
plan, and execute phases of the cycle. The agents also know what
programs or processes may be included in the software network
SN (even if not all agents can execute all processes). They are
not aware of the optimization objective, namely, the execution
times, energy costs, sequences, and rewards of individual tasks.

1) Broadcast: At an agreed-upon time, agents start the
“broadcast” phase; during this phase, agents exchange their
state with all other agents through a flooding message-passing
algorithm [51, Ch. 4], and achieve a consensus on the overall
system state. The duration of the broadcast phase is selected
to ensure that consensus can be achieved for any possible
network topology. As discussed in the Extended Version [52],
if the communication network is strongly connected, systems
with 10–50 agents can achieve consensus in under a second
under conservative assumptions on the size of agents’ states and
available link bandwidths.

The state of each agent includes i) the estimated present
and future bandwidths rij between each agent and their
neighbors, ii) the time and energy costs {τi(T )}i∈[1,N ],T∈T ,
{Ce

i (T )}i∈[1,N ],T∈T required by the agent to perform each
possible task, and iii) the rewards {r(T )}T∈T\R for performing
optional tasks.

This approach is responsive to time-varying task rewards and
agent capabilities. However, the choice of a single broadcast
epoch per round does cause some delay in responsiveness,
since agent capabilities and rewards can only be updated if
they appear prior to the start of the broadcast phase for each
cycle.

a) Plan: Once the broadcast phase is over, agents switch
to the “plan” phase. In this phase, each agent solves Problem (2)
with the network topology, tasks set, and vehicle states computed
in the broadcast phase as inputs.

Problem 1 is in general NP-hard, and a solver may fail
to find an optimal solution within the allocated time. To
ensure that a feasible final solution is found, we provide the
solver with a trivial initial solution (which exists, according
to Assumption 1). To ensure that all agents agree on the same
solution, we use a deterministic MILP solver (i.e., a solver that
explores the decision tree according to a deterministic policy),
and we employ a deterministic stopping criterion (i.e., the
solver terminates after a prescribed, deterministic number of
branch-and-bound steps, selected to ensure termination within
the duration of the “plan” phase).

b) Execute: Once the plan phase is over, agents switch
to the execution phase; here, each agent reads the output of
Problem (2) and executes the tasks that are assigned to itself
according to the timing prescribed by the schedule.

This approach provides a distributed and anytime implemen-
tation of Problem 1 which we implement and test in the next
section.

D. Remarks

In the problem formulation, communication tasks do con-
sume computational resources on both the transmitter and the
receiver (Assumption 3). This is in line with the current mode
of operations of space missions, where communication is not
concurrent with other activities due to computational, power,
and reliability considerations. As a result, the rovers’ activities
should be synchronized: In absence of synchronization, a rover’s
transmission could interrupt computational activities on the
receiver, or be lost if the receiver is unavailable.
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In the light of this, the selection of a “broadcast–plan–execute”
distributed implementation, which relies on the availability of
synchronization between the agents, is preferable for its sim-
plicity and ease of verification.

In cases where agents can concurrently communicate and
perform computational tasks, a more versatile asynchronous
distributed implementation could also be used. We propose such
an asynchronous load sharing execution mechanism in [53]; the
proposed architecture is agnostic to the task-allocation mecha-
nism used, and is therefore compatible with plans provided by
the ILP.

The broadcast–plan–execute cycle relies on synchronization
of the agents’ clocks and on accurate knowledge of the duration
of tasks to be executed. Deviations from predicted execution
times can result both in tasks not being completed in the
“execute” phase, and in missed communication windows (if,
e.g., a task is not completed by the time its data products
should be transmitted to another agent). The cyclic nature of
the broadcast–plan–execute cycle allows “missed” tasks to be
rescheduled at a later time step; nevertheless, the design of
robust scheduling algorithms that can accommodate uncertainty
in synchronization and in task execution times is an interesting
direction for future research.

While the flooding-based synchronization mechanism itself
is quite robust (as discussed in the previous subsection), the
overall scheduling approach is not robust to failures of the
broadcasting synchronization mechanism. The integration of
more robust coordination mechanisms (e.g., challenge–response
to verify that agents have achieved a consensus, and watchdogs
triggering the execution of an agreed-upon contingency plan) is
an interesting direction for future research.

Finally, the complexity of the ILP scales exponentially with
the number of agents; accordingly, in principle, it may be
infeasible to obtain a high-quality solution to Problem 2 at a
sufficient cadence for control of a multirobot system, especially
on embedded platforms. However, in Section IV-B, we show
that state-of-the-art ILP solvers can provide high-quality (if
not optimal) solutions within tens of seconds, even on highly
constrained platforms.

IV. EXPERIMENTS

In this section, we explore the performance of the proposed
approach on a variety of realistic problems. First, we present
field tests of a distributed implementation on a set of mobile,
wirelessly connected, Raspberry Pis. Second, we assess the
computational complexity and performance of the approach
through rigorous benchmarks on a variety of computational
architectures.

A. Distributed Hybrid Implementation

The goals of these experiments were to implement and
test the distributed version of Problem (2), and, specifi-
cally, the broadcast–plan–execute architecture in Section III-
C, in realistic and challenging environments. We sought to
check for four important characteristics of a field-deployed
system.

� Robustness: Does the proposed approach run for extended
periods of time? It may crash, we may encounter violated
assumptions, or the ILP may not find a feasible solution
in time.

� Computational cost: Does the implementation scale well
and run quickly on realistic computing architectures?

� Networking: Are communication tasks scheduled rea-
sonably, despite the additional complexity of scheduling
computation? Since our ILP contains data routing as a
subproblem, we expect the solutions to contain reasonable
routing behaviors.

� Load Balancing: Does the solution exhibit load-balancing
behaviors when nodes with uneven computational load
have good communication between them?

� Science Optimization: Does the system achieve an in-
crease in throughput of science data compared to a naive
approach?

We used a notional multirobot scenario where multiple small
rovers perform both “housekeeping” tasks (e.g., sensing, path
planning) and science tasks (e.g., microscope measurements)
and are aided by a computationally capable base station. This is
illustrated in Fig. 5. The concept of operations is loosely based
on JPL’s PUFFER robots [54].

The software network used is shown in Fig. 2. Tasks are
arranged in two sets. “Housekeeping” tasks (Fig. 2, top) are
based on the Mars Perseverance rover’s autonomy architecture,
and their execution time is based on actual benchmarks on Perse-
verance’s on-board RAD750 [55]. Housekeeping tasks include
i) capturing an image of the terrain, ii) self-localization based
on that image, iii) planning a path through the environment, and
iv) dispatching the drive command. While image capture and
drive command have to be executed on board, localization and
path planning tasks can be delegated to another robot in the
network.

To model optional, autonomous science activities, we also
added the “science tasks” shown in the bottom of Fig. 2. Specif-
ically, PUFFERs can i) collect a sample from the environment;
ii) analyze it; and iii) send the analysis data to the base station
for storage and eventual uplink. The sample analysis task can
be assigned to another node. Only agents inside predesignated
“science zones” can perform sample collection; storage must be
performed by the base station. Each science task has a reward
associated to it; the reward for sample collection is set to 5,
the reward for data analysis is 10, and the reward for storing
data is 20. Note that no actual sampling and analysis tasks were
executed; rather, task execution was simulated by allocating time
in the schedule computed by each node.

This set of “science tasks” represents the scenario where
PUFFERs explore a distributed but spatially correlated phe-
nomenon, such as water moisture levels, by performing krig-
ing [47], a process routinely used for spatial estimation in
farming on Earth [46].

The base station’s computational power is an order of mag-
nitude larger than an individual robot’s, and it is equipped with
the same communication equipment as the other nodes in the
network. The base station is not assigned any required tasks;
its key role is to serve as a supporting node for sharing the
computational load of the network.
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Fig. 5. Illustrative scenario in the Mars Yard at JPL (top left), pictures of the hardware nodes (top right), and one scheduled timeline (bottom).
Timelines represent the operational cycle and the task allocation. Communication links can be disabled to test system adaptation and relocation of
tasks. RVIZ view provides vehicle positioning and network topology information.

In the field experiments, the PUFFERs were represented by
Raspberry Pis (model 3) with a GPS receiver, and the base
station was a desktop computer at a fixed location. The Pis
were moved about within an outdoors experimental area with
two marked “science zones” by human experimenters. We had
limited control over positions of the nodes during the experi-
ment and demonstration, due to the use of the highly portable
Raspberry Pis and participation of enthusiastic observers from
JPL and direction from observing sponsors. Accordingly, this
experiment was an ideal test of the reliability and robustness of
the overall architecture; separate software benchmarks (reported
in the next section) are better suited to assess the computational
cost and performance of the approach.

To control the communications network, all platforms were
connected through a WiFi router; bandwidths between nodes
were computed in simulation based on i) interagent distance;
ii) the presence of no-communication zones (shown in red in
Fig. 5); and iii) direct human intervention (i.e., the experi-
menters’ ability to disable selected communication links on
demand). Data rates between agents were based on interagent
range according to a piecewise constant function: Available
bandwidth ranged from 1 Mbps for ranges between 15 and 200 m
to 11 Mbps for ranges between 0 and 5 m, or zero (unavailable)
if the line-of-sight between two vehicles crossed obstructions
(shown as red zones in Fig. 5).

The logical layers on all agents was implemented using the
Robot Operating System (ROS). For each vehicle in the network,
we developed a set of simulated components, including a com-
munication system to handle the broadcasting phase and transfer
of data, a science component to simulate science tasks, a naviga-
tion/localization system to keep track of the vehicle’s pose, and a
controller to plan and dispatch tasks according to the scheduler.

We also developed tools to visualize 1) the execution timeline
(and task allocation); 2) the network topology and bandwidth;

and 3) the vehicles’ positions in the environment. The tools also
enable manipulation of the simulation by adding additional no-
communication zones and removing communication links. The
software interface is shown in Fig. 5.

The agents were assumed to have access to a common clock,
and we considered an operational cycle 45 s long, where 5 s was
dedicated to the “broadcast” phase, 10 s the “plan” phase, and 30
s to execution (in line with the expected duration of the tasks in
the software network in Fig. 2). In practice, we would expect a
much longer execution cycle, and perhaps shorter broadcast/plan
phase, but these values allowed increased introspection and
iteration during field tests.

The ILOG CPLEX solver was used to solve the ILP. Since
CPLEX does not support an ARM architecture, we deployed the
scheduler in an x86 server (AWS m5.xlarge) that was queried at
each plan phase by each vehicle. Vehicles called the scheduler
independently; the solution received by each vehicle was guar-
anteed to be consistent with the other vehicles’ through use of a
deterministic solver with a deterministic stopping criterion (as
discussed in Section III-C). The deterministic amount of solver
steps corresponded to approximately 10 s of execution on the Pi.
To ensure anytime availability of a feasible solution, the solver
was seeded with an initial solution where agents did not share
any computational tasks and executed no optional tasks, which
is guaranteed to be feasible.

Representative portions of the field test are shown in a video
in the Supplementary Material.1 We provide a software release
for full exploration of the results (Section IV-B). Experiments
were run for four hours, and demonstrated all of the following
characteristics.

1) Robustness: During the 4-h-long demonstration, nodes
were added and removed from the network (by activating and

1Available at https://youtu.be/zTQ7Y4-ax2A.
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Fig. 6. Relay and assembly line emerging behaviors (yellow and green
annotations were added manually to the RViz output from the field
demonstration).

deactivating the corresponding Raspberry Pi’s), and active nodes
were moved around by observers, including in and out of sci-
ence zones. We verified that the proposed approach is able to
consistently provide good solutions to problems with 3 to 15
nodes within the 10-s planning window, and that the broadcast–
plan–execute architecture can be used to provide a distributed
implementation of Problem (2) that is robust to unforeseen,
human-driven changes in the network topology and in the tasks
to be scheduled.

a) Networking and Data Relay: One of the most
intuitive, and obviously beneficial emergent behaviors we ob-
served was that of relay activities. Relay nodes, informally
speaking, did nothing more than relay communications between
other nodes while tending to their own housekeeping tasks.
This behavior was induced reliably through the use of the
no-communication zone to block direct communication with the
base station. Traffic was reliably routed though nodes that were
between the base station and the sender instead, as shown in
Fig. 6.

b) Load Balancing and Science Clusters: The
choice of the software network places additional load on nodes
that are in “science zones,” by adding (optional) science tasks
to their list of tasks. In a recurring behavior, “science clusters”
formed whenever one vehicle was inside a science region, and
other vehicles were nearby but outside. For example, in Fig. 6,
the nodes in both science zones off-loaded their localization and
path-planning tasks to the other nearby agent, so as to perform
multiple sample collection and analysis tasks.

c) Science Optimization: Due to the timing chosen
for the software network, the proposed approach could yield at
most a threefold increase in the number of optional science tasks
performed for each node in a science zone. That is, the sum of
the computation times of all relocatable housekeeping tasks was
twice the cost of a science task; therefore, by doing only science
and offloading all relocatable housekeeping tasks, an agent could
gather three times more science than would have been possible
with no load sharing. The additional analysis and storage tasks
placed additional load on nodes outside of the science zone,
if appropriately tasked. This threshold was achieved for some
nodes that had sufficient nearby nodes, and sufficient throughput

to the base station. Again in Fig. 6, the left science node was
able to schedule three sample-gather tasks, by offloading tasks
to nearby agents. We can explore the likelihood of this occurring
in random networks in Section IV-B.

d) Science Optimization With Assembly Lines:
The combination of relay and load balancing produces and
interesting result that was unintended but obvious in hindsight.
When the system did reach the maximum observed science
throughput, the relay nodes also served as computational aids
for the science tasks, analyzing the data enroute to the base
station akin to an “assembly line.” We illustrate an occurrence
of such a case in Fig. 7. The node labelled PUFFER 1 is in
the left-most science zone and offloads localization (cyan) to
nearby PUFFER 6, as in the “science cluster” scenario. PUFFER
1 also schedules three samples (red). Two sample data products
are then transferred to PUFFER 2, which acts as a relay to the
base station. PUFFER 2 analyzes one sample and forwards the
resulting analysis result and one sample data product to PUFFER
3; PUFFER 3 analyzes the sample and transfers two analyzed
data products to the base station for storage. The third sample
data product is not analyzed or stored due to the short time
horizon; nevertheless, it is collected to receive the corresponding
reward. As mentioned, a threefold increase per node in science
zones is the maximum possible increase due to the amount of
time to execute compared to the time costs of all the tasks.

The “assembly line” result is quite interesting and may have
unexplored efficiency increases for edge computing networks
like terrestrial 5G networks.

e) Store and Forward, and Data Muling: Because
the planner has knowledge of the future state of the communica-
tions network, it should be possible to plan for future connectiv-
ity and store-and-forward packets to a node in preparation for a
link coming online. If the link comes online because the storing
node moves, this is sometimes called “data muling” [56]. We
did not observe this in field testing because we could not predict
the future state of the communications network, due to human
manipulation. However, the data muling behavior was readily
observed and reproduced in simulation, as shown in Fig. 8 and
in the video in the Supplementary Material.

B. Software Benchmarks

Next, we show through numerical results that the proposed
ILP can be solved efficiently on a variety of hardware platforms,
including embedded platforms suitable for robotics applications,
and we explore the benefits of the approach compared to a
“selfish” scenario, where agents cannot share computational
tasks. To this end, we test the performance of a centralized
version of Problem (2) on several hardware architectures for 20
randomly generated network topologies (shown in Fig. 9) and
several cost functions. In each scenario, a subset of the agents
was randomly placed in “science zones”; agents in science zones
were able to collect one sample, which could optionally be
analyzed and stored.

For each instance, the number of agents (proportional to
number of tasks to schedule) was varied from 2 to 13 agents
to assess the scalability of the proposed approach. Optimization
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Fig. 7. Illustrative example of the assembly line case.

Fig. 8. Example simulation of the data mule scenario. Left: Three Puffers have a weak link to the base station, but the middle robot will move
closer and so both robots transmit their data to it rather than directly to the base station. Right: Later, the red robot transmits all data to the base
station. See Supplementary videos and Section IV-B.

Fig. 9. Two example scenarios from the numerical experiments. The
base station is yellow. Nodes able to perform science tasks are in red;
nodes unable to perform science tasks are shown in black, and the width
of edges shows bandwidth.

objectives included i) maximization of reward from optional
task; ii) minimization of energy expenditure; and iii) a linear
combination of the two. The problem was solved on several
computing platforms, specifically

1) a modern Intel Xeon workstation equipped with a 10-core
E5-2687 W processor;

2) an embedded Qualcomm Flight platform equipped with
a APQ8096 SoC;

3) a Powerbook G3 computer equipped with a single-core
PowerPC 750 clocked at 500 MHz, the same CPU (albeit
without radiation tolerance adjustments) as the RAD750
used on the Curiosity and Mars 2020 rovers [57].

The ILP was solved with the SCIP solver [58]. For each
problem, we computed both the time required for the solver to
find and certify an optimal solution, and the quality of the best
solution obtained after 60 s of execution. We also compared the
performance of the proposed scheduler with the state-of-the-art
OPTIC PDDL scheduler [37]. Results are shown in Fig. 10.

On the Xeon architecture, the median solution time for prob-
lems with up to six agents is under 10 s, and the median solution
time for problems with up to nine agents is under 100 s (Fig. 10,
top). The proposed anytime implementation is consistently able
to find an optimal solution for problems with up to 11 agents in
under 60 s (Fig. 10, middle). On the embedded Qualcomm SoC,
the median solution time for problems with up to four agents is
under 10 s, and the anytime implementation finds the optimal
solution to problems with up to eight agents in under 60 s.
Finally, even the highly limited PPC 750 processor is able to find
an optimal solution to problems with up to five agents in under
60 s—a remarkable achievement for a 20-year-old processor.

The ILP scheduler offers superior performance compared to
the anytime implementation of the OPTIC scheduler (Fig. 10,
bottom). In particular, solving Problem (2) results in higher
quality solutions for a given problem size and execution time,
and OPTIC is unable to return solutions for problems with more
than seven agents even on the Xeon architecture.

We also assessed the potential benefits of the proposed ap-
proach on a more complex version of the problem, where each
agent in a “science zone” was able to collect up to three samples.
We solved the same set of problems shown in Fig. 9 with up to
nine agents; for each instance, we compared the solution to the
ILP with a “selfish” allocation where agents were not allowed
to share computational tasks (except for the storage task, which
was constrained to be executed on the base station). We evaluated
the solution quality both after 60 s of execution, and after 3600 s
of execution (a time sufficient to achieve and prove optimality
for the vast majority of the scenarios considered).

Fig. 11 shows the overall number of tasks performed and the
average energy usage per task across all problem instances. After
1 h of execution, the proposed approach yields a 37.3% increase
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Fig. 10. Numerical results on several hardware platforms, and comparison with the OPTIC PDDL scheduler. Left: Time required to solve Problem
2 to optimality. Middle: Suboptimality as a fraction of the optimal solution after 60 s of execution for Problem (2) and (right) for the OPTIC PDDL
solver [37].

Fig. 11. Proposed approach vs. “selfish” approach (no sharing of CPU
time). Left: tasks performed. Right: average energy per task.

in the number of samples collected and analyzed, and a 30.4%
increase in the number of samples stored, compared to the selfish
approach; the approach also results in a 41.4% reduction in
average energy use for the sample analysis task, which more than
outweighs the small increase in energy use for communications.
Remarkably, a similar trend is observed even when the solver
is stopped after 60 s: Here, the proposed approach results in a
30.6% increase in the number of samples collected and analyzed,
a 19.7% increase in the number of samples stored, and a 44%
decrease in the average energy use for sample analysis compared
to the selfish approach.

Collectively, these results show that the proposed approach
holds promise to yield significant increases in scientific returns
and decreased energy usage; can be implemented on embedded
robotic architectures with modest computational performance;
and performs well in highly dynamic environments, making it
well-suited for field robotics multiagent applications.

1) Reproducing Our Results: We have released implemen-
tations of Problem (2) using the CPLEX, SCIP, and GLPK MILP
solvers under a permissive open-source license. The implemen-
tations are available online at github.com/nasa/mosaic. Provided
scenario files allow reproduction of all of the emergent behaviors
discussed.

V. CONCLUSION

In this article, we described the communication-aware com-
putation task-scheduling problem for heterogeneous multirobot
system and the MOSAIC architecture. We proposed an ILP
formulation that allows to optimally schedule computational
tasks in heterogeneous multirobot systems with time-varying
communication links. We showed that the ILP formulation is
amenable to a distributed implementation; can be solved effi-
ciently on embedded computing architectures; and can result in

a threefold increase in science returns compared to systems with
no computational load sharing.

A number of directions for future research are of interest.
First, we plan to explore pathways to infusion of the MOSAIC
architecture in future multirobot planetary exploration missions.
The proposed Mars sample return mission concepts plan to
revisit the same area with multiple launches to fetch, retrieve,
and eventually launch soil samples for return to Earth [59].
This offers an especially attractive avenue for deployment of
MOSAIC, where each deployed asset could act as an “infrastruc-
ture upgrade,” providing communication, computation, and data
analysis services for all subsequent assets. Agents participating
in the MOSAIC could include Cubesats similar to MarCO
[60]; assets embedded in the “sky crane” lander and dropped
during the “flyaway” phase [61]; tethered balloons [62]; and
aerostationary orbiters providing constant assistance to half the
Mars surface [63]. The algorithms proposed in this article can be
used during the system design phase to optimize the hardware of
the distributed missions by simulating the scheduling problem
in the loop with an iterative hardware trade space explorer such
as [64].

Second, we will design software libraries and middlewares
that enable integration of the proposed scheduler with existing
autonomy software, autonomously and transparently distribut-
ing computational tasks according to the optimal schedule. A
preliminary effort in this direction can be found in [53].

Finally, it is of interest to extend the proposed scheduling
approach to handle uncertainty in the contact graph and in
the execution time of individual task. One promising research
avenue is to incorporate stochastic optimization tools as well
as probabilistic planning and scheduling approaches [65] to the
computation sharing problem, which holds promise to provide
guarantees that the MOSAIC is able to operate within given
bounds on the uncertainty of the problem inputs.
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