
Decentralized Observation Allocation for
a Large-Scale Constellation

Shreya Parjan∗ and Steve A. Chien†

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099

https://doi.org/10.2514/1.I011215

Increased space sensing enables new measurements of a wide range of Earth science phenomena including

volcanism, flooding, wildfires, and weather. Large-scale observation constellations of hundreds of assets have

already been deployed (for example, Planet Labs’s Dove satellites), and several constellations of tens of thousands

of assets are planned. New challenges exist to rapidly assimilate available data and to optimize measurements by

directing spacecraft assets to best observe complex Earth science phenomena. Centralized approaches to managing

request allocation in these large constellations are constrained by 1) the need to assign/elect a central node to assign

requests to spacecraft and 2) reliance on a single agent communicating with potentially thousands of dependent

agents. On the other hand, entirely decentralized approaches to request allocation and observation are prone to

oversatisfaction of some requests and undersatisfaction of others due to a lack of communication among agents. In

large constellations, an intermediary method is necessary to solve the request allocation problem in a distributed

manner.We present distributed artificial intelligence/multiagent methods that leverage existing work on distributed

constraint optimization to allocate observations in a satellite constellation. We compare their performance to

centralized and highly decentralized approaches using realistic orbits and observation request distributions. Our

distributed algorithms can find approximate solutions to the large-scale constellation request allocation problemwith

low data volume for agent coordination and extend to continuous planning problems with varying request sets and

availability of spacecraft agents.

I. Introduction

W ORLDWIDE, there is an explosion of information sources
relevant to environmental monitoring. Ground-based sensors

are being deployed at an incredible rate, and their data aremore easily
accessible via the internet of things (IOT). This explosion of net-

worked sensors even extends to space, where traditional and new
space actors have deployed worldwide monitoring assets such as
Terra; Aqua; Suomi-National Polar-orbiting Partnership (NPP); Sen-
tinel; and Planet Lab’s Dove, SkySat, and other constellations (with
over 100 spacecraft).
With many potential information sources and space assets come

two distinct problems: 1) combining themany information sources to
track complex spatiotemporal science phenomena; and 2) tasking the
large set of space assets with varying orbits, costs, and capabilities.
Elsewhere, the end-to-end sensor-web concept has been described

[1], including deployments to track flooding [2,3], volcanic activity
[4], and wildfires [5]. However, those pilots did not study control of

constellations because they used only the Earth Observing-1 satellite
under direct sensor-web control, although they did submit requests to
commercial providers in a federated approach [6]. More recent work
in automated scheduling of constellations includes operational con-
trol ofDove [7] and Skybox (later SkySat) [8] aswell as recent studies
on coordination in large-scale constellations like the work described
in this paper [9–11]. Most of these describe centralized resource

allocation approaches, although notable exceptions exist [11,12].
However, centralized approaches to constellation operations are

vulnerable to loss of the central node and unreliable communication
to/among spacecraft. Some centralized approaches include leader-
ship election, in which issues with the central leader are detected and

result in the election of a new leader. Nonetheless, detecting issues
with a centralized leader can be challenging and affect nominal
performance. Election of a new leader/central node can be a time-
consuming process. Distributed resource allocation avoids these
issues, albeit often at a decrease in performance.
Motivated by work on the maximum gain messaging (MGM)

algorithm and the distributed stochastic algorithm (DSA), which
are two incomplete distributed constraint optimization problem
(DCOP) algorithms [13,14], we present two types of broadcast
decentralized (BD) algorithms for a less computationally intensive,
heuristic search-based approach to observation request allocation in
large-scale satellite constellations: BD request satisfaction, and BD
contention. We aim to maximize the number of requests satisfied by
agent observations and minimize the number of future requests
agents cannot observe due to data volume or slew constraints.
In this paper, Sec. II describes the request allocation problem for

large-scale constellations, Sec. III offers an overview of various
approaches to solving the problem and introduces our broadcast
decentralized algorithms, Sec. IV explores the application of these
algorithms to a more realistic continuous planning problem, Sec. V
describes results from experiments evaluating the algorithms on an
allocation problem involving thousands of observation requests dis-
tributed among hundreds of satellites, and Sec. VI proposes avenues
for future work.

II. Problem Formulation

A. Spacecraft Operations Scheduling

We study the problem of allocating observation requests to satel-
lites.‡ We define the observation scheduling problem as follows:
The problem inputs are listed as follows:
1) �Hs;He� is the scheduling horizon, starting at time Hs and

ending at time He.
2) A is a set of agents fa1 : : : amg, where individual spacecraft are

the primary agents in our implementation. (In our current formu-
lation, an agent represents a single spacecraft; but in alternative
formulations (i.e., a federated system), an agent could represent
multiple spacecraft or there could be multiple levels of hierarchy.

Received 2 November 2022; revision received 27 February 2023; accepted
for publication 6 March 2023; published online 10 April 2023. Copyright ©
2023 by the American Institute of Aeronautics and Astronautics, Inc. The
U.S. Government has a royalty-free license to exercise all rights for Govern-
mental purposes. All other rights are reserved by the copyright owner. All
requests for copying and permission to reprint should be submitted to CCC at
www.copyright.com; employ the eISSN 2327-3097 to initiate your request.
See also AIAA Rights and Permissions www.aiaa.org/randp.

*Member of Technical Staff, Artificial Intelligence Group, 4800 Oak
Grove Drive: shreya.parjan@jpl.nasa.gov (Corresponding Author).

†Jet Propulsion Laboratory Fellow, Senior Research Scientist, and Techni-
cal Group Supervisor, Artificial Intelligence Group, 4800 Oak Grove Drive.

‡Although we target the allocation of observations to satellites in an Earth
observation satellite constellation, our approach does generalize to other
problems.

447

JOURNAL OF AEROSPACE INFORMATION SYSTEMS

Vol. 20, No. 8, August 2023

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

https://orcid.org/0000-0002-0312-6325
https://orcid.org/0000-0003-1023-9480
https://doi.org/10.2514/1.I011215
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.I011215&domain=pdf&date_stamp=2023-04-16

Furthermore, for complex spacecraft platforms with many instru-
ments, a spacecraft might be represented by multiple agents.)
3)K is a set of orbits fk1 : : : kmg: one for each spacecraft agent inA.
4) T is a set of point targets ft1 : : : tog, with each defined by a name

and a single pair of coordinates (Fig. 1).
5)R is a set of requests fr1 : : : rpg, where a request rc is defined by

which target tb to observe and when in the scheduling horizon
�Hs;He� the user would like tb to be observed.
From the preceding, we generate a set of overflights where each
overflight is an opportunity for a spacecraft to view a specific target to
satisfy a request. Each such overflight has both an associated status
indicating if (in the current schedule) the spacecraft elects to satisfy
the request at that opportunity and an associated reward for that
satisfied overflight–request pair.
6)O is a set of overflights fO111 : : : Ohijg.Ohij specifies a time¶ at

which agent ah could potentially schedule request ri. To distinguish
between multiple overflights by the same agent for the same request,
we use an additional overflight index j. Each agent’s overflights must
be during the daytime (i.e., have an associated solar zenith angle of
greater than 90).
7) S is a set of statuses fs11 : : : smpg. Note that smp has a value of

one if agent am schedules an observation to satisfy request rp and a

value of zero otherwise.
8) W is a set of computed rewards fw11 : : : wmpg. Note that wmp

specifies the reward that agent am reaps for satisfying request rp. We

expand on the reward functions in Table 1.

B. Scheduler Objective

A problem solution is an assignment of observations to satellites
(agents) and, for each satellite, an assignment of observations to
satisfying overflights. Complicating request satisfaction are the fol-
lowing operations constraints enforced as described in the following:
1) The first constraint is slew. In our experiments, we use a simple

model requiring jOamj −Oankj > offset, whereOamj andOank are
overflights by the same spacecraft for different requests and offset
may be specified by the user. We use offset=30 s. [However, our
approach extends to a higher-fidelity model in which this constraint
would depend upon the pointings required to image the consecutive
targets and spacecraft agility. Specifically, an arbitrary constraint
enforcement function would compute mutually exclusive overflights
to be enforced by the relevant agent(s) during scheduling.]
2) The second constraint is data volume. For a simple implemen-

tation of spacecraft data volume constraints, we enforce that a space-
craft cannot schedule more than ncap requests during the scheduling
horizon. In our experiments, ncap � 1.5 × jRj∕jAj; so, no single

spacecraft may schedule observations to satisfy more than 150% of
the requests allocated in an evenly divided share of requests.§

Given the preceding formulation, the scheduler’s objective is to
select a subset of the total overflights to maximize some function of
satisfied requests. In this preliminary formulation, the objective is
maximization of the number of requests satisfied; but, more realistic
formulations incorporating request priority, fairness, and other met-
rics are clear areas for futurework. A solution has the following form:

Fig. 1 Global distribution of point targets.

Table 1 Broadcast decentralized algorithmic variations

Feature Broadcast decentralized contention
Broadcast decentralized request

satisfaction

Required shared information for iteration-phase
update procedure

Reward for observing request (float)
Count of remaining free overflights for request (integer)

Request satisfaction (Boolean)

Request satisfaction (Boolean)

Allocation initialization options Pinitialize Pratio � (no. of agent overflights for request)/(no. of constellationwide
overflights for request)
PtotalOFs � 1/(no. of constellationwide overflights for request)
Prandom � user-specified probability

Prandom � user-specified
probability

Local request sort variations Iterative global free overflight (GFO) sort
Iterative local free overflight sort
Iterative random sort
Wdifference = (no. of agent overflights for request)-(no. of agent conflicts

for overflight selected for request)

Iterative local free overflight
(LFO) sort
Iterative random (RD) sort

Reward function variations for iteration-phase
update procedure

Wratio = (no. of agent overflights for request)/[1� (no. of agent conflicts
for overflight selected for request)]

Not Applicable (reward not
used)

¶Indeed, more expressive observation campaigns are envisioned as future
work (e.g. as in [15] and [16]).

§Again, more complex data volume constraints and explicit handling of
downlink activities could be incorporated as future work.

448 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

max
m

i�1

p

j�1

wij (1)

such that Eqs. (2) and (3) hold:

sid � sie ≤ 1 ifjOidj −Oiekj ≤ offset (2)

where Oidj and Oiek are overflights selected by agent ai to observe
each pair of requests, rd and re, and

p

j�1

sij ≤ ncap (3)

for each agent ai.

III. Range of Approaches

We present and analyze several algorithms for the observation
request–overflight allocation problem. For a given target, a request
represents a single desired observation (e.g., “observe on day 3”). A
set of requests may, together, comprise a desired repeat observation
(e.g., “observe every hour”) during the scheduling horizon �Hs;He�.
[Indeed, more expressive observation campaigns are envisioned as
future work (e.g., as in Refs. [15] and [16]).] We define three
algorithm families: centralized, broadcast decentralized, and highly
decentralized. We further subdivide broadcast decentralized into a
contention-based algorithm and a request satisfaction-based algo-
rithm, which are differentiated by the amount of state information
shared among agents (Fig. 2). Our focus is on evaluating algorithms
from the broadcast decentralized family, which is derived from
distributed constraint optimization algorithms, and comparing them
to one another as well as to the centralized and highly decentralized
algorithms at either extreme of the centralization and information
sharing spectra.

A. Limitations of Centralized and Highly Decentralized Approaches

Extensive existing work has solved the problem of observation
request allocation in a satellite constellation using centralized
approaches [17]. Such solutions rely on a scheduler tasking a con-
stellation of satellites. The request allocation problem is solved at this
central scheduling node that has access to satellite overflight and
request information. The satellite agents receive and execute their
final, computed schedules from the scheduling node. If the schedul-
ing agent is itself a satellite, as is the case in a hierarchical or
leadership election implementation (where a subset of satellites
conducts scheduling on behalf of the entire constellation), the net-
work is susceptible to faults if the central node is lost, much like if all
request allocations are done by a single ground station that faces the
additional cost of uplinking each agent’s computed schedules.
Although it may be possible to elect another leader from the remain-

ing network, the election process may be costly in time and commu-

nications resources, which could penalize constellation performance

and result in missed observation opportunities.
For comparison, we also implement a “highly decentralized”

algorithm in which satellite agents each receive the initial set of
observation requests from a central source (this sharing distinguishes

highly decentralized from “[completely] decentralized”) and conduct

scheduling in isolation, without exchanging any state information.

Without any coordination among agents, some requests may be

oversatisfied, with multiple agents selecting overflights to schedule

them, whereas other requests may be undersatisfied if agents reach

their data volume capacity before attempting to schedule them. Our

aim in implementing an approach with such clear limitations is to

contrast with our centralized algorithm and show how our broadcast
decentralized algorithms can provide a necessary middle ground.
Finally, we introduce our suite of broadcast decentralized algo-

rithms in an attempt to reap the benefits of distributed scheduling but

use limited interagent communication to retain some algorithmic

efficiency. Namely, our decentralized approach can handle cases

where an agent drops out of or is added to the constellation without

significant disruption to existing scheduling. Furthermore, by

exchanging information to decide whether to bid on a request, agents
avoid some of the inefficiencies of the highly decentralized approach.

Note that in the broadcast decentralized algorithms, data consistency

must be maintained for agents to make decisions on which requests to

bid on as compared to their peers.We address this challenge by having

agents updatewhich requests they bid on based on stored, shared state

information from the previous iteration of scheduling. We summarize

each of the aforementioned algorithm families in Table 2 and discuss

our implementations of each in the subsequent sections.
In Secs. III.B, III.C, and III.E, we reference the following

functions:
1) The first function is ASSIGN�ri; aj�: If agent aj is not at

capacity, instruct aj to select its overflight for request ri that conflicts
with the fewest overflights aj has for other requests. If successful, the
agent will mark ri as satisfied, rule out its overflights that conflict
with the identified overflight, add the identified overflight to its
schedule of observations, and increment the count of requests it is
assigned to observe in the scheduling horizon. This calls
ELIMINATE CONFLICTS�assignmentaj;ri� and returns the

agent’s observation schedule.
2) The second function is SELF ASSIGN�ri; Pinitialize�: The

current agent checks its set of daytime overflights (with a solar zenith
angle of greater than 90 deg) to see if it has overflights for request ri. If
so, the agent changes its self-assignment status for request ri from
zero (false) to one (true) with probability Pinitialize (Table 1). This
returns a status of zero or one.
3) The third function is BROADCAST�ri; aj; items�: The current

agent aj instructs all agents to record its values for the state variables
in items for request ri in the current iteration of the algorithm. In BD
request satisfaction, items contains only a Boolean for whether aj

Fig. 2 Interagent information sharing by algorithm.

PARJAN AND CHIEN 449

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

found an overflight to satisfy ri. In BD contention, items includes
that Boolean in addition to the reward aj reaped for satisfying ri and
the agent’s number of remaining, free overflights for the request
(Table 1).
4) The fourth function is SCHEDULE�ri�: The current agent

searches its set of available overflights for request ri for one with a
time stamp that conflicts with the fewest overflights it has for other
requests, per the slew constraint. If there are multiple such over-
flights, the agent selects the one with the earlier time stamp. If the
search is successful, the agentmarks ri as satisfied, adds the identified
overflight to its schedule of observations, and increments the number
of requests it is assigned to observe in the scheduling horizon (to later
check against the data volume constraint). This returns 1) the assign-
ment as a tuple with form (spacecraft identifier, request index, or
overflight time) and 2) the number of conflicts the selected overflight
has with the current agent’s other overflights.
5) The fifth function is ELIMINATE CONFLICTS

�assignmentaj;ri�: Given the overflight time selected by agent aj
to observe request ri in the tuple assignmentaj;ri , agent aj records

which of its overflights are no longer feasible if request ri is sched-
uled because selecting them would violate the slew constraint.
6) The sixth function is UPDATE STATUS�ri; Passign;

Punassign�: Based on whether the current agent satisfied request ri
in the previous iteration of scheduling, it either unassigns itself from
request ri with probabilityPunassign or assigns itself to request ri with
probability Passign.

7) The seventh function is SHUFFLE�R�: This randomizes the
order of the list of requests R if the local request sort procedure is an
iterative random sort (Table 1).
8) The eighth function is SORT�R�: This sorts the list of requestsR

using one of the sorting methods named in Table 1.

B. Algorithm 1: Centralized

The application of centralized, hierarchical, or auction-based solv-
ers managed by a central scheduling node is well documented in
existing work on solving the observation request allocation problem
[9,10,12]. Thus, to demonstrate the viability of our broadcast decen-
tralized algorithms, it is important to compare their performances
on large-scale scheduling problems to that of their centralized
counterparts.
Our baseline centralized algorithm (Fig. 3), Algorithm 1, solves

the request allocation problem at a master node. That is, one central
node (i.e., another satellite or a ground station) solves the scheduling
problem for all agents. Algorithm 1 considers requests in ascending
order by an assigned ranking. The initial ranking for a request is
determined by the total number of overflights that all agents have for
it in the scheduling horizon. From R, the scheduling node creates a
min-heap (minimum binary heap)RminHeap such that the top of

RminHeap is initially the request with the fewest overflights in the

scheduling horizon. Each request ri in R also maintains a max-heap
(maximum binary heap) AmaxHeap;ri of agents with overflights for ri.
The agent at the top of AmaxHeap;ri has the most overflights for ri.

Table 2 Comparison of various request allocation approaches

Centralized/hierarchical
Leadership election/

hierarchical Broadcast decentralized Highly decentralized

Solver for request
allocation layer

Single, centralized scheduling
node.

Multiple nodes/satellite agents
handle scheduling on behalf of
constellation.

Individual satellite agents bid on
requests.

Individual satellite agents “pick
up” requests they have nonzero
overflights for.

Agent overflight
allocation layer

Scheduling node selects agent
overflights.

Superordinate “leader” agents
select overflights for
subordinate agents.

Overflights allocated to requests
by individual agents using a
common algorithm.

Individual agents attempt to
schedule every request they
picked up while maintaining
data volume constraint.

Shared
information

Satellite agents receive their
final execution schedule from a
single scheduling node.

Satellite agents receive their
final execution schedules from
scheduling node(s).

Initial request set, agent request
satisfaction, agent overflights,
contention metrics. O�A2�
messages exchanged.

Initial request set.

Vulnerabilities Subcase of hierarchical: threat
of master node loss.

Augmentation of centralized/
hierarchical algorithm;
leadership reelection is costly.

Data consistency must be
maintained.

Very inefficient allocations.
Risk of request oversatisfaction
and wasted agent capacity.

Fig. 3 Pictorial representation of our centralized algorithm with squeaky wheel optimization (s/c = spacecraft).

450 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

Once the central node has constructed a solution to the scheduling

problem, it sends out the resulting observation schedules to

each agent.

For the scheduling node to construct the solution, we leverage

squeaky wheel optimization (SWO) [18] in our centralized algo-

rithm. SWO allows us to greedily construct an initial solution that

can be improved upon iteratively by increasing the priority of unsat-

isfied requests. This mirrors the logic by which a ground station

might reprioritize requests based on downlinked information describ-

ing which observations were successfully captured.

The central node pops the request with the lowest ranking r0 from
RminHeap and assigns it to the agent with themost free overflights for

it in the scheduling horizon. If that agent is not at capacity, the

central node considers the request with the next-lowest ranking.

Otherwise, it attempts to assign r0 to the agent with the next-most

overflights for it in the scheduling horizon. It continues to reattempt

this before moving onto the next request until either r0 is satisfied or
there are no remaining agents with overflights for r0. Because the
central node manages state information for all agents over iterations

of scheduling, a limitation of this implementation is that we are

not able to parallelize the algorithm. If lost or compromised, the

central node can be reelected, though this process may be time

consuming.

Once all requests have been considered, the central node

increases the ranking assigned to a request based on whether it

was satisfied or not. If the request was satisfied, its ranking is

increased. If the request was not satisfied, its ranking is assigned

to zero, to move it to the top of Rminheap in the following iteration of

the algorithm, after RminHeap is created once more (thereby “greas-

ing the squeaky wheel”). The algorithm iterates until a user-

specified number of iterations are reached. Users may also specify

an early exit condition, such as when all satellites are subscribed at

capacity, all observation requests are satisfied, or the number/set of

observation requests satisfied between the current and previous

iterations is the same.

C. Algorithm 2: Highly Decentralized

No feedback on request satisfaction or state information is shared

among agents in our highly decentralized algorithm (Fig. 4). Thus,

the algorithm provides a lower bound for evaluating the distributed

broadcast decentralized approaches at the heart of this paper. For this

single-pass algorithm, each request is broadcast out to all agents.

From there, agents independently schedule observations of requests

based on their local view of the problem alone. That is, an agent will

allocate itself to every request it has nonzero overflights for and

proceed to search for the overflight satisfying the current request that

conflicts with the fewest other overflights it has for other requests.

Because selecting an overflight to observe a request may eliminate

other conflicting overflights (to maintain the slew constraint), the

order in which requests are considered matters. Thus, each agent

randomizes the order in which it considers and attempts to schedule

requests. In our current implementation of Algorithm 2, requests do

not have associated priorities. If an overflight is successfully found,

conflicting overflights for other requests are eliminated from the

agent’s set of available overflights.

D. Distributed Constraint Optimization

Our broadcast decentralized algorithms are adapted from the

maximum gain messaging algorithm and distributed stochastic algo-

rithm for solving distributed constraint optimization problems [19].
DCOPs are defined as tuples P � �A;X;D;C; α�:
1) A � fa1 : : : apg denotes a set of agents.
2) X � fx1 : : : xng denotes a set of variables such that n ≥ m.
3) D � fD1 : : : Dng denotes a set of domains for the correspond-

ing xi ∈ X.

Algorithm 1: Centralized

Input:A set of requestsR, a set of agentsA, and a set of overflightsO.

Output: L, which is a set of schedules for each agent aj ∈ A.

1: while iteration < maxIterations, do

2: create RminHeap

3: while jRminHeapj > 0, do

4: pop r0 from RminHeap

5: if totalOverflightsr0 > 0, then

6: create AmaxHeap;r0

7: while jAmaxHeap;r0 j > 0 and r0 unsatisfied, do

8: pop amax;r0 from AmaxHeap;r0

9: L ← ASSIGN�r0; amax;r0 �
10: end
11: end
12: end
13: iteration ← iteration� 1

14: end
15: return L

Fig. 4 Pictorial representation of the highly decentralized algorithm.

Algorithm 2: Highly decentralized

Input: A set of requests R, a set of agents A, and a set of overflights O.

Output: L, which is a set of schedules for each agent aj ∈ A.

1: while iteration < maxIterations, do

2: for each agent aj ∈ A, do

3: SHUFFLE�R�
4: for ri ∈ R, do

5: if aj not at capacity, then

6: assignmentaj;ri ; numConflictsaj;ri � SCHEDULE�ri�
7: if assignmentaj;ri valid, then

8: L ← assignmentaj;ri
9: ELIMINATE CONFLICTS�assignmentaj;ri �
10: end
11: end
12: end
13: end

14: iteration ← iteration� 1

15: end
16: return L

PARJAN AND CHIEN 451

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

4) C � fc1 : : : ckg denotes a finite set of constraint functions
involving the variables in X.
5) For tuple α: X → A, which is a mapping of variables to agents.
Complete solutions to DCOPs assign a value to each xi ∈ X while

satisfying all constraint functions in C.
For our problem, we have the following:
1) A � fa1 : : : amg denotes the set of spacecraft agents.
2) X � fo11 : : : omp; s11 : : : smp; w11 : : : wmpg includes variables

where, for example, agent am has omp free overflights for request rp
and, if smp � 1, am schedules request rp with reward wmp.

3)D � fD1 : : : D3×m×pg denotes a set of domains for the variables
in X: the free overflight counts and rewards take on nonnegative
integer values, and the scheduling variables are binary decision
variables with domain f0; 1g.
4) C � fc1; c2g, where for some agent ai, a) c1: sid � sie ≤ 1 if

jOidj −Oiekj ≤ offset (where Oidj and Oiek are the overflights

selected by agent ai to observe each pair of requests rd and re);
and b) c2: si1 � : : : � sip ≤ ncap.
As before, our objective [Eq. (1)] is to maximize the reward across

all agents for satisfying each request in R while adhering to the
constraints in C.
Both the MGM algorithm and the DSA are incomplete, synchro-

nous search-based algorithms [13,14]. In the MGM algorithm, an
agent communicates exclusively with its neighbors: agents whose
variables appear in the same cost function(s) as that agent’s own
variables. Under our problem formulation, for each request and at
each iteration, the set of neighbors would be all agents with free
overflights for the request. Each agent initializes its variable values
randomly and repeats the following procedure until some termination
condition is reached:
1) Broadcast variable values out to all neighbors.
2) Receive values of neighbors’ variables and compute the maxi-

mum gain obtained by changing own variable values.
3) Broadcast that gain out to all neighbors.
4) Receive neighbors’ gains and update value if own gain is the

largest.
The DSA is similar, but instead of steps 3 and 4, the agents

stochastically decide whether to take on the variable values associ-
ated with maximum gain.
Combining the stochastic updating procedure from the DSA and

the more informed updating procedure of the MGM algorithm, the
agents in the broadcast decentralized algorithms update their self-
assignment statuses for a particular request in the semistochastic
manner outlined in Figs. 6 and 7 for the contention and request
satisfaction algorithms, respectively. This helps avoid local maxima
when optimizing for the number of successfully scheduled requests
over iterations of the algorithms.

The generic DCOP algorithms and our BD algorithms differ in the

order in which agents receive broadcasts. To maintain a consistent

view of the problem across all agents for each iteration, our agents

broadcast state information out to all others. Broadcasting informa-

tion to all agents increases the overall number ofmessages exchanged

but eliminates the need to continuously recompute or reverify agents’

sets of neighbors. An excellent optic for future work is the inves-

tigation of methods for computing neighborhoods to limit interagent

communication to an “as-needed” basis (in contrast to our “broadcast

to all” approach).

E. Algorithm 3: Broadcast Decentralized

Existing work [11,12] describes parallel single-item auctions and

sequential single-item auctions that rely on a single auctioneer agent.

In the broadcast decentralized algorithms, like the consensus-based

bundle algorithm (CBBA) [12], coordination instead occurs exclu-

sively between scheduling agents that may vary in their orbits, costs,

and capabilities (Fig. 5). Unlike the CBBA approach, our BD algo-

rithms consider requests iteratively, eliminating the overhead of

constructing and evaluating bundles of requests. Another existing

approach applies the distributed pseudotree optimization procedure

(a complete algorithm) strictly to solving the observation request

allocation problem for superuser agents with exclusive control of

certain satellite orbit portions [11]. In contrast, our MGM- and DSA-

inspiredmethods use a heuristic, semistochastic approach for satellite

agents to updatewhether they are self-assigned to attempt to schedule

an overflight for a request. Agentsmake this decision based on shared

information about request satisfaction alone (BD request satisfac-

tion) or request satisfaction along with the reward and number of

excess overflights for the current request (BD contention). Such an

approach trades solution quality for the ability to scale up to larger

distributed constraint optimization problems involving hundreds of

agents.

In the iterative centralized algorithm, the central node shares only

each agent’s schedule of requests to observe after each invocation of

the scheduler. In the broadcast decentralized algorithms, the initial set

of requests must be broadcast to each agent so it can establish a local

view of the scheduling problem. The highly decentralized algorithm

is a single-pass algorithm in which all agents receive the set of

requests and attempt to schedule them without any interagent com-

munication.

Our broadcast decentralized algorithms consist of two layers:

allocation and search. In allocation, agents determine how many

overflights they have during the scheduling horizon for each request

ri. In the BD contention algorithm, this is broadcast out for all other

agents to record for the initial iteration of the algorithm. Agents with

Fig. 5 Pictorial representation of the generic broadcast decentralized algorithm.

452 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

overflights for ri self-assign to find an overflight to observe it with
some probability Pinitialize (Table 1).
In the search phase, if a request was satisfied by multiple agents’

overflights in the previous iteration, excess agents stochastically
unassign from it. If it was unsatisfied, additional unassigned agents
probabilistically self-assign to attempt to schedule the request in the
current iteration. Agents update whether they are self-assigned to
observe a request in the current iteration based on state information
from the previous iteration of the algorithm. This allows agents to
avoid race conditions in both our current single-threaded simulation
of parallel execution and in a future parallelized implementation. In
BD request satisfaction, agents broadcast whether they satisfied a
request and update whether they are self-assigned to attempt to
schedule it in the current iteration based on how many other agents
satisfied it. In BD contention, agents broadcast whether they sat-
isfied a request, along with the number of free overflights they
have remaining for that request and their reward for satisfying it
(a function of the number of free overflights and the number of
conflicts the selected overflight has with the agent’s overflights for
other requests).
We introduce two novel broadcast decentralized algorithms with

10 potential variations along the following axes: required shared
information, agent allocation initialization, agent request sort
procedure, and agent reward for request satisfaction (Table 1).
First, our approaches vary in the amount of information shared
between agents. The BD contention algorithm requires agents to
share whether they satisfied a request, their reward for doing so,
and the number of free overflights they have remaining for that
request every iteration (Algorithm 4). BD request satisfaction only
requires agents to broadcast whether or not they satisfied a request
(Algorithm 3).
In both broadcast decentralized algorithms, agents iterate through

the set of requests broadcast to them by the central node. Because a
selected overflight to schedule one request may eliminate conflicting
overflights that an agent has for another request, the order in which
requests are considered matters. For each of the two broadcast
decentralized algorithms, the variations differ in their sort functions

but require agents to share the same information. The three sort
variations to determine the order in which agents consider requests
are as follows:
1) For the iterative global free overflight sort, agents sort requests

at the start of each iteration in ascending order by the cumulative
number of available overflights all agents have for each request.
2) For theiterative local free overflight sort, agents sort requests at

the start of each iteration in ascending order by the number of
available overflights they alone have for each request.
3) for the iterative random sort, agents randomize the order of the

requests at the start of each iteration.
Because the iterative global overflight sort requires contention

information (the number of free overflights for a request) to be shared

among agents, the only two broadcast decentralized request satisfac-
tion sort variations are the iterative local free overflight sort and the
iterative random sort.
During the initialization phase of BD contention Pinitialize, the

probability with which an agent initially self-assigns to attempt to
schedule a request can take on one of three forms: Prandom is a user-

specified value between zero and one.Pratio is the ratio of the number
of initial overflights the agent has for the request to the total number
of initial overflights all agents have for the request. Finally, Ptotal ofs

is a ratio of one to the total number of initial overflights all agents

have for the request. Because overflight information is not shared in
BD request satisfaction, Pinitialize must be supplied by the user as
Prandom.
During the iteration phase, the procedures by which agents

update whether they are self-assigned to a request for BD conten-

tion and BD request satisfaction are outlined in Figs. 6 and 7,

Algorithm 4: Broadcast decentralized contention

Input: A set of requests R, a set of agents A, and a set of overflights O.

Output: L, which is a set of schedules for each agent aj ∈ A.

1: for each agent aj ∈ A, do

2: for each request ri ∈ R that aj has overflights for, do

3: numOfsaj;ri � j�oji1 : : : ojin�j
4: BROADCAST�ri; aj; �numOfsaj;ri ��
5: end
6: end
7: for each agent aj ∈ A, do

8: SORT�R�
9: for each request ri ∈ R that aj has overflights for, do

10: assignmentStatusaj;ri � SELF ASSIGN�ri; aj; Pinitialize�
11: end
12: end
13: while iteration < maxIterations, do

14: for each agent aj ∈ A, do

15: for each request ri ∈ R, do

16: if iteration > 0, then

17: UPDATE STATUS�ri; Passign; Punassign�
18: end
19: if assignmentStatusaj;ri �� 1, then

20: assignmentaj;ri ;numConflictsaj;ri �SCHEDULE�ri;aj�
21: if assignmentaj;ri valid, then

22: L ← assignmentaj;ri
23: ELIMINATE CONFLICTS�assignmentaj;ri �
24: ofFoundaj;ri � True

25: BROADCAST(ri; aj, [ofFoundaj;ri , numConflictsaj;ri ,
rewardaj;ri])

26: end
27: end
28: end
29: end
30: iteration ← iteration� 1

31: end
32: return L

Algorithm 3: Broadcast decentralized request satisfaction

Input: A set of requests R, a set of agents A, and a set of overflights O.

Output: L, which is a set of schedules for each agent aj ∈ A.

1: for each agent aj ∈ A, do

2: SORT�R�
3: for each request ri ∈ R that aj has overflights for, do

4: assignmentStatusaj;ri � SELF ASSIGN�ri; aj; Pinitialize�
5: end
6: end
7: while iteration < maxIterations, do

8: for each agent aj ∈ A, do

9: for each request ri ∈ R, do

10: if not on the first iteration, then
11: UPDATE STATUS�ri; Passign; Punassign�
12: end
13: if assignmentStatusaj;ri �� 1, then

14: assignmentaj;ri ;numConflictsaj;ri �SCHEDULE�ri;aj�
15: if assignmentaj;ri valid, then

16: L ← assignmentaj;ri
17: ELIMINATE CONFLICTS�assignmentaj;ri �
18: of Foundaj;ri � True

19: BROADCAST(ri; aj, [of Foundaj;ri])

20: end
21: end
22: end
23: end
24: iteration ← iteration� 1

25: end
26: return L

PARJAN AND CHIEN 453

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

respectively. In general, agents update whether they are self-
assigned to a request in the current iteration based on broadcast
information from the previous iteration. BD contention requires
agents to consider their reward for satisfying a request in their
update procedure. The reward may either be a simple difference
between the number of free overflights the agent has for the request
and the number of conflicts its selected overflight has with the
agent’s other overflights or a ratio of the number of free overflights
to 1� the number of conflicts.
The first reward functionWdifference rewards agents that select an

overflight with fewer conflicts with their overflights for other
requests to schedule the request and havemore free overflights (more
excess capacity) for the request. Agents with more capacity are also
more likely to have more conflicts, and Wdifference can take on

negative values when the number of conflicts exceeds the number
of free overflights. The second reward functionWratio offers users a
nonnegative alternative by computing a ratio instead.
When an agent unassigns itself from a request ru, it must add back

the overflights for other requests that conflicted with the overflight it
may have selected to observe ru. In BD contention, the agent must
also broadcast the updated number of overflights for each of these
other requests to maintain consistency across all agents’ views of the
problem.

IV. Application to Continuous Planning

The extension of our study to continuous planning offers more

realistic operational context for scheduling. In this context, the con-

stellation periodically receives new changes in requests, where such a

change might be the addition of a new request or revocation of an

existing request. The key insight here is that the set of new requests

and requests being revoked is small as compared to the set of requests

still valid. Additionally, existing agents may drop from the constel-

lation (e.g., no longer be able to satisfy request) or new agents may be

added to the constellation and be available to satisfy requests.

Earlier, we advocated that distributed approaches to observation

request allocation in large-scale constellations ease the network’s

ability to continue scheduling with little disruption in the face of

changes in active agents or to the set of requests as scheduling

progresses in time. Our application of the broadcast decentralized

algorithms to continuous planning aims to highlight this capability as

compared to continuous planning conductedwith our centralized and

highly decentralized algorithms. Furthermore, we specifically intro-

duce two approaches to implementing continuous planning: 1) from

scratch continuous planning (FSCP), in which agents schedule all

requests from scratch every invocation; and 2) incremental continu-

ous planning (ICP), where agents receive notice of which requests

Fig. 6 UPDATE STATUS�ri;Passign;Punassign�: agent self-assignment update procedure for BD contention.

Fig. 7 UPDATE STATUS�ri;Passign;Punassign�: agent self-assignment update procedure for BD request satisfaction.

454 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

have been added or removed from the request set before the start of
another invocation of scheduling and then modify their existing
schedules to remove undesired observations and accommodate new
ones. We demonstrate that ICP provides better solution quality as
compared to FSCP and is more resilient to changes and disruptions in
the constellation and scheduling problem.
In our experiments, each invocation of the scheduler corresponds

to a one-day step forward in time (Fig. 8). To assess how resilient
each continuous planning approach is to changes in desired target
observations, odd invocations call for requests from 10% of the
targets to be withdrawn. In nonzero even invocations, these targets,
along with their corresponding observation requests, are reinstated
while another distinct 10% of the targets are withdrawn. This addi-
tional set of targets is reinstated in the next odd invocation. Note that
the number of observation requests remains unchanged over invo-
cations due to the scheduling horizon sliding one day forward at a
time. We similarly alternate which 10% of the spacecraft agents are
deactivated and reintroduced into the constellation. In each of our
algorithms, deactivated agents cease to schedule any new requests
in subsequent invocations. The rest of the network interprets this
behavior as the deactivated agents failing to satisfy new requests
they are assigned.
The algorithms reference the following functions:
1) The UPDATE REQUESTS�activeRequests; withdrawn

Requests;Hs;He� function adds new observation requests to
existing activeRequests and requests for which the observation is

no longer desired or in the window of the current scheduling horizon
to withdrawnRequests. It returns updated activeRequests and with-
drawnRequests.
2) The UPDATE AGENTS�activeAgents; inactiveAgents�

function is used to simulate agents joining or dropping out of the
satellite constellation. It adds newly accessible agents to activeAgents
and inaccessible agents to inactiveAgents. It returns updated active-
Agents and inactiveAgents.
3) The SCHEDULE ACTIVE REQUESTS�activeRequests;

activeAgents; O� function calls to the desired algorithm (central-
ized, highly decentralized, or broadcast decentralized) to solve the
scheduling problem. It returns a set of schedules for each agent.
4) The SCHEDULE NEWLY ACTIVE REQUESTS�active

Requests; activeAgents; O� function calls to the desired algorithm
(centralized, highly decentralized, or broadcast decentralized) to
update the existing solution to the scheduling problem by attempting
to schedule only the requests that have newly been set to active (i.e.,
either did not exist or were inactive in previous invocation). It returns
an updated set of schedules for each agent.
5) With the UNASSIGN FROM REQUEST�request� func-

tion, the current agent removes any scheduled observations of request
from its schedule and sets its frequency of observation of request to
zero. In doing so, it frees up any overflights for other requests that
may have been marked as unavailable because their time stamps
conflicted with that of the agent’s selected overflight for request (per
the slew constraint).

A. From Scratch Continuous Planning

Algorithm 5: From scratch continuous planning

Input: A set of requests R, a set of agents A, and a set of overflights O.

Output: L, which is a set of schedules for each agent aj ∈ A.

1: activeRequests; withdrawnRequests; activeAgents; inactiveAgents; daySec � R; � �; A; � �; 86;400
2: while i < maxInvocations, do

3: for agent inA, do

4: reset agent schedules and state variables (vars)
5: end
6: if i > 0, then

7: Hs;He ← Hs � daySec;He � daySec

8: activeRequests;withdrawnRequests � UPDATE REQUESTS�activeRequests; withdrawnRequests;Hs;He�
9: activeAgents; inactiveAgents � UPDATE AGENTS�activeAgents; inactiveAgents�
10: end
11: L ← SCHEDULE ACTIVE REQUESTS�activeRequests; activeAgents;O�
12: end
13: return L

Fig. 8 Pictorial representation of revisions to request set in continuous planning scenarios.

PARJAN AND CHIEN 455

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

B. Incremental Continuous Planning

V. Empirical Evaluation

We used grid search to tune the values for Pinitialize, Passign, and
Punassign for each algorithm. We searched the range of probabilities

from0.1 to 1.0 for the combination of probabilities that performed the
best on a training problem of 10 SkySats scheduling 1030 requests
(634 point targets, with 66 selected for daily observation) over one
week (1 August 2021 at 00:00:00 UTC to 8 August 2021 at 00:00:00
UTC) for a subset of BD algorithm variations (Table 3). Notably, the
algorithms performed best with a low probability of initial assign-
ment Pinitialize and a high probability of self-assignment Passign. If

fewer agents are initially self-assigned to observe a request, more
may self-assign only as needed with high certainty, without agent
capacities reaching ncap early in execution.

Because our current results are from single-threaded simulations
of distributed execution across agents, there is anO�jAj� inflation in
runtime. The makespan of the algorithm with parallelization should
be roughly divided by jAj, which is the number of agents.

A. Experiment 1: Batch Planning

1. Configuration

a) The scheduling horizon was one week (1 August 2021 at
00:00:00 UTC to 8 August 2021 at 00:00:00 UTC).
b) Regarding the requests, there were 634 globally distributed

terrestrial point targets (volcanos and cities), each with one observa-
tion request every 2 h of the scheduling horizon (53,256 total). Across
all agents, there were nonzero overflights in the scheduling horizon
for just under 35,000 of these requests, yielding the final set.
c) Regarding the agents, there were 100 in total, which were

composed of Planet Labs SkySatsA, B, andC 1-19, plus 79members
of various Flock constellations available on the North American
Aerospace Defense Command CelesTrak** site as of 22 August

2022. We obtained overflight information using a calculator devel-
oped by Boerkoel et al. [9].

2. Analysis

In this batch scheduling experiment, we consider a static one-week
scheduling horizon. Although the BD algorithms each run for 10
iterations within an invocation, centralized and highly decentralized
are both single-pass algorithms. The performance of our broadcast
decentralized algorithms is bounded above by the centralized algo-
rithm and below by the highly decentralized algorithm.Due to the lack
of coordination among agents, the highly decentralized algorithm has
the highest rate of redundant observations per request and a satisfaction
rate that lags behind the rest. Although the BD contention algorithm’s
performance plateaus around 12% below the centralized algorithm by
iteration 2, BD request satisfaction continues to improve through all
iterations. We attribute this to the greater stochasticity in the update
procedure used by BD request satisfaction (Fig. 7). The number of
broadcasts for bothBDapproaches is linear in time, and eachbroadcast
is only a few words in size. Comparatively, broadcasts are minimal in
the centralized and highly decentralized algorithms: one-to-many
broadcasts of 1) final observation schedules and 2) the initial set of
requests from the central node to the scheduling agents, respectively.

B. Experiment 2: FSCP Across All Algorithms, No Node Lossage

1. Configuration

a) The scheduling horizon was one week. It started 1 August 2021
at 00∶00:00 UTC and ended 8 August 2021 at 00:00:00 UTC). Each
invocation requires a one day step forward in time such that by
the final invocation, the scheduling horizon was 8 August 2021 at
00:00:00 UTC to 15 August 2021 at 00:00:00 UTC.
b) Regarding the requests, there were 634 globally distributed

terrestrial point targets (volcanos and cities), each with one observa-
tion request every 2 h of the scheduling horizon (53,256 total). Across
all agents, there were nonzero overflights in the scheduling horizon
for just under 35,000of these requests per invocation of the scheduler,
yielding the final set.
c) The agents were the same as in experiment 1.

2. Analysis

In our version of the continuous planning problem, each invoca-
tion of the scheduler corresponds to a step forward in time. We
introduce further stochasticity in the set of requests by alternating
two distinct sets of 10% of all requests to either stop observing or
resume observing between nonzero even and odd invocations. In

Algorithm 6: Incremental continuous planning

Input: A set of requests R, a set of agents A, a set of overflights O.

Output: L, a set of schedules for each agent aj ∈ A.

1: activeRequests; withdrawnRequests; activeAgents; inactiveAgents; daySec � R; � �; A; � �; 86;400
2: while i < maxInvocations, do

3: if i > 0, then

4: Hs;He ← Hs � daySec;He � daySec

5: activeRequests;withdrawnRequests � UPDATE REQUESTS�activeRequests; withdrawnRequests;Hs;He�
6: activeAgents; inactiveAgents � UPDATE AGENTS�activeAgents; inactiveAgents�
7: for request in withdrawnRequests, do
8: for agent in activeAgents, do
9: if agent previously scheduled request, then
10: UNASSIGN FROM REQUEST�request�
11: end
12: end
13: end
14: end
15: L ← SCHEDULE NEWLY ACTIVE REQUESTS�activeRequests; activeAgents; O�
16: end
17: return L

Table 3 Best parameter values for a subset of broadcast
decentralized variations identified through grid searcha

Pinitialize Passign Punassign

BD contention (sort: LFO, reward: difference) 0.1 0.9 0.6
BD contention (sort: GFO, reward: ratio) 0.1 1.0 0.2
BD contention (sort: RD, reward: ratio) 0.1 1.0 1.0
BD request satisfaction (sort: RD) 0.1 0.9 0.7

aRows 1 and 4 were used for parameters in the experiments.

**http://celestrak.org/NORAD/elements/active.txt.

456 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

http://celestrak.org/NORAD/elements/active.txt

Fig. 9 Results for experiment 1: batch planning.

Fig. 10 Results for experiment 2: FSCP across all algorithms, with no node lossage.

PARJAN AND CHIEN 457

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

FSCP, which is the subject of this experiment, the agents reschedule
all requests from scratch in response to changes in the set of requests.

Given the clear redundancy in rescheduling requests unaffected by a
step forward in time, we note that the FSCP approach was mainly

developed to make a case for incremental continuous planning,
which will be discussed in the next experiment.
Each invocation of from scratch continuous planning takes roughly

50,000 s in our current nonparallelized implementation, or 0.014 s per
request per agent (Fig. 9). The centralized solver is significantly faster

because schedules are generated by a single scheduling node with
access to all agent information. The highly decentralized algorithm,

althoughmuch slower than the centralized algorithm, is also faster than
our BD algorithms but has no coordination among agents, explaining
its low request satisfaction rates. Again, the BD algorithms perform in

between the highly decentralized and centralized algorithms with
respect to request satisfaction (Fig. 10). Every algorithm’s performance
improves slightly between invocations of the scheduler, suggesting that

the evolving set of requests had little impact on the algorithms’ abilities
to construct solutions from scratch. Logically, this is consistent with

what we would expect for a continuous planning approach in which
agents’ existing schedules are not retained for modification when new
requests are introduced but are discarded altogether. The average

number of observations per request is fairly stable between invocations,
but it exceeds a 1∶1 ratio for all algorithms except the centralized
algorithm.

C. Experiment 3: ICP Versus FSCP in BD Algorithms, No Node
Lossage

1. Configuration

The configuration is the same as in experiment 2.

2. Analysis

We now evaluate both implementations of continuous planning in
our broadcast decentralized algorithms (Fig. 11). As expected,
because the ICP approach requires agents to modify their existing
request schedules to add or remove changed observation requests, it
performs roughly three times faster than its from scratch counterpart.
However, the observations per request for algorithms using ICP are
nearly double that of those using FSCP. In the ICP approach, when a
target is “added back in” for observation in the next invocation of the
scheduler, all of its observation requests in the scheduling horizon are
regenerated. Agents treat these requests as entirely new and attempt
initial self-assignment to them based on some initial allocation
probability (Table 1). We believe that this approach adds redundancy
in the number of agents that schedule observations for each request
for the ICP approach. Surprisingly, BD request satisfaction outper-
forms BD contention on all fronts, regardless of continuous planning
implementation. Given the slim distinction in the amount of infor-
mation shared between the two algorithms, we attribute this to the
procedure that agents use to update which requests they are self-
assigned to based on the broadcast feedback from other agents
(Figs. 6 and 7). Nonetheless, the performance of the BD algorithms
with ICP also proves resilient to changes in the set of requests and
improves over invocations; this is in part due to the high number of
observations per request but also because agents continue to iterate
over the same initial observation schedule, even as new requests are
added and others are withdrawn.

D. Experiment 4: ICP with Node Lossage

1. Configuration

a) The scheduling horizon is the same as in experiment 2.

Fig. 11 Results for experiment 3: ICP vs FSCP in BD algorithms, with no node lossage.

458 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

b) The requests are the same as in experiment 2.
c) Regarding the agents, there were 100 total, which were com-

posed of Planet Labs SkySats A, B, and C 1-19, plus 79 members of
various Flock constellations. For each invocation, 10% of the agents
are withdrawn while another 10% are (re)introduced.

2. Analysis

This final experiment captures both elements of continuous plan-

ning studied in this paper: 1) request addition/withdrawal and2) agent

addition/loss (Fig. 12). We study these in the ICP problem for both

broadcast decentralized algorithms to answer how the algorithms

hold up to not only changes in the set of requests but to the disruption

and addition of new nodes to the network. The addition of constella-

tion changes seems to have little impact on agent satisfaction rates,

which steadily increase across invocations. This suggests that even

when agents dropped out of the network and were no longer able to

schedule new requests, the remaining agents coordinated to address

any coverage gaps that may have resulted.

Across all experiments, the request satisfaction implementation

consistently outperforms the contention implementation of broadcast

decentralized algorithms. However, because BD contention also

considers whether or not a request was satisfied by other agents in

the previous iteration, we would expect that BD contention would

outperform BD request satisfaction. We posit that this discrepancy is

attributed to the reward structure used by BD contention: the algo-

rithmmaximizes the number of overflights an agent has for a request

and minimizes the number of conflicting overflights the agent has

with the one it selects to satisfy the request (Table 1). When tasking

spacecraft agents with observation requests, doing so rewards agents

with overflights that have minimal contention instead of agents that
satisfy “difficult requests” (i.e., requests with a smaller supply of
agents with overflights to satisfy them). This also explains why BD
contention consistently has a higher ratio of unique agent observa-
tions to requests than BD request satisfaction in our experiments. In
BD request satisfaction, an agent is less likely to redundantly satisfy a
request if another agent has already found an overflight to satisfy it
(Fig. 7). Better understanding these reward structures and their effect
upon algorithm performance is an excellent area for future work.

VI. Future Work

Further analysis of both broadcast decentralized algorithms as well
asmany other possible algorithms is necessary to better understand the
frequencywithwhich agents self-assign or self-unassign from requests
in our experiments and to address redundancies and bottlenecks in
algorithmic efficiency. Ultimately, we present one form of configuring
the reward structure for BD contention that only rewards agents with
minimal contention for an observation of a particular target. A com-
pelling topic for future work is to explore other metrics for computing
the reward that balance the supply of agents that can observe a
particular target with the demand for observations of that target.
Additionally, we propose further development of this work by

exploring the problem structure and policy variations. Toward
the former, the broadcast decentralized algorithms inherit their
coordination schemes from the distributed constraint optimization
algorithms from which they are derived. Both the MGM algorithm
and the DSA leverage constraint locality and restrict messaging to
neighbors; these are agents whose decision variables are within the
same cost functions, as opposed to our overly generous broadcast to

Fig. 12 Results for experiment 4: ICP with node lossage.

PARJAN AND CHIEN 459

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

all approach [13,14]. Thus, a promising area for future work is to
study what neighborhoods of agents can be defined within the large-
scale constellation [i.e., grouping agents that have overflights for the
same request(s)] and limit the broadcasting of state information to
within those neighborhoods. Turning to geographic locality, factor-
ing in the physical proximity of requests to one another in our
scheduling (beyond our current use of a time-based slew constraint)
instead of only considering temporal overflight data would allow us
to study bundling requests together, as previously studied in auction-
based approaches [12].
Our problem definition can also be extended to multilayer con-

stellations beyond our current studies that focus on a single constel-
lation in low Earth orbit (LEO). We propose incorporating multiple
LEO constellations as well as constellations in medium Earth orbit
and geostationary Earth orbit to enrich the solution space by prompt-
ing coordination across layers of Earth-observing satellites. This
would also expand the network’s ability to schedule more complex
(follow-up) observations and assess/reward observation quality,
depending on the asset(s) used.

VII. Conclusions

Increased space observation capabilities represent opportunities
for improved space-based monitoring of a wide range of Earth
science phenomena including (but not limited to) volcanos, flooding,
wildfires, the cryosphere, and the biosphere. Increased in situ sensing
via the IOT can also provide significant information to study these
phenomena. One challenge to such developments is that of allocating
observation assets. A range of centralized and decentralized methods
for allocating satellite agents to observations is described.
In particular, two broadcast decentralized algorithms are outlined

that implement heuristic search approaches inspired by DCOP algo-
rithms to search for approximate solutions to the large-scale constella-
tion request allocation problem with low data volume for agent
coordination. Most coordination occurs exclusively between schedul-
ing agents without the supervision of a central agent or the redundancy
of scheduling without interagent communication. Variations of the
broadcast decentralized algorithms allow users to adjust 1) the amount
of information shared among agents, 2) how agents determinewhether
to initially self-assign to requests, 3) the order inwhich agents consider
requests, and 4) the reward functions agents use to assess their request
satisfaction.
In the current evaluation, results are presented from four experi-

ments using realistic problem and orbit distributions to compare the
current BD algorithms to their centralized and decentralized counter-
parts. It is demonstrates that broadcast decentralized algorithms far
outperform approaches where agents schedule without any commu-
nication, demonstrating that intranetwork messaging is critical to
solving the large-scale request allocation problem. Although the
speed and solution quality of the current broadcast decentralized
approaches trail those of an entirely centralized algorithm, through
experiments with continuous planning, it is determined that the
broadcast decentralized algorithms are responsive to changes in both
the set of requests and the available agents without the need for or
risks associated with relying on a centralized solver. When new
scheduling nodes are added, the current algorithms scale without a
constellationwide update required because these new nodes simply
broadcast that they have picked up requests to schedule. In general,
the current algorithms scale to continuous planning problems using
an incremental replanning approach that can incorporate small
changes in the request set into agents’ existing observation schedules
significantly faster than rescheduling from scratch.

Acknowledgments

Portions of this work were performed by the Jet Propulsion Labo-
ratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

References

[1] Chien, S. A., Cichy, B., Davies, A., Tran, D., Rabideau, G., Castaño, R.,
Sherwood, R., Mandl, D., Frye, S., Shulman, S., Jones, J., and

Grosvenor, S., “An Autonomous Earth-Observing Sensorweb,” IEEE

Intelligent Systems, Vol. 20, No. 3, 2005, pp. 16–24.
https://doi.org/10.1109/MIS.2005.40

[2] Chien, S. A., Mclaren, D., Doubleday, J., Tran, D., Tanpipat, V., and
Chitradon, R., “Using Taskable Remote Sensing in a Sensor Web for
Thailand Flood Monitoring,” Journal of Aerospace Information Sys-

tems, Vol. 16, No. 3, 2019, pp. 107–119.
https://doi.org/10.2514/1.I010672

[3] Mandl, D., Frye, S., Cappelaere, P., Handy, M., Policelli, F., Katjizeu,
M.-C., Langenhove, G., Aube, G., Saulnier, J.-F., Sohlberg, R., Silva, J.,

Kussul, N., Skakun, S., Ungar, S., Grossman, R., and Szarzynski, J.,

“Use of the Earth Observing One (EO-1) Satellite for the Namibia

SensorWeb Flood Early Warning Pilot,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, Vol. 6,

No. 2, 2013, pp. 298–308.

https://doi.org/10.1109/JSTARS.2013.2255861
[4] Chien, S.A.,Davies,A.G.,Doubleday, J., Tran,D.Q.,Mclaren,D.,Chi,

W., and Maillard, A., “Automated Volcano Monitoring Using Multiple

Space andGroundSensors,” Journal of Aerospace Information Systems,

Vol. 17, No. 4, 2020, pp. 214–228.

https://doi.org/10.2514/1.I010798
[5] Chien, S. A., Doubleday, J.,Mclaren, D., Davies, A., Tran, D., Tanpipat,

V., Akaakara, S., Ratanasuwan, A., and Mandl, D., “Space-Based

Sensorweb Monitoring of Wildfires in Thailand,” Proceedings of the

2011 IEEE International Geoscience and Remote Sensing Symposium,

IEEE Press, New York, 2011, pp. 1906–1909.

https://doi.org/10.1109/IGARSS.2011.6049497
[6] Branch, A., Chien, S. A., Marchetti, Y., Su, H.,Wu, L., Montgomery, J.,

Johnson, M., Smith, B., Mandrake, L., and Tavallali, P., “Federated
Scheduling of Model-Driven Observations for Earth Science,”
InternationalWorkshop on Planning and Scheduling for Space (IWPSS),
2021, https://ai.jpl.nasa.gov/public/papers/Branch_IWPSS2021_paper_
12.pdf [retrieved 05 Oct. 2022].

[7] Shah, V., Vittaldev, V., Stepan, L., and Foster, C., “Scheduling the
World’s Largest Earth-Observing Fleet of Medium-Resolution Imaging
Satellites,” International Workshop on Planning and Scheduling for

Space, Organization for the 2019 International Workshop on Planning
and Scheduling for Space, Berkeley, CA, 2019, pp. 156–161.

[8] Augenstein, S., Estanislao, A., Guere, E., and Blaes, S., “Optimal
Scheduling of a Constellation of Earth-Imaging Satellites, for Maximal

Data Throughput and Efficient Human Management,” Proceedings of

the Twenty-Sixth International Conference on Automated Planning and

Scheduling, ICAPS 2016, edited by A. J. Coles, A. Coles, S. Edelkamp,

D. Magazzeni, and S. Sanner, AAAI Press, June 2016.

https://doi.org/10.1609/icaps.v26i1.13784.
[9] Boerkoel, J., Mason, J., Wang, D., Chien, S. A., and Maillard, A., “An

Efficient Approach for Scheduling Imaging Tasks Across a Fleet of
Satellites,” International Workshop on Planning and Scheduling for

Space (IWPSS), 2021, https://ai.jpl.nasa.gov/public/papers/Boerkoel_
IWPSS2021_paper_23.pdf [retrieved 05 Oct. 2022].

[10] Nag, S., Li, A. S., andMerrick, J. H., “SchedulingAlgorithms for Rapid
Imaging Using Agile Cubesat Constellations,” Advances in Space

Research, Vol. 61, No. 3, 2018, pp. 891–913.
https://doi.org/10.1016/j.asr.2017.11.010

[11] Picard, G., “Auction-Based and Distributed Optimization Approaches
for Scheduling Observations in Satellite Constellations with Exclusive
Orbit Portions,” Proceedings of the 21st International Conference on

Autonomous Agents andMultiagent Systems, International Foundation

for Autonomous Agents and Multiagent Systems, International Founda-
tion for Autonomous Agents and Multiagent Systems, Auckland, NZ,
2022, pp. 1056–1064.
https://doi.org/10.5555/3535850.3535968

[12] Phillips, S., and Parra, F., “A Case Study on Auction Based Task
Allocation Algorithms in Multi Satellite Systems,” AIAA Paper 2021-
0185, 2021.
https://doi.org/10.2514/6.2021-0185

[13] Maheswaran, R. T., Pearce, J. P., and Tambe, M., “Distributed
Algorithms for DCOP: AGraphical Game-Based Approach,” Proceed-

ings of the 17th International Conference on Parallel and Distributed

Computing Systems (PDCS-2004), 2004, pp. 432–439.
[14] Zhang, W., Wang, G., Xing, Z., and Wittenburg, L., “Distributed Sto-

chastic Search and Distributed Breakout: Properties, Comparison and
Applications toConstraintOptimization Problems inSensorNetworks,”
Artificial Intelligence, Vol. 161, Nos. 1–2, 2005, pp. 55–87.
https://doi.org/10.1016/j.artint.2004.10.004

[15] Chien, S. A., Rabideau, G., Tran, D. Q., Troesch,M., Nespoli, F., Perez-
Ayucar, M., Costa-Sitja, M., Vallat, C., Geiger, B., Vallejo, F., Andres,
R., Altobelli, N., and Kueppers, M., “Activity-Based Scheduling of
Science Campaigns for the Rosetta Orbiter,” Journal of Aerospace

460 PARJAN AND CHIEN

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

https://doi.org/10.1109/MIS.2005.40
https://doi.org/10.2514/1.I010672
https://doi.org/10.1109/JSTARS.2013.2255861
https://doi.org/10.2514/1.I010798
https://doi.org/10.1109/IGARSS.2011.6049497
https://ai.jpl.nasa.gov/public/papers/Branch_IWPSS2021_paper_12.pdf
https://ai.jpl.nasa.gov/public/papers/Branch_IWPSS2021_paper_12.pdf
https://doi.org/10.1609/icaps.v26i1.13784
https://ai.jpl.nasa.gov/public/papers/Boerkoel_IWPSS2021_paper_23.pdf
https://ai.jpl.nasa.gov/public/papers/Boerkoel_IWPSS2021_paper_23.pdf
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.5555/3535850.3535968
https://doi.org/10.2514/6.2021-0185
https://doi.org/10.1016/j.artint.2004.10.004

Information Systems, Vol. 18, No. 10, 2021, pp. 711–727.
https://doi.org/10.2514/1.I010899

[16] Maillard, A., Jorritsma, M., and Schaffer, S., “Sailing Towards an
Expressive Scheduling Language for Europa Clipper,” Knowledge

Engineering for Planning and Scheduling (KEPS), International

Conference on Automated Planning and Scheduling (ICAPS KEPS),
2021, https://ai.jpl.nasa.gov/public/papers/Maillard_KEPS2021_paper_
22.pdf [retrieved 05 Oct. 2022].

[17] Chien, S., Johnston, M., Policella, N., Frank, J., Lenzen, C., Giuliano,
M., and Kavelaars, A., “A Generalized Timeline Representation,
Services, and Interface for Automating Space Mission Operations,”
International Conference on Space Operations (SpaceOps 2012),

AIAA, Reston, VA, 2012.
https://doi.org/10.2514/6.2012-1275459

[18] Joslin,D.E., andClements,D.P., “SqueakyWheelOptimization,” Journal
of Artificial Intelligence Research, Vol. 10, May 1999, pp. 353–373.
https://doi.org/10.1613/jair.561

[19] Fioretto, F., Pontelli, E., and Yeoh, W., “Distributed Constraint Opti-
mization Problems and Applications: A Survey,” Journal of Artificial
Intelligence Research, Vol. 61, March 2018, pp. 623–698.
https://doi.org/10.1613/jair.5565

E. Atkins
Associate Editor

PARJAN AND CHIEN 461

D
ow

nl
oa

de
d

by
 N

A
SA

 J
et

 P
ro

pu
ls

io
n

L
ab

or
at

or
y

on
 A

ug
us

t 2
7,

 2
02

3
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.I

01
12

15

https://doi.org/10.2514/1.I010899
https://ai.jpl.nasa.gov/public/papers/Maillard_KEPS2021_paper_22.pdf
https://ai.jpl.nasa.gov/public/papers/Maillard_KEPS2021_paper_22.pdf
https://doi.org/10.2514/6.2012-1275459
https://doi.org/10.1613/jair.561
https://doi.org/10.1613/jair.5565

