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Abstract
Observing unpredictable phenomena is challenging for Earth
observation missions due to long lead times from schedul-
ing, uplinking, and executing the image capture onboard the
spacecraft. This delay means that conditions can change in
between planning and execution. Dynamic tasking is a mis-
sion concept that aims to mitigate this unpredictability by
moving autonomy onboard the spacecraft and quickly react-
ing to conditions as observed, with multiple potential percep-
tion sources that can be used to inform decision making for
observation. Dynamic tasking has been proposed using a va-
riety of information sources: lookahead sensors, other satel-
lites, ground sensors, and airborne and marine sources.
Modern meteorological satellites in Geostationary Earth Or-
bit (GEO) are designed to provide fast refresh rates for im-
agery for weather monitoring and prediction, with up to 10
minute full-disk image cadence at 20 minutes latency after L1
processing. Imagery from meteorological satellites could po-
tentially be used as virtual lookahead sensors to update target
utility for Earth-observing satellites, from which the imaging
schedule can be updated either onboard or via a ground sta-
tion.
In this work, we explore the usage of global meteorologi-
cal data from GOES West, GOES East, Meteosat Zero De-
gree Service (ZDS), Meteosat Indian Ocean Data Coverage
(IODC) and Himawari for the application of dynamic task-
ing for cloud avoidance for agile Earth-observing satellites.
As there are many methods to uplink information to a space-
craft, such as through ground stations, data relay satellite net-
works, and direct reception of meteorological data, assessing
overall latency is not possible without a specific architecture.
We instead parameterize latency between 0 to 2 hours of up-
link delay, both through a real-time link and through intermit-
tent contact through ground stations. We then compare dy-
namically tasked scheduling performance against both con-
ventional (non-dynamically tasked) methods and a theoreti-
cal omniscient scheduler to establish bounds for the results
using a dataset of world cities as a proxy for global satellite
imagery demand.

Introduction
Earth-observing satellites are typically split into “monitor-
ing” and “tasked” missions. Monitoring missions aim to
capture as much imagery as possible without having spe-
cific targets, giving rapid response and broad area coverage,
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typically at lower spatial resolutions due to constraints on
aperture size, sensor pitch, and data budgets (King et al.
2013; NASA 2024). In contrast, tasked missions follow pre-
determined schedules to capture specific targets at higher
spatial resolutions, but require external input to direct the
tasking (Planet Labs PBC 2017; Maxar Technologies 2025).
Both monitoring and tasked missions struggle to capture un-
predictable phenomena: monitoring missions may require
large amounts of imagery in order to capture a single event,
while a tasked missions may make perform suboptimal ob-
servations if the event is no longer present when imagery is
captured.

Unpredictable phenomena can either serve as attractors
of tasks (high-priority events to be imaged) or detractors
(undesirable conditions affecting imaging tasks). The most
common detractor in Earth observation, aside from in me-
teorological studies, is cloud cover, which at any given
time obscures approximately two-thirds of Earth’s surface
(King et al. 2013). Task attractors include applications such
as real-time wildfire tracking (Nolde et al. 2021; Lenzen
et al. 2014), deep convective ice storm studies (Swope et al.
2024), and planetary boundary layer research (Candela et al.
2024).

To address these challenges, dynamic targeting has been
proposed as a mission concept from NASA (Chien and
Troesch 2015; Candela, Swope, and Chien 2023; Swope
et al. 2024), CNES (Damiani, Verfaillie, and Charmeau
2005; Beaumet, Verfaillie, and Charmeau 2011), and is in
operation by JAXA on GOSAT-2 (Suto et al. 2021; Imasu
et al. 2023). While the specific implementation of dynamic
tasking can vary, the overall goal is to move more autonomy
onboard the spacecraft to re-assess conditions dynamically,
and re-optimize imaging activities in accordance with up-
dated information in a single overflight of a target. Recent
advancements in onboard computing have enabled the feasi-
bility of real-time decision-making using modern vision sys-
tems and onboard scheduling algorithms (Planet Labs PBC
2024; Kacker et al. 2022a,b; Kacker and Cahoy 2024). Sen-
sor webs have also been previously used for rapid targeting
of phenomena such as volcano eruptions (Chien et al. 2020),
floods (Chien et al. 2019) and other dynamic phenomena. In
this work, we use dynamic tasking to refer to dynamic tar-
geting, but with an initial schedule solution.
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Figure 1: Diagram showing methods by which data from meteorological satellites can be transferred to imaging satellites. (1)
Data can be relayed through downlinking, extracting from a database, and uplinking to the satellite, resulting in communication
gaps. (2) Data can also be obtained in near realtime through direct reception by the imaging satellite through an antenna, or (3)
relayed through a network such as Iridium, GlobalStar, or the NASA Tracking and Data Relay Satellite (TDRS) system.

Background
Geostationary Meteorological Satellites
Meteorological satellites in GEO provide crucial observa-
tions, especially over uninhabited areas and over oceans to
inform weather monitoring. Spacecraft from many different
nations cover different regions of the Earth. These spacecraft
are typically equipped with high resolution, high refresh rate
scanning instruments with many different bands. The scan-
ning instruments on these spacecraft can deliver full-disk
images up to a rate of every 10 minutes, with specific regions
of Earth being scanned even faster than that to allow for
tracking of fast-moving weather events (Mahonchak 2019).
The specific service regions, satellites, instruments, center
longitudes, and full-disk image cadences used in this work
are provided in Table 1.

There are three main ways that data can be processed
and transferred from a meteorological satellite to an imag-
ing satellite. Images from the meteorological satellites are
downlinked through a high-rate radio, that allows for L1
imagery to be available through storage systems such as
through Amazon S3 20 minutes after capture (Mahonchak
2019), with processed L2 imagery being processed and de-
livered later. Since the data is publicly available, it can be
retrieved by the imaging satellite’s ground station, and then

either (1) uplinked directly, or (3) relayed by another satel-
lite through a system like Iridium, GlobalStar, or the NASA
Tracking and Data Relay Satellite (TDRS) system. Addi-
tionally, through low-rate channels such as through GOES’
High Rate Information Transmission / Emergency Man-
agers Weather Information Network (HRIT/EMWIN) low-
rate broadcast system, masks can also be (2) directly down-
linked to the imaging satellite, although this requires addi-
tional licensing and hardware (D’Anzeo et al. 2025). Using
either the relay system or the direct downlink system allows
for real-time decision making, whereas communication gaps
from a ground station means updates can only be transferred
approximately every 45 minutes for an imaging satellite in
LEO. An overview of all the methods and their cadence is
shown in Fig. 1.

In this work, we use the L2 binary cloud mask product
to evaluate whether imaging activites are cloudy or not, al-
though recent advancements in cloud masking algorithms
(Thompson et al. 2014; Wagstaff et al. 2018) allow for cre-
ating cloud masks directly from L1 or L0 data.

We consider data from the Geostationary Operational En-
vironmental Satellites (GOES) program, the Meteosat Sec-
ond Generation (MSG) program, and the Himawari pro-
gram. Fig. 2 shows the total theoretical coverage of these
spacecraft along with the largest 10,000 world cities used



Figure 2: Theoretical (dotted) and actual (solid) coverage of selected meteorological satellites. Actual data coverage of products
such as cloud masks is typically narrower, due to complexities of deriving reflectance data at grazing incidences. Largest 10,000
world cities used as an imaging dataset are also overlaid (Simplemaps 2010).

in this work as a qualitiative proxy for global satellite im-
agery demand (Simplemaps 2010; Planet Labs PBC 2017).
While the 10,000 world cities dataset has intrinsic bias, it is
qualitatively a good fit for the commercial applications tar-
geted in this work, and the analysis can easily be extended
to consider at other factors. Fig. 2 shows that the theoretical
coverage of these spacecraft spans the globe, up to approx-
imately 80 degrees latitude, although with ground sample
distance (GSD) trailing dramatically at grazing incidences,
starting at 1 km for most bands at nadir and 10+ km at
imaging limits. L2 data such as binarized cloud masks how-
ever are typically more limited in coverage as compared to
L1 data, due to the complexity of obtaining reflectance val-
ues for grazing incidences. Cloud masking algorithms from
these spacecraft can rely on emissive bands as well as re-
flective bands, hence cloud masks can be obtained even at
night, allowing for global coverage, although with artifacts
along the day/night terminator line due to rapidly changing
irradiance values from the sun.

Dynamic Tasking

The Autonomous Sciencecraft Experiment on Earth Observ-
ing One (Chien et al. 2005) pioneered onboard re-planning
and machine learned classifiers (Castano et al. 2006) but
lacked computational power for single-overflight planning,
focusing instead on follow-up observations. More modern
approaches have been able to leverage massively increased
compute power onboard spacecraft (Rijlaarsdam et al. 2024;
Kacker et al. 2022a) and extend to constellations (Gorr et al.

2025).
Currently, the most advanced dynamic tasking system can

be found on JAXA’s GOSAT-2 satellite, which utilizes a
re-orientable fold mirror and onboard compute system to
screen for clouds and point to the least cloudy area, which
results in a 150-250% increase in usable imagery (Nassar
et al. 2023; Imasu et al. 2023; Suto et al. 2021; Oishi et al.
2017).

Approach
Our approach is split up into two parts: First, we evaluate the
predictive ability of global cloud masks obtained from satel-
lites for acquiring data at a later time, and then we incor-
porate data from those cloud masks into a dynamic tasking
simulation, re-optimizing the schedule based on cloud cover
information obtained from the cloud masks.

Cloud Masks as Priors
To optimize planning horizons and quantify timescales over
which imagery from meteorological satellites is useful, we
evaluate the predictive power of cloud masks by using them
as a prediction. Given data D and a prior cloud mask prior
from an observation from an earlier time Mprior, we can
compare this to the naive flat prior, assuming all tasks are
cloud free. Given that clouds cover approximately 66% of
the Earth’s surface at any one time (King et al. 2013), the
accuracy of this naive prediction Mnaive will be fixed around
34%.

From these two models of the data, we can then calculate



Table 1: Selected meteorological satellites in GEO providing full-disk imagery, with associated instrument, center longitude,
and full-disk image cadence, current as of date of publication.

Service Satellite Instrument Center Longitude Full-Disk Image Cadence
GOES East GOES-16 ABI 75.2° W 10 minutes
GOES West GOES-18 ABI 137.2° W 10 minutes
Meteosat ZDS Meteosat-10 SEVIRI 0° E 15 minutes
MeteoSat IODC Meteosat-9 SEVIRI 45.5° E 15 minutes
Himawari Himawari-9 AHI 140.7° E 10 minutes

Figure 3: Example binary cloud mask from stitching observations from selected meteorological spacecraft at time 2025-01-
01T00:00:00+00. White areas denote cloudy regions, blue areas denote non-cloudy regions, and coastlines are highlighted in
black.

the Bayes factor in order to evaluate at a high level the pre-
dictive ability of using a previous cloud mask as a prior for
later masks, over time, as compared to the naive model. The
Bayes factor is given by

BF =
P (D | Mprior)

P (D | Mnaive)
. (1)

Scheduling System

We then utilize prior cloud masks as data to inform our dy-
namic tasking algorithm. We simulate a scheduling system
with world cities as targets, agility constraints on spacecraft
imaging, and a utility model where imaging requests that
are occluded by clouds have zero utility, unity otherwise.
Formally, this can be described as a constraint satisfaction
problem, and as a further subset, can be represented as a
mixed-integer linear program (MILP). We use a MILP for-
mulation for the scheduling problem, same as in (Augenstein
et al. 2016; Nag et al. 2019; Nag, Li, and Merrick 2018;
Eddy 2021). The MILP can be defined as:

maximize
∑
xi∈X

f(xi)xi

subject to ∀i, xi ∈ {0, 1}
xi + xj ≤ 1 ∀k(xi, xj) = 0,

where X is the set of imaging accesses from a set of imag-
ing requests R, where R in our case is the dataset of world
cities. Since a particular imaging request may have multi-
ple points in the scheduling horizon where it can be cap-
tured, the mapping from requests to imaging accesses is
non-unique. f is a function evaluating the utility of an ac-
cess (equal to unity in this work), and k represents a set of
constraints. In this work we primarily assume agility and
repetition constraints, which are conventionally the tightest
constraints for spacecraft scheduling (Eddy and Kochender-
fer 2020; Augenstein 2014).

Agility constraints consist of the requirement to slew from
one task to another along the cross-track of the spacecraft.
We use a model for agility that assumes constant accelera-
tion and constant deceleration for slews without any roll rate
limits, along with a fixed duration settling time. Hence,

tslew = ts + α
√
|∆θ|, (2)



Table 2: Summary of all parameters used in dynamic tasking
simulation.

Parameter Symbol Value
Schedule Block Start 2025-01-01T00:06:00+00
Schedule Block End 2025-01-01T00:18:00+00
Schedule Horizon 12 hours
Orbit Inclination i 51.6◦

Orbit Altitude h 400 km
Orbit Period T 5553.5 s
Field of Regard 30◦

Settling Time ts 10 s
Slewing Acceleration α 4.0 s/

√
deg

where ts is the spacecraft settling time, and ∆θ is the angle
difference between two tasks, with α a parameter represent-
ing slewing acceleration of the spacecraft. The constraints
themselves can be given by:

kagility (xi, xj) =

{
1 if tslew(θj − θi) ≤ tj − ti
0 otherwise

, (3)

requiring that all slews must take less time than the ma-
neuver and settling time of the spacecraft. Finally, the final
constraint is repetition,

krepetition (xi, xj) =

{
1 if r(xi) = r(xj)

0 otherwise
, (4)

where r(x) returns the request r ∈ R corresponding to an
imaging access.

Additionally, we consider a single spacecraft in ISS or-
bit and only take tasking opportunities during non-eclipse
phases of orbit. A full table of parameters used for the sched-
uler simulation is given in Table 2.

Results
Fig. 4 shows the probability of a later binarized cloud mask
being equal to a prior. The probability drops off rapidly, be-
fore asymptoting the expected values of approximately 66%
cloud cover. Fig. 5 shows the Bayes factor of using a previ-
ous cloud mask as a prior up to 35.5 hours, compared to the
naive prior used in conventional satellite scheduling where
all tasks are assumed cloud-free. Initially the mask-based
prior has significantly more predictive power than the naive,
before dropping down and asymptoting at around twice the
power. This behavior is likely due to individual clouds be-
ing hard to predict, but their formation conditions e.g. near
mountains being relatively stagnant, resulting in aggregate
higher predictive power.

Fig. 6 shows the same data, but now as a locus on a
precision-recall plot. With the assumption that baseline pre-
dictive power is achieved after 35.5 hours reaching, preci-
sion and recall appear to decay linearly to an ultimate value
of approximately (0.73, 0.77), showing no strong class bias.
Predictive power also reaches half its baseline value after
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Figure 4: Probability of cloud status being predicted by a
previous cloud mask from the past, split by total, and ini-
tial classification. Data is taken from a global cloud mask at
2025-01-01T00:00:00+00:00 looking up to 35 hours in the
future.
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Figure 5: Bayes factor of comparing a prior equal to an ear-
lier observation with a naive prior that all tasks are always
cloud-free, showing significantly higher predictive ability of
the earlier observation compared to the naive model. The
Bayes factor initially drops off rapidly before asymptoting
around a value of 2.0, showing that latency is a big factor
in predictive ability. Data is taken from a global cloud mask
at 2025-01-01T00:00:00+00:00 looking up to 35.5 hours in
the future.

two hours, emphasizing the importance of timeliness in us-
ing prior masks.
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tive ability of cloud mask priors with time. Data is taken
from a global cloud mask at 2025-01-01T00:00:00+00:00
looking up to 35.5 hours in the future. Within two hours,
most of the predictive power compared to the baseline is lost.

Fig. 7 then compares using different latencies for schedul-
ing, with ground station based communication gaps and a
real-time link, bounding between to a conventional and om-
niscient scheduler and highlighting between these with iso-
bars representing total number of cloud-free captures. The
conventional scheduler is essentially sampling from the sta-
tionary distribution of clouds, resulting in approximately
half of its captures being cloudy as expected, due to favor-
able weather conditions along the schedule. The omniscient
scheduler is a theoretical best-case bound, using a scheduler
that has futuresight, and subtends an infeasibility region, as
the MILP solver guarantees that the omniscient schedule is
optimal in terms of total number of images captured for the
agility and repetition constraints imposed.

With a 30 minute information latency, a schedule con-
sisting of 89% of captures being cloud-free can be ob-
tained, showing the power of using cloud masks as priors
for scheduling and prediction. Ground station communica-
tion gaps result in approximately 2 percentage points perfor-
mance penalty in cloud-free imagery, although roughly be-
ing on par with the real-time link after two hours. This effect
is likely due to the average additional delay due to commu-
nication being approximately 22.5 minutes, which becomes
more insignificant as overall data delay increases. A theoret-
ical instant link with zero delay between capture, process-
ing, and downlink to a ground station is also shown, which
can capture over 95% of the improvement in total number of
cloud-free imagery, given by its position within the isobars.
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Figure 7: Conventional, omniscient, and delayed schedules
compared in terms of total length of schedule, and propor-
tion of captures cloud-free, showing that larger information
delay leads to overall worse schedule performance, transit-
ing perpendicular to the total cloud free imagery isobars. All
delayed (realtime vs ground station access) schedules are
approximately the same number of imaging accesses of the
omniscient schedule, with decreasing proportion cloud-free
as delay length increases. Schedules transmitted through
ground stations perform about 2 percentage points worse
than those with real-time communications, but a theoretical
schedule with instant information transmitted over ground
stations is within 5% of the omniscient solution in total num-
ber of cloud-free images, as shown by isobars representing
total number of cloud-free images.

Conclusions and Future Work
In conclusion, we show that virtual lookahead using mete-
orological data from satellites in GEO can be advantageous
for Earth observation in cases where cloud cover is undesir-
able, but is sensitive to latency requirements and will require
streamlined infrastructure to extract the most benefit. Real-
time always-connected communication systems improve ef-
ficiency of cloud-free collects the most, by 63%, but are very
close to the total number of useful collects transmitting in-
formation only through ground stations every half orbit at
60.4%, both with a 30 minute delay. As the data delay re-
duces, the gap between these two data points will likely in-
crease, as the delay intrinsic in using a ground station for
communications becomes more significant. Further investi-
gation will be conducted on using the maximum imaging
frequency of the meteorological satellite platforms at 10 and
15 minutes, but will require additional handling of data con-
nectivity due to the mixed rates involved, with Meteosat op-
erating at 15 minute cadence and all the other platforms con-
sidered operating at 10 minute cadence (Mahonchak 2019;
EUMETSAT 2020).

Based on these results, short time horizon weather pre-



diction from providers such as Tomorrow.io may also be
beneficial for dynamic spacecraft operations, relaxing the
requirements for streamlined, low-latency infrastructure or
real-time links (Tomorrow.io 2025).

This work looks at aggregate task performance in a sched-
ule and shows that even a two-hour delay can be beneficial
for improving useful image throughput, but it is possible that
using data from cloud mask priors results in poor predic-
tive performance in certain geographic regions, which will
require further investigation. Areas like the Amazon rain-
forest in particular may have poor predictive performance
due to the dynamic nature of weather systems in the region.
Along these lines, certain orbits and certain configurations
of ground stations may also be better than others, which will
require additional investigation.

The results in this work are taken looking forward from
a single point in time. Sampling across different seasons
would make these conclusions significantly more robust, as
seasonality likely has an effect on predictive power.
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