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Abstract—This paper presents a summary of findings related 

to some current developments and emerging applications of the 

space edge-computing and onboard artificial intelligence (AI) as 

discussed at a workshop by the IEEE Future Directions Low-

Earth Orbit Satellites and Systems (LEO SatS) Initiative. It 

focuses on the state-of-the-art AI techniques across various layers 

of the space communication link, benchmarking of deep-learning 

models and flight software applications evaluated on embedded 

processors on board the ISS, a mission for in-orbit experiments of 

AI and edge computing, and AI safety and security with 

applications in the context of Dataspaces and satellites for Earth 

observations. 
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I. INTRODUCTION 

One of the emerging topics in satellite-systems research 
involves integrating computational and artificial intelligence 
(AI) capabilities directly within spacecraft or satellite systems 
(space-edge computing). This enables such systems to process 
data and make decisions locally, in real-time, without constant 
communication with ground-based systems. Such solutions may 
accelerate the convergence of terrestrial and non-terrestrial 
networks to implement real-time or near-real-time telecontrols. 

Since the Sputnik moment in 1957, thousands of artificial 
satellites have been placed in orbits above the Earth. The 
geostationary (GEO) satellites orbit the Earth at 35,785 
kilometers (km) above the equator with a 24-hour orbit. The 
medium-Earth orbit (MEO) satellites are located at 2,000 to 
36,000 km with orbits between 2 and 8 hours, and the low-Earth 
orbit (LEO) at 160 to 2,000 km with orbits about 90 minutes 
long. The satellites have transformed global digital 
communications used for television, radio, phones (e.g., Telstar, 
Iridium, Globalstar, O3b), internet (Starlink, OneWeb), store-

and-forward (CASSIOPE, Orbcomm), navigation (GPS, 
GLONASS, BeiDou), industry and military. 

Of particular interest are the recent advances in LEO 
satellites and systems because they are closer to the terrestrial 
networks, with a much shorter latency time (around 25-88 ms, 
compared to 477-600 ms for GEO satellites, i.e., around 170 
times shorter). Using optical inter-satellite laser 
communications with LEO satellites, even lower latencies than 
terrestrial fiber can be achieved because propagation in free 
space is 50% faster than fiber optical cables. Over the years, 
many large and expensive research-oriented systems have been 
placed there, including the International Space Station (ISS) at 
about 410 km, the Chinese Tiangong space station at about 340 
km, and the Hubble Space Telescope orbits at about 540 km. 
They are designed to operate as stand-alone systems (extra-
heavy sats with over 7,000 kg). Within the last decade, 
thousands of smaller satellites have been placed into orbit, 
including small sats (601 to 1,200 kg), minisats (201 to 600 kg), 
microsats (11 to 200 kg), nanosats (1 to 10 kg), picosats (0.1 to  1 
kg), and femtosats (< 0.1 kg), the latter often developed by 
senior multidisciplinary college and university students as a part 
of their advanced experiential learning (e.g, [1]). 

The short latency time is extremely attractive for possible 
real-time teleoperations (e.g., [2], [3]). However, since the field 
of view of each LEO satellite is small, constellations of such 
satellites have been implemented to operate and communicate 
among themselves using microwave bands (e.g., Ku 12-18 GHz, 
Ka 26.5–40 GHz, V 50-75 GHz, E 60-90 GHz) with phased-
array beam-forming and digital processing technologies, and 
now optical inter-satellite links [4] to provide continuous 
coverage at many places on the planet. 

To help in consolidating research and educational activities 
in this area, the LEO Satellites and Systems (SatS) Initiative was 
conceived in 2020 and started its operations under the IEEE 



Future Directions in March 2021 [5]. This paper summarizes a 
recent LEO SatS workshop about some current developments 
and emerging applications of the space edge-computing and 
onboard AI. In the following sections, we provide a focus on (i) 
machine learning (ML) for mega satellite networks, (ii) 
benchmarking deep learning models on edge processors 
onboard the ISS, (iii) benchmarking flight software applications 
on the Snapdragon processor on-board the ISS, (iv) the OPS-
SAT Space Lab as space to experiment with edge computing and 
on-board AI,  and (v) exploring the synergy between Gaia-X and 
satellites for data-driven earth observation. 

II. ML FOR MEGA SATELLITE NETWORKS 

A. Mega Satellite Networks 

Since the early commercial use of satellite communications 
in the 1960s, the technology has evolved significantly. However, 
the underlying bent-pipe architecture has persisted for more than 
five decades. In this setup, the satellite acts as a simple analog 
relay that receives uplink signals from ground stations and 
transmits them back to the same or different coverage spots. This 
approach results in poor spectral efficiency as radio resources 
are occupied throughout the entire coverage area. To overcome 
this limitation, high-throughput satellites (HTS) have emerged, 
providing hundreds of smaller coverage spots where spectral 
resources can be spatially reassigned. This breakthrough 
architecture has greatly increased spectral efficiency, resulting 
in hundreds of times higher throughput. Thus, it has made it 
economically and technically viable to provide coverage to 
remote and hard-to-reach limited regions. 

Traditionally, most satellite communication services, 
including HTS, were provided by geosynchronous equatorial 
orbits (GEO), with a few exceptions, such as the Iridium and 
GlobalStar constellations that aimed to offer global or near-
global mobile satellite services (land mobile satellite service - 
LMS) with voice and narrowband data connections. Until 
recently, global wideband satellite connectivity has been either 
too costly or slow compared to the highly reliable terrestrial fiber 
network. This limitation was primarily due to the prohibitive 
costs of satellite development and launch. However, with the 
significant reduction in these costs in recent years, the path to 
achieving true global satellite connectivity has now opened. 
Several major players, such as Starlink, OneWeb, and Amazon, 
currently deploy thousands of satellites in Low Earth Orbit 
(LEO). Fig. 1 provides an overview of the current status of these 
two constellations showing the staggering number of satellites. 

Such large constellations can be called mega, massive, or 
dense, distinguishing them from the much smaller, older LMS 
networks. Mega satellite networks offer several key advantages, 
including: (i) Significantly reduced latency compared to GEO 
orbits. (ii) Higher spectral efficiency due to smaller coverage 
spots, resulting in higher throughput. (iii) Reduced free space 
path loss, leading to smaller and more cost-effective ground 
terminals and satellites. (iv) The potential to provide lower 
delays than fiber networks when utilizing intersatellite links 
(ISL). (v) Redundancy and resilience due to the large number of 
satellites and overlapping coverage spots. (vi) Global or near-
global coverage, depending on the configuration of the orbits. 
However, the deployment of such a massive number of satellites 
also brings forth numerous challenges. 

B. Challenges in Mega Satellite Networks 

Spectrum availability: Spectrum scarcity is already a 
concern with current satellite systems, and mega satellite 
networks will exacerbate this challenge. The sheer scale of these 
networks will push spectrum availability to a whole new level, 
posing challenges for current and future operators. 

Radio channel fluctuations: To address spectrum scarcity, 
exploring higher frequency bands, including terahertz (THz) and 
wireless optical links, is a potential solution. However, operating 
in these bands introduces increased atmospheric impact, both in 
terms of severity and variability, which can affect signal quality 
and reliability. 

Interference: Cross-satellite interference and interference 
from other satellite constellations or terrestrial sources can have 
a detrimental impact on signal quality and overall network 
performance. 

Intersatellite connection: although promising, are not yet 
widely implemented in current mega satellite networks due to 
the technical complexities involved. Challenges include 
determining the appropriate physical interface (optical, 
millimeter-wave, or terahertz) and implementing the required 
online processing for efficient routing. 

Jitter and topology optimization: Mega satellite networks 
exhibit a high level of complexity and dynamic topology. 
Optimizing routing paths involves considering various factors, 
such as minimizing delay and reducing overall energy 
consumption. Fig. 2 illustrates a low-density mega constellation 
with two possible routes based on desired costs. 

Network modelling: The increasing complexity of mega 
satellite networks makes it challenging to establish the 

 

Fig. 1. Example of two mega satellite constellations as of mid-2023, (a) 

OneWeb 636 satellites in Walker-star configuration, (b) StarLink 4,275 

satellites primereley in Walker-delta confguration. 

 

Fig. 2. Example of two possible ISL routes for different cost consideration 

(delay and energy). 



tractability of network parameters against performance metrics. 
New analytics and simulation tools [6] are required to address 
the unique characteristics of satellite networks, which differ 
significantly from terrestrial cellular systems. 

Network security: Securing mega satellite networks against 
unauthorized access, cyberattacks, spoofing, and signal 
jamming is a critical challenge. The broadcast nature of satellite 
communications adds complexity to implementing robust 
security measures, requiring diligent efforts. 

Integration with terrestrial networks: Is necessary to 
provide a consistent user experience when transitioning between 
urban and remote regions. In addition to technical challenges, 
regulatory and standardization efforts are crucial to address 
interoperability and ensure smooth integration. 

Onboard processing: Mega satellite networks entail vast 
network complexity which make current digital onboard 
processing architectures inefficient in terms of energy 
consumption. Developing more efficient onboard processing 
methods becomes essential to optimize energy usage and 
enhance overall network performance. 

C. Addressing Challenges with ML 

Addressing the challenges in mega satellite networks 
requires a combination of regulatory frameworks, collaboration 
among satellite operators, researchers, and industry 
stakeholders, as well as advancements in technology. AI 
methods can play a crucial role in tackling these challenges, such 
as: 

Radio channel forecasting: ML can be utilized to predict 
the status of radio channels [7], enabling satellite-user links to 
switch frequencies or even satellites in response to atmospheric 
impairments, thereby mitigating their impact on communication 
quality. 

Spectrum sensing and classification: Cognitive sharing 
techniques can improve spectrum utilization. ML algorithms can 
assist in detecting [8] and classifying traffic from other users, 
enabling efficient sharing of available spectral resources. 

Frame detection under interference: AI techniques can 
enhance the detection of radio signals under unknown 
interference [9], which is particularly valuable in scenarios 
where traditional methods fail. By leveraging AI algorithms, the 
identification of signals in the presence of interference from 
other systems becomes more efficient. 

Traffic forecasting and topology optimization: AI, 
especially recurrent neural networks (RNNs), can provide 
reliable predictions of temporal behavior. Applied to satellite 
networks, these tools can generate spatio-temporal-spectral 
predictions as satellites traverse different geographic areas with 
varying traffic demands, facilitating efficient topology 
optimization. 

Spoof detection and physical layer security: AI is 
effective in detecting irregular patterns in network traffic and 
identifying intrinsic fingerprints in radio signals from devices 
[10]. This capability aids in detecting spoof attacks and 
enhancing the security of satellite networks. 

Additionally, there are numerous other potential applications 
for AI in mega satellite networks, including end-to-end AI-
enabled radio communications for automated channel coding, 
satellite operations and management, beamforming, and radio 
resource allocation and traffic management. By harnessing the 
power of AI, mega satellite networks can overcome challenges, 
optimize performance, and deliver enhanced services to users 
[11]. Continued research and development in AI methods 
specifically tailored to the unique characteristics of satellite 
networks will contribute to the success and advancement of 
mega satellite constellation. 

III. BENCHMARKING DEEP LEARNING MODELS AND RUNNING 

MEMORY CHECKERS ON EDGE PROCESSORS ONBOARD THE ISS 

As seen from the previous section, future space missions will 
greatly benefit from the ability to process data directly on board 
utilizing AI-based approaches. This, in particular, applies to, 
e.g., remote sensing missions, where processing imagery 
directly onboard allows for autonomous data collection, targeted 
downloads, or onboard alert generation. Current space 
processors such as the Rad750, however, have limited compute 
compared with modern edge processors. We benchmark two 
commercial-off-the-shelf processors: the Movidius Myriad X 
and the Qualcomm Snapdragon 855 [12]. Both offer direct 
hardware acceleration for deep neural networks, although they 
are not radiation hardened. 

Models ported include image classification, segmentation, 
and spectral unmixing. Model inference is run both on the 
ground, and remotely on Hewlett Packard Enterprise’s 
Spaceborne Computer-2 [13] onboard the International Space 
Station (ISS). Although the processors are shielded by the ISS 
itself and the orbit does not go over Earth’s polar regions, the 
radiation is greater than on Earth. To further quantify potential 
radiation effects, we also run memory checkers onboard. To 
date, we have found no difference in output between ground and 
ISS runs, and no errors from memory checkers. 

In the next section, we discuss one Jet Propulsion Laboratory 
(JPL) model in detail. Following that, we summarize our results 
for a range of JPL models as well as some standard pre-trained 
networks for image classification. For more details, please see 
[14] and [15]. 

A. UAVSAR Model for Image Segmentation 

We benchmark an image segmentation model used to 
detected flooded regions in UAVSAR imagery of Houston TX, 
USA, after flooding by Hurricane Harvey [16]. This model has 
a UNET-6 [17] architecture and outputs six possible classes. 
These classes are then compressed into a binary value: 
flooded/non-flooded. Fig. 3 shows model output obtained when 
run on the MacBook Reference and the Myriad X. Light green 
denotes open water, dark blue denotes flooded vegetation, and 
remaining colors denote non-flooded regions. Results on the 
Myriad X are nearly indistinguishable from the reference, 
although there is some discrepancy, which we list in Table I. 
Models must be quantized to half-precision floating point to run 
on the Myriad, and to fixed point to run on the Snapdragon 
Digital Signal Processor (DSP) or Neural Processing Unit 
(NPU), which leads to this quantization discrepancy (note that 



these discrepancies are not pixel classification errors, rather 
differences from MacBook runs). All discrepancies are small. 

Runtime compared with Snapdragon CPU is also shown in 
Table I. The Snapdragon NPU provides a 20x speedup over the 
Snapdragon CPU, and the Myriad X runtime is similar to the 
Snapdragon GPU. Models have been run 21 times on the 
Snapdragon and 9 times on the Myriad X, with no differences 
from ground runs. 

B. Model Summary 

JPL models benchmarked are summarized in Table II. Since 
transfer learning with pre-trained networks is a common 
technique, we also report on standard Keras models for image 
classification: MobileNet, Xception, InceptV3, ResNet50, 
InceptResNetV2, VGG16, VGG19 [21]. Whether a model can 
be ported depends on the network architecture; the NavCam 
model could not be ported to the Myriad X and was not able to 
be pre-quantized for the Snapdragon DSP/NPU. 

The discrepancy introduced through quantization and 
porting of our JPL models was usually quite low (<5%), except 
where runtime quantization was used (NavCam). The 
quantization discrepancy for the standard classification models 
was 1-16% for the Myriad X and Snapdragon NPU, except for 
MobileNet which had 100% discrepancy on the NPU (likely due 
to large model weight fluctuations, which makes quantization 
difficult [22]). We found that the Myriad X and Snapdragon 
NPU provide speed improvement over the Snapdragon CPU in 
all models except single pixel models (typically >10x for the 
NPU). In Fig. 4, we show the speedup obtained using the 
Snapdragon DSP/NPU over the CPU. The standard 
classification models are ordered by number of network 
parameters, and we see the speedup typically increases as 
network size increases. 

All models have been run multiple times onboard, and to 
date, we have found no differences between ground and ISS 
runs. 

IV. BENCHMARKING FLIGHT SOFTWARE APPLICATIONS 

ON THE SNAPDRAGON PROCESSOR ONBOARD THE ISS 

More powerful onboard computing will be necessary to meet 
future space mission objectives. Deep space missions have 
limited contact with ground operations teams due to limited 
numbers of Earth-based ground communications stations and 
geometric constraints. Onboard autonomy can address this by 
distilling down the large amounts of instrument data and 
responding to science events and changes from predicted 
execution. 

In Section III, we discussed benchmarking deep learning 
image processing models on a Qualcomm Snapdragon SoC 
hosted by HPE’s Spaceborne Computer-2 (SBC-2) [13] onboard 
the ISS. In this section, we benchmark various other algorithms, 
including instrument processing, mission planning, and 
targeting remote sensing applications, to highlight the potential 
of using embedded Commercial-Off-The-Shelf (COTS) 
processors for future space missions. The Snapdragon delivers 
significant computing in small Size Weight and Power (SWaP) 
packaging and offers hardware acceleration in the form of 
graphics processing units (GPU) and digital signal processors 
(DSP). 

 

Fig. 4. Snapdragon DSP/NPU vs CPU Speedup 

 

Fig. 3. SAR Image Segmentation Results. 

TABLE I.  UAVSAR FLOOD MAPPING BENCHMARKS 

Processor Full Class. 

Discrepancy 

(pixels) 

Binary Class. 

Discrepancy 

(pixels) 

Speedup from 

Snapdragon CPU 

Snapdragon CPU 0.0% 0.0% -- 

Snapdragon GPU 0.0% 0.0% 8x 

Snapdragon DSP/NPU 0.7% 0.4% 20x 

Myriad X 1.6% 0.7% 8x 

 

TABLE II.  JPL MODELS 

Model Type Network 

Structure 

Port to 

Myriad X? 

Port to 

Snapdragon 

DSP/NPU? 

HiRISE 

[18] 

Mars 

Reconnaissance 

Orbiter Image 

Classifier 

AlexNet yes yes 

NavCam  

[19] 

MSL Rover 

Navigation 

Image 

Segmentation 

DeepLabV3 no – 

incompatible 

layers 

only DSP, 

runtime 

quantization 

only 

UAVSAR  

[16] 

 

L-band SAR 

Earth Image 

Segmentation 

UNET-6 yes yes 

Unmixing  

[20] 

Spectral 

Imagery from 

NASA CORAL 

mission 

Deep 

Conditional 

Dirichlet 

Model 

yes yes 

 



All applications are benchmarked on a ground-based 
Snapdragon and onboard the ISS. When possible, they are also 
benchmarked on the HPE SBC-2 CPU and other flight hardware 
such as the GR740/Sabertooth [23] and RAD750 [24] on the 
ground [25]. 

A. Instrument Processing Applications 

We benchmark a variety of instrument processing 
applications shown in Table III. This step is often the most 
computationally demanding onboard spacecraft operation. 

A good application to compare the performance of the 
Snapdragon against both the Sabertooth and RAD750 is the 
Sequential Maximum Angle Convex Cone (SMACC) spectral 
endmember extraction application [26]. Running single 
threaded on the Snapdragon ARM CPU we measured a 25.6x 
speedup in runtime from the Sabertooth to the Snapdragon and 
a 59x speedup from the RAD750 to the Snapdragon. 

A big advantage to using the Snapdragon is having access to 
hardware acceleration such as a GPU. The Thermal and 
Cryosphere decision trees application shows how powerful this 
acceleration can be [27][28]. We found a 25.8x speedup from 
the Sabertooth to the Snapdragon CPU and a 41.9x speedup 
from the Sabertooth to the Snapdragon GPU. 

B. Targeting Remote Sensing Applications 

The targeting remote sensing applications focus on the 
“Dynamic Targeting” concept in which a lookahead sensor is 
used to identify targets (e.g.  convective storms) or avoidances 
(e.g., clouds) to inform targeting and configuration of a primary 
sensor. The Dynamic Targeting [29] application was run on the 
SBC-2 CPU, the Snapdragon ARM CPU, Sabertooth, and 
RAD750. The achieved performance is presented in Table IV. 
There was a 75x speedup from the Sabertooth to the Snapdragon 
and a 140x speedup from the RAD750 to the Snapdragon CPU. 

C. Mission Planning Applications 

We benchmark a range of mission planning applications 
involving satellite planning, scheduling the Mars Perseverance 
Rover, and scheduling Europa lander Mission Concept 
activities.As shown in Table V, the Snapdragon demonstrates 
significant speedup over traditional flight hardware in the 
MEXEC application. This application takes a “task network” 
and generates conflict free plans and monitors the execution of 
those plans [30]. The test recorded a 57.5x speedup from the 
Sabertooth to the Snapdragon ARM CPU. 

V. OPS-SAT SPACE LAB: THE PERFECT SPACE TO 

EXPERIMENT WITH EDGE COMPUTING & ONBOARD AI 

In 2019, ESA launched a unique mission that, for the first 
time, offered the chance for any Space Agency, European 
company, research, or educational institute to run their software 
or firmware experiments, in space, at no cost. Its objective was 
simple: allow in-flight experimentation on critical operations 
processes which are normally off-limit and thereby accelerate 
innovation in the domain. ESA handles the risk of testing 
experimental software in space allowing the experimenters to 
concentrate on generating value as quickly as possible. They 
called the service OPS-SAT Space Lab [31]. 

The idea was very successful, and the number of users 
continuously grew. There are now over 250 experiments 
covering every aspect of mission control and type of 
organization. To keep things fast and light, ESA does not sign 
contracts with experimenters or ask for payment. The 
registration only takes a few minutes and then the experimenter 
is given their own directory on the mission control system and 
the spacecraft, plus access to an experimenter portal [32] with 
all the technical information. The fastest turnaround time from 
registration to the delivery of results was 72 hours. Space 
Agencies such as ESA, CNES, DLR, NASA, and JAXA, large 
primes such as ADS, THALES, and OHB, government 
organizations such as the EU Commission, educational 
institutions such as MIT and Oxford University and a multitude 
of start-ups, research institutes and new entrants are all OPS-
SAT Space Lab users. 

The risk is partially mitigated by having a space segment that 
is effectively two spacecraft in the same box. The first mission 
uses a 3U box i.e., 30cm x 10cm x 10cm. One spacecraft, called 
the bus, is based on standard cubesat subsystems, and its main 
role is to monitor the other experimental spacecraft. At the 
center of the latter is a control processor with an 800 MHz 
processor and a reconfigurable FPGA. This is powerful enough 
to run normal software (e.g., Java and Python), meaning 

TABLE III.  INSTRUMENT PROCESSION APPLICATION PERFORMANCE 

 

TABLE V.  TARGETING REMOTE SENSING APPLICATION PERFORMANCE 

 

TABLE IV.  MISSION PLANNING APPLICATION PERFORMANCE 

 



experimenters do not need embedded software skills to control 
this satellite e.g., take pictures, change the attitude, 
communicate with the ground, etc. ESA has developed a 
preloaded Java framework that allows experimenters to control 
the spacecraft by loading software in an “App” like way, further 
expanding the reach. The experimental processor runs Linux and 
experimenters can take advantage of preloaded packages e.g., 
Python, or load and install their own, within reason. On the 
ground side, the mission control system has been opened to 
allow experimenters to perform their own command and control 
of the spacecraft by simply connecting up to ESOC over the 
internet when it passes over Darmstadt, Germany. 

A. SmartCam 

The first experiment to use AI on OPS-SAT was called 
SmartCam [33]. It was originally created to resolve an 
operational problem when commissioning the onboard camera. 
Since the attitude control system couldn’t always guarantee 
accurate pointing, the mission was downlinking a 
disproportionate number of bad images (black space, over-
exposed, or blurry). We wanted to discard these “bad images” 
from being downlinked to save bandwidth. A member of the 
flight control team started working on this problem and found 
that image classification is a very common ML use case. Since 
a wealth of downloaded thumbnails could be used as training 
data, developing an image classifier seemed like the natural 
solution. A group of existing open-source ML frameworks were 
tested, and the final selection was Tensor Flow Lite. This 
decision was partly influenced by the low memory and low 
storage footprint it required. With only 9 MB for the model file 
and 6 MB for the model inference binary file, uplinking it was 
not a problem. 

The model gave predictions with ~95% balanced accuracy 
for each label shown in Fig. 5. What was quite remarkable was 
that a single engineer proposed, developed, tested, uplinked, and 
successfully operated it on the spacecraft within a timespan of 
less than two weeks. It was almost immediately incorporated 
into routine operations. The app was later expanded to enable 
additional image classification with unsupervised learning using 
k-means clustering. SmartCam's image classification pipeline 
was also made "openable" by allowing other experimenters to 
build their own apps on top of this infrastructure [34]. 

B. Further examples 

Building on the success of SmartCam the most common 
experiment type on OPS-SAT involves some sort of AI. 
Sometimes this is implemented as firmware in the FPGA or in 
software and is usually based on Tensor Flow Lite. While it is 
impossible to list them all here, we have highlighted those that 
ESA funded in a recent Discovery-funded Open Space 
Innovation Platform (OSIP) Campaign [35]. 

Mission Control Services, Canada deployed a low-level 
implementation of the OPS-SAT SmartCam model using a Field 
Programmable Gate Array (FPGA) and compared it against a 
high-level CPU model using Tensor Flow Lite. Experiments 
showed that the FPGA implementation reproduced the precision 
and accuracy of the high-level model, while running at a slower 
speed. Adatica, Spain, developed the proof of concept of an 
attitude control system based on AI for a spacecraft, as an 
alternative of the current state-of-the-art systems based on 

model-based approaches. The system commanded reaction 
wheels to actively control and modify the attitude, so that its 
optical camera kept framed and focused on an Earth feature 
(island) that had been previously detected by the system itself 
without the aid of any other instrument installed on the 
spacecraft. Agenium, France, performed forest detection 
(segmentation problem) using AI deployed on the FPGA. A 
simplified DNN was pre-trained on Sentinel 2 images over 
Slovenia and these images were processed to simulate OPS SAT 
images. Then real OPS SAT images were used with the transfer 
learning method. A Binary Deep Neural Network using 
convolution was ported onto the FPGA. Airbus Defence and 
Space, UK, used reinforcement learning in an online fashion to 
continuously improve the attitude control performance of a 
space system and adapt to its environment. Its role is to compute 
an appropriate torque command based on the measured attitude. 
Vision Space, Germany, provided a Software as a Service app 
providing onboard ML capabilities to the experimenters of the 
ESA OPS-SAT platform. It focuses on abstracting complex ML 
operations to spare the users the difficulties of provisioning data 
sets, training models, and performing inference on new data. It 
can also be used onboard by multiple experimenters in parallel. 
OHB Hellas / FORTH, Greece, developed and deployed an AI-
based (3DWDSR), multi-frame super-resolution algorithm to 
achieve a notable improvement in image quality starting with a 
set of low-resolution images. 

C. Future Work 

The OPS-SAT Space Lab is now working with ESA ARTES 

Scylight on a follow-up mission called OPS-SAT VOLT. The 

prime is Craft Prospect, UK, and the mission is due for launch 

in 2025. It will be a 16U cubesat with propulsion allowing for 

optical and quantum domain communications experiments. 

VI. EXPLORING THE SYNERGY BETWEEN GAIA-X AND 

SATELLITES FOR DATA-DRIVEN EARTH OBSERVATION 

As we have seen, advanced data processing capabilities are 
a key enabler at both the spacecraft and the satellite-mission 
level. But moving towards a broader scope of today's digital era, 
data has become the lifeblood of numerous applications and 
business models. The concept of a Data Space (DS) [36] has 
emerged as a solution to enable the trusted implementation of 
data-based applications and business models, providing 
stakeholders with a high degree of flexibility and sovereignty. 

 

 

Fig. 5. SmartCam Top Level Image Classes. 



A. Gaia-X: An Introduction 

Gaia-X is an initiative led by European stakeholders with the 
goal of establishing a federated, secure, and sovereign data 
infrastructure – a DS. It aims to create value by enabling new 
data-based applications, business models, and stakeholder 
collaboration. Gaia-X provides standardized technical 
interfaces, protocols, and governance mechanisms to enable 
secure data sharing, interoperability, and collaboration while 
ensuring data sovereignty and promoting innovation in the 
digital economy [37] [38]. By embracing the principles of value 
creation, self-determination, and efficiency, Gaia-X fosters an 
ecosystem where data can be shared, accessed, and utilized in a 
controlled and reliable manner. [39] 

B. Key Features [40] 

Decentralization: A DS avoids centralized structures and 
concepts in favor of decentralized solutions. This decentralized 
approach enhances agility, scalability, and resilience within the 
ecosystem, allowing for efficient collaboration and innovation. 

Federation and Interoperability: Interactions between 
actors within a DS, as well as across DS boundaries, are 
encouraged through federation and interoperability. This 
promotes seamless data sharing, integration, and collaboration, 
facilitating the realization of data-driven applications that span 
multiple domains and stakeholders. 

Sovereignty: Sovereignty is a fundamental principle of a 
DS. It ensures that individuals and organizations maintain 
control over their data and its use at all times. By empowering 
data owners with the ability to define access rights and usage 
policies, a DS guarantees data sovereignty and privacy. [41] 

Trust: Trust is a critical aspect of any DS. To build trust, 
robust technologies, control mechanisms, and unique digital 
identities are employed to authenticate and authorize data access 
and usage. 

Transparency: A DS promotes transparency through digital 
identities and the traceability of data-based operations. By 
providing clear visibility into data provenance, usage, and 
processing, transparency strengthens trust among stakeholders 
and enables accountability. 

C. How Data Spaces and Gaia-X foster Earth Observation 

By combining the principles and infrastructure provided by 
Gaia-X with the concept of DS, stakeholders in Earth 
observation can benefit from enhanced data sharing, 
collaboration, and innovation while ensuring data sovereignty, 
trust, and transparency. [42] 

Data Sharing and Collaboration: Earth observation involves 
collecting vast amounts of data from satellites, sensors, and 
other sources. DS enable secure and controlled data sharing 
among different stakeholders, such as satellite operators, 
research institutions, government agencies, and commercial 
entities. By establishing federated DS within the Gaia-X 
infrastructure, these stakeholders can collaborate more 
efficiently, exchange data securely, and leverage each other's 
expertise and resources to tackle complex Earth observation 
challenges. 

Interoperability and Integration: DS, in conjunction with 
Gaia-X, promote interoperability by enabling seamless 
integration of diverse data sources and services. With DS, 
stakeholders can integrate different data streams and services, 
enabling comprehensive analysis and decision-making based on 
a holistic view of Earth's systems.  

Advanced Analytics and AI: By leveraging the 
computational capabilities and advanced analytics within Gaia-
X, stakeholders can apply AI and data analytics techniques to 
derive valuable insights from Earth observation data. Gaia-X's 
federated infrastructure provides access to computing resources, 
enabling stakeholders to process and analyze data locally while 
adhering to data sovereignty principles.  

Data Sovereignty and Trust: Earth observation data often 
includes sensitive information, such as high-resolution imagery 
or geospatial data. DS, along with Gaia-X's data sovereignty 
principles, ensure that stakeholders retain control over their data 
and can define access rights and usage policies. This helps to 
address privacy concerns and builds trust among data providers 
and consumers.  

Innovation and Value Creation: DS and Gaia-X offer an 
ecosystem that encourages innovation and value creation. By 
facilitating collaboration, data sharing, and interoperability, 
stakeholders in Earth observation can develop novel 
applications, services, and business models that leverage the 
combined power of Earth observation data with other data 
sources. This leads to new opportunities in sectors such as 
environmental monitoring, agriculture, urban planning, 
transportation, and natural resource management, promoting 
sustainable development and informed decision-making. 
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