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Abstract

Human long duration exploration missions (LDEMs) raise a number of technological challenges. This paper addresses the question of the
crew autonomy: as the distances increase, the communication delays and constraints tend to prevent the astronauts from being monitored and
supported by a real time ground control. Eventually, future planetary missions will necessarily require a form of astronaut self-scheduling. We
study the usage of a computer decision-support tool by a crew of analog astronauts, during a Mars simulation mission conducted at the Mars
Desert Research Station (MDRS, Mars Society) in Utah. The proposed tool, called Romie, belongs to the new category of Robust Advanced
Modelling and Scheduling (RAMS) systems. It allows the crew members (i) to visually model their scientific objectives and constraints, (ii) to
compute near-optimal operational schedules while taking uncertainty into account, (iii) to monitor the execution of past and current activities, and
(iv) to modify scientific objectives/constraints w.r.t. unforeseen events and opportunistic science. In this study, we empirically measure how the
astronauts, who are novice planners, perform at using such a tool when self-scheduling under the realistic assumptions of a simulated Martian
planetary habitat.
© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction1

Past space missions have had very limited experience in hu-2

man self-scheduling. In fact, Marquez et al. (2019) states that3

current human operations, including extravehicular activities4

(EVAs), are “carefully choreographed, and rehearsed events,5

planned to the minute by a large team of EVA engineers, and6

∗Corresponding author: +32-494-909847; m.stguillain@gmail.com

guided continuously from Earth” (Bell & Coan, 2012, Miller7

et al., 2015). Activities on the International Space Station (ISS)8

for example are planned to various detail months and weeks in9

advance, and transition about two weeks ahead of the planned10

day into the real-time environment to be reviewed by all teams11

involved in the activities of that day to allow for further fine12

tuning in the days before execution. In case of unexpected13

events requiring an adaptation or re-planning of the day’s ac-14

tivities, e.g. equipment failure, or an activity taking consider-15
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Fig. 1. The Mars Desert Research Station (MDRS), located in the Utah desert, is a Mars analog planetary habitat (Mars Society).

ably longer than anticipated, the decision on how the rest of16

the day’s timeline will be impacted lies with the Flight Director17

based on inputs by the activity stakeholders and ISS Planners,18

and then communicated to the crew on board. Activities can19

move to a different astronaut if there’s extra time available, can20

replace another activity with lower priority, or be moved to an-21

other day. The ISS Planners are 24/7 on console and working22

on the schedules of the coming days and weeks. Today’s events23

impacting tomorrow’s timeline will be worked over night while24

the astronauts are asleep. As the distances increase however, the25

communication delays rapidly become an obstacle to remote26

real time monitoring and management of operations from Earth.27

However, human operations on Mars are expected to be carried28

out at a faster rate than current rover missions (Mishkin et al.,29

2007), which implies new planning strategies and tools that ac-30

count for latency-impacted interactions (Eppler et al., 2013).31

Current Mars rover missions are commanded by the ground op-32

erations team at most once per Martian day, or sol, and oper-33

ate independently in between such contacts. In addition, future34

planetary EVAs are likely to be driven by science (Drake et al.,35

2010, Drake & Watts Kevin, 2014), requiring flexible adapta-36

tions according to scientific samples. In such context, future37

human space missions will have to enable some degree of crew38

autonomy and self-scheduling capabilities.39

The problem of scheduling a set of operations in a con-40

strained context such as the Mars Desert Research Station41

(MDRS, Fig. 1) is not trivial, even in its classical determin-42

istic version. It should be seen as a generalization of the43

well-known NP-complete job-shop scheduling problem Lenstra44

& Kan (1979), which has the reputation of being one of the45

most computationally demanding problems Applegate & Cook46

(1991). Hall & Magazine (1994) raise on the importance of47

mission planning, as 25% of the budget of a space mission may48

be spent in making these decisions beforehand, citing the Voy-49

ager 2 space probe for which the development of the a priori50

schedule involving around 175 experiments requiring 30 peo-51

ple during six months. Nowadays, hardware and techniques52

have evolved. It is likely that a couple human brains, together53

with brand new laptops, may suffice in that specific case. Yet,54

the problems and requirements have evolved too. Instead of55

the single machine Voyager 2, space missions have to deal with56

teams of astronauts.57

Rescheduling on-the-fly: objectives, constraints and oppor-58

tunistic science.59

Classical space missions are currently scheduled days ahead.60

Complex decision chains and communication delays prevent61

schedules from being arbitrarily modified, hence online reop-62

timization approaches are usually not appropriate. A human63

mission on Mars is different. It will necessarily be a long du-64

ration mission. The communication delays, in each direction,65

range from 3 to 22 minutes. Finally, in the current configura-66

tion of Mars orbiters, only a few short communication windows67

with Earth are possible per each Martian day (called a sol), with68

limited data rate (2 Mega bits per second).69

In such conditions, any deviation from the original plan must70

be managed on the fly by the astronauts themselves. However,71

Marquez et al. (2021) demonstrated the fact that astronauts are72

not good at solving such complex problems by hand. This is not73

surprising. The sheer complexity of space systems means that74

thousands of constraints must be accounted for in decision mak-75

ing, and balancing of a large number of competing soft objec-76

tives must also be considered. An articulation of the size of this77

problem space for the Rosetta Orbiter mission science planning78

is described in Chien et al. (2021) and a future human mission79

to Mars is likely to be orders of magnitude more complex. Fur-80

thermore, the astronauts must also be able to adapt their sched-81

ules according to new scientific goals and requirements, such as82

conducting opportunistic science (e.g., recording a dust devil),83

or even a new scientific project, or unexpected events such as84

machine breakdowns. In other words, the human machine team85

must be able to track evolving scientific objectives and opera-86

tions constraints to re-optimize activities in an ever changing87

mission context.88

Whereas our study focused on short-term scheduling, it is89

worth noting that there are several perspectives, ranging from90

tactical planning (short term) to strategic planning (long-term).91

In other words, various levels of granularity: mission objective92

vs instrument-specific procedures. Some may easily be trans-93

ferred into a crew autonomy (like scheduling a repair), others94

will have to reside on the ground segment, as they need for95

instance a scientific debate on reshaping scientific objectives96

along the mission.97
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Fig. 2. Illustrative example with four tasks: A, B, C, D, to be scheduled on the
same line. Each task has a processing time of 1 or 2 hours, and a time window
spanning either the entire work day (9 am to 2 pm) or part of it (9 am to 12 pm
or 12 noon). Tasks B and C require A to be completed, and D requires both B
and C to be completed, before being started. Task C must wait at least one hour
after completion of A to start, and must be completed during the same day.

The impact of uncertainty98

At the MDRS, computing an optimal schedule becomes sig-99

nificantly less attractive as problem data, such as the manip-100

ulation time of experiments, are different from their predicted101

values. In a constrained environment with shared resources and102

devices, such deviations can propagate to the remaining oper-103

ations, eventually leading to global infeasibility. The purpose104

of this paper is to investigate, based on the real case study of a105

Mars analog mission, the impact of stochastic robust modeling106

against a classical deterministic approach on the reliability of a107

priori mission planning.108

Consider the simple project depicted in Figure 2 (top). Sup-109

pose all tasks have to be scheduled on the resource, then one110

must necessarily begin with A and end with activity D. There111

are only two valid schedules, shown in Figure 2 (bottom). In112

fact, schedule (A, B,C,D) looks much more efficient, as all113

tasks are completed on the first day. On the contrary, schedule114

(A,C, B,D) requires an additional day. However, this is only115

true on the paper, when everything is predictable. If you ac-116

count for (temporal) uncertainty, then the story is different. If117

operation A lasts for more than 1 hour, schedule (A, B,C,D) is118

not valid anymore: B will have to be resumed or rescheduled on119

day 2 (an additional day, that was not expected!). When starting120

C, we realize the worst: it actually requires to be processed the121

same day as A. Mission failed. Remark that if the true aver-122

age processing time of A is 1 hour, then this scenario happens123

with at least 50% probability. On the contrary, (almost) what-124

ever happens to A, under schedule (A,C, B,D) everything goes125

fine. This schedule is said to be robust. Its success probabil-126

ity is simply 1 minus the probability that A exceeds four hours127

(which we assume to be fairly unlikely).128

Application and contributions.129

Contrary to current space missions, in which astronaut op-130

erations are paced to the minute and supervised in real time by131

experienced planners on Earth, future long duration exploration132

missions (LDEMs) will necessarily involve a certain level of133

autonomy, or self-scheduling.134

In this paper, we study the ability of astronauts, being novice135

planners, to organize themselves their operations. The problem136

at stake being intrinsically complex, a decision-support system137

is provided. We hence measure, report and analyse how ef-138

ficiently the astronauts are exploiting such technology to pur-139

sue their scientific objectives, autonomously, and during a real140

Mars analog mission carried out at the MDRS. We demonstrate141

the usability and usefulness of a decision support system such142

as Romie, and compare its user experience with an existing one143

(Minerva, NASA), in terms of human-machine interactions.144

2. Operations management software systems145

Existing systems usually fall into a) being specifically de-146

signed for a particular application/mission or operational con-147

text, and/or b) not having an integrated optimization system148

able to generate robust schedules, from a probabilistic point of149

view. Instead, the Romie RAMS system is used in this study.150

Compared to classical frameworks, called APS for advanced151

planning and scheduling systems, a robust advanced modelling152

and scheduling (RAMS) system such as Romie provides the fol-153

lowing technological innovations:154

i) Graphical problem modelling (¬a). The user is able to155

graphically draw and manipulate the structure and con-156

straints of its scheduling problem, including stochastic157

models for task durations.158

ii) Optimization under uncertainty (¬b). An optimization en-159

gine allows the user to generate, or adapt existing sched-160

ules, in a way that produces schedules robust w.r.t. uncer-161

tainty.162

2.1. Planning and Scheduling in Space163

The first planning and scheduling tools for space missions164

were dedicated software systems, specialized to specific appli-165

cation domains. Johnston & Miller (1994) described the SPIKE166

system, a general framework for scheduling, developed by the167

Space Telescope Science Institute for NASA’s Hubble Space168

Telescope. Other examples of aerospace scheduling tools and169

applications are: Chien et al. (1999), developed for scheduling170

the operations of a particular shuttle science payload (DATA-171

CHASER) with primary focus on solar observation; Jónsson172

et al. (2000) for the Deep Space One mission; Ai-Chang et al.173

(2004) for the Mars Exploration Rover mission; Chien et al.174

(2005) for NASA’s Earth Observing One Spacecraft; and Cesta175

et al. (2007) for the Mars-Express mission. Chien et al. (2012)176

provides a detailed survey on (semi-)automated planning &177

scheduling systems developed for space applications.178



4 Michael Saint-Guillain et. al. / Advances in Space Research xx (2023) xxx-xxx

As the need for more generic approaches to support multiple179

mission and multiple domains increased, a planning/scheduling180

C++ library has been proposed: ASPEN (Fukunaga et al.,181

1997, Rabideau et al., 1999, Chien et al., 2000). At that time,182

ASPEN provided the elements that were commonly found in183

existing complex planning and scheduling systems, for exam-184

ple for generating operation schedules for the Rosetta orbiter185

Chien et al. (2021). In 2009, ESA’s Advanced Planning and186

Scheduling Initiative (APSI) aimed at developing a general187

software framework for supporting development of AI planning188

and scheduling prototypes, for various types of space missions.189

The APSI is described in Steel et al. (2009).190

Presented in Yelamanchili et al. (2020), the Copilot system191

for Perseverance Rover mission does have a modelling sys-192

tem called COCPIT, and a planner, but it is specifically de-193

signed for that mission. This ground automated planning sys-194

tem is intended for use with an onboard planner in preparation195

for deployment Rabideau & Benowitz (2017); Agrawal et al.196

(2021b,a). Of particular relevance to this work is the Copi-197

lot ground scheduler with explanation capability Agrawal et al.198

(2020) and Monte Carlo variation of execution to set parame-199

ters for onboard rescheduling Chi et al. (2019). Again, these200

systems are fairly tailored to the specifics of the Perseverance201

rover mission.202

A key differentiation in space missions is human surface203

missions versus automated orbital, flyby and other space mis-204

sion modalities. Flyby and orbital missions can be well pre-205

dicted, enabling pre-planning of observation campaigns (often206

days or weeks in advance) and executed (excepting fault pro-207

tection) primarily open loop. Some exceptions to this gener-208

alization over non surface missions exist. For example VML209

was used onboard Spitzer to enable it to handle variable exe-210

cution time or failure to acquire guide stars for observations.211

JWST has a similar capability. Some examples of such pre-212

dictable missions that have used automated scheduling include213

(non exhaustive list) MAMM, Orbital Express, Hubble, Spitzer,214

Earth Observing One, and Rosetta Orbiter to name a few (more215

are described in Chien et al. (2012)). In contrast, surface mis-216

sions, especially those involving astronauts (such as human ex-217

ploration of Mars), involves more intimate interaction with the218

environment and are therefore harder to predict. Previous lan-219

der and rover missions have encountered challenges in variabil-220

ity of action duration (e.g. driving), challenges in physical ma-221

nipulation (e.g. placing measurements, drilling and coring, ...)222

which might mean activity failure. Such challenges in unpre-223

dictability of execution are strong motivation for the capability224

of any human-machine joint system to be able to continuously225

replan in light of such occurrences (see Gaines et al. (2016) for226

an excellent study of such challenges for the Mars Science Lab-227

oratory Mars Rover Mission and Gaines et al. (2020) for work228

at increasing the ability of future Mars Rovers to autonomously229

redirect their activities in such situations.). Note that this au-230

tonomous handling of uncertainty is at a premium for future231

missions to explore unknown environments such as the Europa232

Lander Mission Concept Wang et al. (2022).233

Fig. 3. Overview of the Romie modeling and scheduling system.

2.2. Human Self-Scheduling in Space234

In Deans et al. (2017), a suite of software tools called Min-235

erva is proposed in order to support operations planning and ex-236

ecution. Minerva and its components (xGPS, Playbook, SEX-237

TANT) have been tested during several planetary and space238

simulation missions, including the BASALT research program239

(described in Brady et al., 2019) and four analog missions at240

NEEMO (Chappell et al., 2017, Marquez et al., 2017). Com-241

pared to Minerva, the key differences of our proposed tool242

Romie, in terms of functionalities, rely on the modelling in-243

terface and the scheduling optimization engine, which enable244

strategical a priori planning. In addition, the optimization is245

conducted while taking uncertainty into account. The Minerva246

suite is rather focused on tactical planning, including geospa-247

tial planning, which allows crew path planning and coordina-248

tion using satellite maps. The strategical planning is assumed249

to be performed before the start of the mission, and is therefore250

not covered by the Minerva suite. However, even when a pre-251

defined schedule is provided prior to the start of the operations,252

it is very likely that the schedule will require online modifica-253

tions as the operations go. Marquez et al. (2021) showed the254

limits of human self-scheduling when operators must solve and255

adapt the planning manually while taking hard constraints into256

account (not even thinking about uncertainty). By providing257

both a way to adapt the model and solve it using an embedded258

optimization engine, Romie is complementary to Minerva.259

2.3. Romie260

Recall the two technological innovations of Romie, pre-261

sented in the beginning of this section: i) domain-independent262

graphical modelling (and scheduling) interface and ii) optimiza-263

tion under uncertainty. Unlike all existing tools, both mod-264

elling and modifying the problem is now made accessible to the265

end-user, which is critical for a reliable self-scheduling. Up to266

our knowledge, the MapGen tool presented in Ai-Chang et al.267

(2004) was one of the very first tools to propose a visual con-268

straints editor. However, the latter was not generic, but specific269

to its application case, the NASA’s MER mission.270

Romie is the first scheduling tool to propose an integrated ro-271

bust (i.e. under uncertainty) optimization engine. Having more272

robust (i.e. reliable) schedules, the end users are more likely to273
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avoid last minute rescheduling. Eventually, what-if analysis, as274

well as sensitivity analysis, become less relevant: by consider-275

ing the uncertainties related to task execution, the solutions are276

optimized following directly the expected values of the chosen277

key performance indicators (KPIs).278

We believe that both Romie’s technological innovations i)279

and ii) provide significantly more autonomy to the end users,280

whom remain otherwise highly dependent of planning and281

scheduling experts. Based on the theoretical foundations de-282

fined in Saint-Guillain et al. (2021a), the empirical contribution283

of point ii (optimization under uncertainty) has been extensively284

validated by Saint-Guillain (2019), Saint-Guillain et al. (2022a)285

and Saint-Guillain et al. (2022b). Testing the ability of the non-286

experts end-users to actually ”self-schedule” using i), i.e. the287

graphical modeling formalism, is the main goal of this study.288

Figure 3 depicts the key functionalities of our system:289

• Graphical modeling of the problem at stake, in its own290

operational context: human and physical resources, op-291

erational constraints, key performance indicators (KPIs),292

execution uncertainties.293

• Robust scheduling: the optimization engine takes the time294

uncertainty on each task’s duration into consideration, us-295

ing modified-PERT distributions, yielding schedules with296

high probability of success.297

• KPI-guided optimization: The schedules are optimized298

while pursuing (a combination of) various KPIs, includ-299

ing success probability, expected cost, expected quality,300

and even operator wellness.301

• Operations update and online reoptimization. The system302

knows the difference between past and future operations.303

As the schedules can be extensively modified by hand, in304

particular in the past (but also in the future), reoptimiza-305

tion on future decisions can be performed based on what306

actually happened in the past.307

3. The M.A.R.S. UCLouvain 2022 mission308

Our study on astronaut self-scheduling is driven by the sci-309

entific research projects to be carried out by the crew members310

in the context of the simulation. Before the actual beginning311

of the mission, the selected projects have been modelled in the312

Romie system, and provisional schedules have been designed.313

In what follows, the different projects are described. There-314

after, their modelling and a priori scheduling is analyzed, from315

the user’s point of view.316

3.1. Experimental plan317

Our study aimed at answering the following questions: how318

long does it take for a novice user before setting up correct319

schedules (on-boarding time), and are our astronauts all able320

to adapt their scientific objectives as the operations evolve? We321

tackled these questions by focusing on the temporal evolution322

of these following two complementary KPIs: system usability323

and user experience. The ISO-9241-210 standard International324

Standard Organization (2019) defines the usability as the extent325

to which a system, product or service can be used by specified326

users to achieve specified goals with effectiveness, efficiency327

and satisfaction in a specified context of use. User Experience328

is defined by the same standard as the user’s perceptions and329

responses that result from the use and/or anticipated use of a330

system, product or service and is generally understood as inher-331

ently dynamic, given the ever-changing internal and emotional332

state of a person and differences in the circumstances during333

and after an interaction with a product Vermeeren et al. (2010).334

Several scientific research projects were conducted at the335

MDRS. Each project was carried on in place, by either one or336

two astronauts. Some projects (such as health projects) involve337

the participation of all the crew members. Yet, these projects338

were designed and prepared months ahead. During that period,339

preliminary experiments were conducted on Romie, providing340

first results on the system’s usage by the astronauts, in offline341

(supervised) conditions. The actual M.A.R.S. UCLouvain 2022342

mission period, which lasted 12 days on field at the MDRS (see343

Figure 1), constituted the main material of this study. Day after344

day, each crew member used the Romie system to monitor and345

update their operations.346

3.2. The Mars Desert Research Station347

The MDRS in the desert of Utah has been in operation348

since 2002 from November through April every year. The ge-349

ologic features of the surrounding Jurassic–Cretaceous terrain350

also make the desert environment seem Mars-like to crew mem-351

bers. The MDRS habitat itself is a vertical cylindrical structure352

of approximately 8 m diameter and 6 m high, composed of two353

floors. The ground floor (lower deck) includes a front door air-354

lock used for simulated EVA, an EVA preparation room, a large355

room used as a laboratory for geology and biology activities, a356

small engineering workshop area, a second back door airlock357

for engineering activities, a small bathroom and a toilet, three358

small windows, and a stair leading to the first floor. The first359

floor (upper deck) includes a common area or living room with360

a central table, a wall-attached circular computer/electronic ta-361

ble, a kitchen corner, six small bedrooms, and a loft on top of362

the small bedrooms. Some panoramic pictures from the inside363

are provided in Figure 4.364

3.2.1. A typical day on Mars365

The day-to-day operations at the MDRS is as follows. The366

crew wakes up at 7:30. Then directly follows a twenty minute367

morning sport session, before having breakfast, which is typi-368

cally the right moment for daily medical examinations.369

Extra-vehicular activities (EVAs) take place during the370

morning. Between three and five crew members get prepared371

for the daily EVA. That takes roughly one hour, during which372

the crew members that are not participating in the EVA help the373

others to don their spacesuits, and parameterize the communi-374

cation devices. The EVA should start no later than 9:30, as it375

must necessarily be ended before 12, which provides roughly376

two hours to reach all the EVA objectives. The crew members377

that remain inside MDRS stay in permanent contact with the378

EVA party, while performing the daily chores.379
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Fig. 4. Panoramic pictures of some of the Mars Desert Research Station
(MDRS) elements, from inside. From top to bottom: upper deck, lower deck,
EVA preparation room, science dome, green hab.

Scientific activities then take place every day from 1:30pm380

to 6pm. The crew members work on separate places, depending381

on their research field: the crew botanist stays in the green hab,382

biologists and chemists in the science dome, the astronomer383

takes pictures of the sun in the day observatory, engineers work384

in the repair & assembly module (RAM), . . . During each after-385

noon, the crew members, one by one, use the RAMS system386

to monitor and schedule their operations. Therefore, each crew387

member uses the Romie system –and answer the questions and388

exercises defined in the scope of our study– once a day, for ap-389

proximately 30 to 60 minutes.390

From 6pm, all the crew members would generally interrupt391

their activities, in order to prepare for the daily communication392

window, from 7 to 8pm. At exactly 7pm all the specific re-393

ports are sent to ground control: engineering, medical, green394

hab, EVA and EVA request, journalist, and commander report.395

While sharing the diner, the entire crew remains available to an-396

swer questions on these reports. The remaining of the evening397

constitutes a privileged, necessary moment for socialising.398

3.2.2. Time-eaters at MDRS399

Previous studies (Pletser et al., 2009; Boche-Sauvan et al.,400

2009a; Boche-Sauvan et al., 2009b; Pletser, 2010b; Pletser,401

2010a; Thiel et al., 2011; Pletser & Foing, 2011) have shown402

that there are many ’time-eaters’ in a day at the MDRS dur-403

ing a simulated Mars stay mission. Table 1 reports the mea-404

sured average unproductive time of the 76th rotation in 2009.405

A hypothetical average crew member would have only approx-406

imately 7 hours left for scientific work. Even if this average es-407

timation is very crude, it shows that the remaining average time408

for scientific work is significantly low and that a lot of time is409

spent on unproductive tasks, chores and maintenance. These410

data are consistent with previous findings for crew 5 in 2002411

Breakfast Lunch Dinner Chores Maint. Evening Sleep
44m 48m 57m 3h08m 1h23m 1h35m 8h26m
±02m ±02m ±01m ±18m ±10m ±13m ±07m

Table 1. Average durations with standard errors for an average crew member.
Note: Based on measured activity durations of Crew 76 (see Pletser & Foing,
2011); h= hours; m: minutes. Maint.: maintenance. Evening: evening common
activities. It sums up to 17 hours 01 minute, ±53 minutes.

(Clancey, 2006) in terms of activity duration. Furthermore, the412

time-sharing of occupation of the ground floor laboratories be-413

tween geologists and biologists was always difficult to establish414

and necessitated a lot of good-will of all parties. Both scien-415

tists’ teams had different needs and expectations, e.g., biolo-416

gists need a clean, pristine and well-lit environment to analyse417

and process soil samples, while geologists need a darker envi-418

ronment to handle, manipulate, crush and process samples with419

instruments, often generating dust and noise. In order to share420

the use of the single room laboratory, both groups of scientists421

had to work during the night alternately. Traffic of crew mem-422

bers through common and scientific areas was another point of423

study as it created also interruption of science work by engi-424

neers to assess the Hab systems and by other crew members to425

access stowage areas, etc. It highlights the importance of hav-426

ing a proper and performing dynamic planning tool that can be427

used on the spot and on the run, fine tuning and adapting an428

already agreed day planning, for example, either in the evening429

at dinner or in the morning during breakfast.430

Several recommendations were made to improve the design431

in order to optimize the traffic and to decrease the time spent432

unproductively from a scientific point of view. Yet, the “time-433

eaters” cannot be completely avoided. The system proposed in434

the current study comes in addition to these recommendations,435

as we investigate an AI based decision system to optimise pro-436

ductivity while leveraging unpredictable time deviations.437

Naturally, being a non-scientific work, using the Romie sys-438

tem should also be considered as a time eater. Its per-person439

usage duration (half an hour to one hour per day) should prob-440

ably be reduced to be usable in an actual mission context. An-441

other way to save time would be to assign the responsibility to442

only one astronaut, thus being the crew planner, to manage the443

global mission schedule by using the Romie system. However,444

our study required several end users.445

3.3. Research projects446

Each analogue astronaut has her/his own research objectives447

for the mission. In fact, each astronaut (experimenters) pre-448

pared one different research project to be carried out at MDRS.449

There are thus eight research projects, from eight different fields450

such as biology, botanic, engineering, astronomy or medicine:451

Soil dielectric 3D mapping: Using a ground penetrating452

radar, installed on a vehicle, the dielectric properties of the453

soil surrounding the station are measured and projected on a454

3D map, constructed by photogrammetry using a drone. Such455

a map could be exploited to optimize future irrigation sys-456

tems. 3D printing: This experiment exploits 3D printing scaf-457

folds in bio-ink to seed stem cells, and performs mechanical458
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Fig. 5. Modelling research project “Soil dielectric 3D map” within Romie’s graphical interface. Boxes represent activities. Arrows represent (temporal) precedence
constraints. Here the Zone Delimitation activity is selected, showing the parameters (right panel) that define its temporal uncertainty: min, mode, max. This activity
requires Zone Drone Flyby to be completed before, and is a prerequisite to both activities Measure Radar and Measure Drone. Bottom left: original hand-drawn
sketch.

stress-strain tests on the resulting micro-architecture. Sleep-459

ing hypnosis: This project tests an hypnosis technique, used460

in medicine before falling asleep, to help the astronauts hav-461

ing better, deeper sleeps. ExFix: Accidents and injuries on462

Mars are dangerous. Manon et al. (2023) study a low-cost ex-463

ternal fixator to stabilize broken bones, which remains accessi-464

ble, fast and easily achievable by any astronaut without surgi-465

cal training. Metabolic changes: The lower gravity of Mars,466

its environment and the nutrition changes will have a big im-467

pact on future crews’ metabolisms. Here, a protocol is devel-468

oped for the monitoring of essential parameters of the health469

and metabolism of the crew members. Insects in the astro-470

nauts’ diet: Insects constitute a potential alternative food so-471

lution for astronaut crews. The viability and yield rate of three472

insect species (orthoptera, beetle and lepidopteran) are exper-473

imented under Martian conditions. Human flora bacteria on474

Mars: The survival of some human flora bacteria and the effi-475

cacy of several antibiotics under Martian environmental condi-476

tions is experimentally studied. Biofertilizers in Martian soil477

substrate: This experiment analyzes how a closed environment478

like the MDRS station and with a Martian regolith, the caloric479

intake of astronauts can be filled thanks to biofertilizers in small480

quantities.481

3.3.1. Modelling and Scheduling on the RAMS system482

Figure 5 shows the modelling of one research project, as en-483

coded in Romie. In fact, this modelling started with a discus-484

sion with the experimenter, which lead to a hand-drawn sketch.485

From this, a first encoding could be made on the system, using486

the graphical modelling interface, which formally encodes all487

the activities and constraints involved.488

Figure 6 shows another research project. From an oper-489

ational point of view, this model has interesting properties.490

It involves a resource shared with other scientists: the lami-491

nar air flow (LAF). Since there is only one LAF in the sta-492

tion’s science dome, this prevents other activities (belonging493

to other projects), also requiring the LAF, to be carried out494

at the same time. Another point of interest is the temporal495

constraint between Cult.LQ B and Expo.TEST+CTL, which in-496

volves a stochastic delay. In fact, the delay that must be waited497

between those two activities (1, 2 or 3 days) depends on the time498

needed by the bacteria to grow, and it is totally unpredictable499

by nature. Finally, there are temporal constraints, stating that500

some activity should not start sooner and/or later than a defined501

amount of time after some other activity.502

The temporal constraints present in this model may poten-503

tially lead to a project failure, due to the underlying temporal504

uncertainty. Yet, another kind of complexity lies in models that505

involve the participation of several crew members, in addition506

to shared equipment. Figure 7 shows an example of an op-507

timized provisional schedule, as obtained using Romie’s opti-508

mization engine, for all eight research project during the entire509

mission. In this schedule, the activities involved in research510

project ExFix are highlighted. We directly see that many of511

these require time within the schedule of the other crew mem-512

bers.513

The RAMS system here not only allows to check the deter-514

ministic KPIs, but also some probabilistic ones. From a de-515

terministic point of view, when all the durations are assumed to516

require their nominal operational time, this planning is feasible.517

For example, in the project modelled in Figure 6, provided that518

the delay between Cult.LQ B and Expo.TEST+CTL will reveal519

to be exactly two sols. However, when taking uncertainty into520

account, then the mission probability of success is of 86.2%.521
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Fig. 6. Research project “Survival of human flora bacteria”. Amongst the activity properties in the right panel, we note that the selected activity Prep. Medium
requires the LAF resource. The temporal constraint between Cult.LQ B and Expo.TEST+CTL (dashed) involves a stochastic delay, between 1 and 3 Martian days.

Fig. 7. A provisional schedule. This is the a priori schedule computed before the beginning of the operations. It involves 162 activities, each having contingent
durations. The overall success probability is of 86.2%. Highlighted in yellow, the ExFix research project with all the related activities above, framed with blue
rectangles. We see that this project imposes activities to several of (in fact, almost all) the crew members.
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Here the system only takes temporal uncertainty into account,522

not the fact that the activities themselves could be failed, requir-523

ing a rescheduling. Rescheduling operations, as well as adding524

new operations on the fly, will be part of the astronauts’ daily525

manipulation on the system.526

4. Theoretical Foundations527

In stochastic contexts such as space missions, computing op-528

timal schedules becomes significantly less attractive as problem529

data, such as the manipulation time of the modelled activities,530

are different from their predicted nominal values. This is what531

we refer to as uncertainty. In a constrained environment with532

shared resources and devices, when they arise such temporal de-533

viations can propagate to the remaining operations, eventually534

leading to global infeasibility, that is, a project failure. Given a535

schedule, a central question is then the following: considering536

temporal uncertainty, what is the actual probability of success537

of the mission?538

4.1. Project management is hard539

The problem of scheduling a set of operations under con-540

straints should be seen as a generalization of the well-known541

NP-complete job-shop scheduling problem Lenstra & Kan542

(1979), which has the reputation of being one of the most543

computationally demanding (Applegate & Cook, 1991). When544

taking uncertainty into account, the problem then becomes545

strongly NP-hard, an even harder family of problems. In a nut-546

shell, NP-complete means that, no matter the available com-547

putational resources, the problem is conjectured as impossi-548

ble to solve in practice, for realistic instance sizes, such as the549

number of activities and resources. In fact, whereas the prob-550

lem depicted in Figure 2 admits only two solutions, in practice551

the number of possible schedules grows exponentially with the552

number of tasks and resources. Back to Voyager 2 space probe553

mission, suppose we are interested in all the possible permuta-554

tions between its 175 operations, then we have 175! ≈ 10318
555

possible permutations.556

Solution methods for combinatorial optimization problems.557

Fortunately, algorithmic and mathematical techniques exist in558

order to solve the problem without enumerating all the 10318
559

permutations and schedules. Mathematical methods, such as560

integer programming, constraint programming, SAT solving,561

and so on are known to be powerful methods, in the sense that562

given the right formulation of the the problem, generic solvers563

(e.g. Gurobi, CPLex) are able to find solutions and eventually564

provide proofs of optimality (without performing an exhaustive565

enumeration). Unfortunately, finding the correct formulation566

is usually the most complicated part of the problem, and the567

languages accepted by these generic solvers do not allow to ex-568

press complicated specific operational constraints or objectives.569

On the other hand, heuristic methods, such as local search570

which is exploited here in the Romie system, or other methods571

such as genetic algorithms, trade the completeness of the exact572

methods for more flexibility. Such methods will be able to find573

(hopefully) good solutions but, even when a solution found by574

the algorithm is optimal, it will not be able to prove (or even575

determine) it. However, describing what makes a solution ac-576

ceptable or not, and what is the quality of a solution, is made577

much easier when there is no mathematical proof generation578

framework in behind.579

The optimization engine of our decision system Romie is580

based on local search. In a local search algorithm, the key ideas581

are the following. (S) Start from an initial (potentially infea-582

sible) solution x, such as a random permutation. This is the583

current solution. (M) Apply a local modification to x leading584

to another solution x′, for example, by permuting two activi-585

ties at random. Then, (E) evaluate the quality f (x′) and decide,586

according to f (x), whether or not x′ becomes the new current587

solution. Finally, repeat (M) and (E) until some stopping crite-588

rion (time or solution quality) is met. In the end, return the best589

solution encountered.590

4.2. Uncertainty management591

As shown in our introductory example, provided two differ-592

ent schedules, determining the best one (e.g. the more reliable)593

in light of the uncertainty is not trivial. Now, suppose this must594

be done for each and every permutation that is considered.595

Computing the probability of success of a given permuta-596

tion of activities can be done by computing the degree of dy-597

namic controllability, or robustness, of the associated proba-598

bilistic simple temporal network (PSTN). Different approaches599

have been proposed to either approximate or compute this ro-600

bustness. It is important to state that the robustness of a system601

depends on the uncertainty of course, but also on how clever602

is the system at reacting to random events. In Saint-Guillain603

et al. (2021a), we refer to this “cleverness” as the execution (or604

dispatching) protocol P, sometimes called policy, which de-605

fines how the system reacts to random events. The protocol606

may consist of simple rules, such as “start every operation as607

soon as possible”. It could also be more elaborated strategies,608

involving preventive waiting times. A particular case is that of609

a protocol P solving the perfect online reoptimization problem610

(a multistage stochastic program). Depending on P, the robust-611

ness of a system, namely a PSTN, can be defined in general612

terms as:613

rP(N) =
∑
ξ∈ΩN

P{ξ} ΦP(N, ξ) (1)

where ΩN is the support of all possible scenarios in which the614

PSTN could fall due to random events, P{ξ} is the probabil-615

ity to fall into a particular scenario ξ, and ΦP(N, ξ) simple re-616

turns one if executing the protocol P in scenario ξ leads to a617

successful mission, zero otherwise. In our case, a scenario ξ618

is an assignment of a duration to each activity, with support619

{ξ ∈ Rn : P{ξ} > 0}.620

The computation of (1) remains intractable in practice, as the621

size of ΩN grows exponentially with the number of contingent622

operations. For instance, consider the 162 operations involved623

in the provisional schedule of our M.A.R.S. UCLouvain 2022624

mission, as depicted in Figure 7. Suppose each operation can625

take any duration between 20 and 60 minutes, precise to the626
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Fig. 8. Global architecture of the Romie robust advanced modelling and
scheduling (RAMS) system.

minute, then we have 2040 ≈ 1088 scenarios possible. This627

motivates all kinds of sampling based methods, such as Monte628

Carlo, which therefore restricts the summation in (1) to a lim-629

ited subset of S ⊂ ΩN .630

In Saint-Guillain et al. (2021a), we showed that by reason-631

ing on the connections between the random variables, instead of632

the scenarios, then the exact robustness could be computed ex-633

actly, in pseudo-polynomial (i.e. efficient) time. However, this634

is only provided that P actually is the natural “as soon as possi-635

ble” strategy (and nothing more elaborated), and that the PSTN636

is well formed. The PSTN formalism being quite restrictive,637

there are many considerations of a space mission that cannot638

be modelled as a well formed PSTN, such as exotic constraints639

and resource issues (e.g. energy consumption). On the contrary,640

sampling-based methods are much more versatile, they gener-641

ally do not impose a formalism as strict as PSTN’s. Our Romie642

decision system implements such a method, the sample average643

approximation (Kleywegt et al., 2002), within its optimization644

engine.645

4.3. System architecture646

Romie uses a decentralized architecture, as depicted in Fig-647

ure 8. The user interface is decoupled from the optimization648

engine part. There can be potentially many users connected to649

the system (e.g. the whole team of astronauts), using a classical650

web browser, since the user interface is implemented using a651

recent web technology (React). The optimization engine is ac-652

tually composed of an arbitrary number of optimization agents,653

not necessarily hosted on the same servers, hence enabling par-654

allel computing.655

The whole system is organized upon a database, which656

enables the end users to communicate with the optimization657

agents, but also the optimization agents to communicate al-658

together in order to distribute and parallelize the work. The659

database stores the following three key information:660

• Resources & Models. Stores the operational context and661

problem descriptions, namely the models (e.g. the sci-662

entific project modelled in Figure 6) describing the op-663

erational projects at stake. The user interface provides a664

visual representation of the logical information stored in665

the database, which is rather described in terms of discrete666

mathematical structures such as sets and graphs.667

• Solution pool. The current states of computations. The668

solution pool is used by the optimization agents to com-669

municate and share their results. An element of the pool670

is naturally a schedule (e.g. Figure 7). For the same opti-671

mization problem, the pool may contain several (e.g. 10)672

solutions, corresponding to the bests solutions found so far673

by all the agents.674

• Agent requests. A list of requested user actions. An ac-675

tion could be either one-shot, such as adding or removing676

a project for instance, or a running action, such as optimiz-677

ing. One-shot requests are picked up by exactly one idle678

agent (at random), which will perform the associated ac-679

tion (e.g. remove a specific operation from a given project680

in a given schedule, and then recompute the KPIs, such as681

the overall probability of success). The only possible run-682

ning request is an optimization action, which triggers all683

the available idle agents to concurrently try to improve a684

given schedule.685

Whereas the architecture is designed to be decentralized, in686

practice all the elements could easily be integrated on the same687

computer, or machine (such as a spacecraft).688

The communication formalism between the computing689

agents is however robust to latency, which enables a same phys-690

ical system to host its own limited set of agents, whereas remote691

agents can be solicited in support, even with important delays692

(e.g. a couple of seconds from Earth to Moon). Or a fleet of au-693

tonomous planetary rovers could distribute the computational694

effort on any possible computational support in an acceptable695

range (say, five to ten light seconds), including the rovers them-696

selves.697

Also, the system easily recovers (actually, is not impacted698

at all) from the disconnection and the death of optimization699

agents, and new agents can be added on the course of the com-700

putations. Human operators connect remotely to the system,701

using a simple web browser, and may disconnect and reconnect702

without loss of any information, and without interrupting any703

ongoing computation. Finally, several different computations,704

for instance optimizing the same initial planning under three705

different combinations of KPI preferences, or under different706

operational resource limitations, may be carried out simultane-707

ously (in which case these different optimization problems are708

distributed over all the available agents).709

4.4. Online reoptimization710

Whereas the provisional schedule depicted in Figure 7 is711

computed before the beginning of the operations, in practice712

things rarely happen exactly as initially planned. In compari-713

son, Figure 10 shows the current state of past (executed) and714

future (planned) operations, at Sol 6. Remark for instance that715

most of the activities initially planned at Sol 2, during the morn-716

ing, disappeared and had to be rescheduled. In fact, these corre-717
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Fig. 9. Tree structure of the problem. The root node represents the current
state (past decisions and realizations) at time t. For simplicity, decision (resp.
random) variables have only two possible choices (resp. outcomes).

sponded to an EVA that had to be cancelled, due to bad weather718

conditions.719

This leads to an online (i.e. dynamic) re-optimization prob-720

lem, in which the decisions must be optimized given a fixed721

current state of the system, including past activities. During the722

mission, the astronauts actually updated their schedule at the723

end of every day, encoding what really happened, and reopti-724

mized for the rest of the mission.725

The best one can do is therefore to compute the schedule
that is the more likely to succeed, knowing that in fact, no one
knows what will actually happen. Mathematically speaking,
this can be described as playing a game against Nature, in which
at current time t, we take the decisions xt that maximize their
expected outcome (Saint-Guillain et al., 2021b), leading to the
following multistage stochastic program:

argmax
xt∈Xt

Eξt+1

[
max

xt+1∈Xt+1
Eξt+2[

. . . max
xh−1∈Xh−1

Eξh
[

max
xh∈Xh

V x1..h
(N, ξ)

]
. . .
]]

(2)

where the maximum value of the first expectation is, by defi-726

nition, equal to the current probability of success under perfect727

reoptimization.728

The nested expectations in (2) form a tree structure, well729

known as the scenario tree. Unfolding the maximization oper-730

ators as well leads to a full decision-scenario tree as illustrated731

in Figure 9. Each path of the tree constitutes a possible sce-732

nario realization together with associated decisions, a sequence733

ξt, xt, . . . , ξh, th. At time t, decisions xt depend on the current734

history ξ1..t and maximize the expected value Eξt+1 [maxxt+1 . . .]735

of the future decisions at time t + 1 given the remaining uncer-736

tainty, and so on until time h is reached.737

The number of scenario ξ ∈ Ω in equation (1) is equal to the738

number of different paths in Figure 9. We directly see that the739

size of our scenario tree grows exponentially with the number740

of decision steps and outcomes, which explains why computing741

(1) is intractable in practice.742

4.5. Previous researches743

Based on the real case study of a Mars analogue mission744

in 2018, in Saint-Guillain (2019) we proposed a first (incom-745

plete) probabilistic formulation, as well as solution method,746

for the problem of scheduling a set of various human operated747

projects. In fact, the problem of scheduling a set of operations748

in a constrained context such as the Mars Desert Research Sta-749

tion (MDRS, Fig. 1) is not trivial, even in its classical deter-750

ministic version. We hence measured the gains and costs, on a751

priori mission planning, of robust schedules (optimized under752

uncertainty) compared to schedules optimized under classical753

deterministic assumptions.754

In Saint-Guillain et al. (2021a), the theoretical insights ob-755

tained from the former study were successfully extended to756

probabilistic simple temporal networks (PSTNs), a formalism757

able to mathematically describe operational problems in gen-758

eral, such as scheduling a space mission or a biomanufacturing759

campaign. In this paper written with the Jet Propulsion Lab760

(NASA), our probabilistic model is applied to the operation761

management of Mars 2020 planetary rover. We also formally762

define some of the most important theoretical concepts for de-763

scribing schedule robustness to uncertainty, we introduce new764

ones, and give proofs for theoretical bounds. This contributed765

to filling the theoretical gap between specific mission planning766

and general operations management.767

Finally, an asymptotically optimal approach to robustness768

computation and online reoptimization is briefly explored in769

Saint-Guillain et al. (2021b). In the later study, the problem770

of dynamically dispatching the activity execution times is mod-771

elled as a single-player game against Nature, and solved using772

Monte-Carlo tree search (MCTS). This only constitutes a pre-773

liminary study, which still has to be further studied.774

On novice self-scheduling. These previous studies mainly775

aimed at evaluating and demonstrating, both empirically and776

theoretically, the need and the advantages of using probabilistic777

assumptions (i.e. optimizing under uncertainty) in the context778

of operations management. In the context of space exploration,779

past missions (e.g. UCL to Mars 2018, Saint-Guillain 2019)780

have shown the importance of online reoptimization and, in781

particular, the need for the crew to autonomously adapt their782

science projects to unforeseen events. In the current paper,783

the scientific focus is rather put on the user experience. More784

specifically, using techniques from human computer interaction785

(HCI), we measure how well a team of novice users succeeded786

(or not) at using our system to schedule, and reschedule online,787

their own activities.788

4.6. A new risk-aversion paradigm789

What if analysis and sensitivity analysis are classical, well-790

known techniques for coping with uncertainty in operations791

management. In fact, Papavasileiou et al. (2007) and Petrides792

et al. (2014) both argue for the importance of simulation and the793

ability of performing what-if and/or sensitivity analysis in ad-794

dition to optimization. What if analysis consists of optimizing795

several solutions (usually a few numbers), each solving a prede-796

fined scenario, such as best-case, average-case and worst-case797

scenarios. In Saint-Guillain et al. (2021a) we formally prove798

that the well known what-if analysis technique is fundamen-799

tally flawed, as it arbitrarily underestimates a schedule’s risk.800

The degree of weak controllability (DWC) can be interpreted801

as a perfect what-if analysis, that is, when not only considering802

best, middle and worst cases, but all the possible scenarios. The803
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Fig. 10. Current schedule at Sol 6. Many scientific projects had to be remodeled. As the operations are conducted, the project models are likely to be adapted by the
astronauts as some constraints or activities reveal to be inadequate to actual real world conditions. For example, the ExFix project has been interrupted on March
30th, and rescheduled from then on, based on a modified model.

demonstration is then reached in Saint-Guillain et al. (2021a) at804

inequality (11), with the result DDC(N) ≤ DWC(N), where805

DDC (degree of dynamic controllability) is the true maximal806

robustness of the schedule N. On the contrary, Romie’s opti-807

mization engine is proven to never underestimate the risk.808

Provided a schedule (this however does not help at finding809

the right schedule in the first place!), sensitivity analysis ap-810

proximates its average quality under uncertainty, how sensible811

(brittle) it is to stochastic variations. In that sens, the solutions812

computed by Romie directly optimize their response to a sen-813

sitivity analysis. The proposed RAMS framework introduces a814

new paradigm, replacing both what-if and sensitivity analysis.815

5. Astronaut’s ability to self-schedule816

We finally dive into our actual research question: how well817

the astronauts succeed at self-scheduling their scientific op-818

erations, provided a RAMS decision-support system such as819

Romie. The astronauts were asked to evaluate their experience820

of the system and the quality of the computed decisions, before821

and at different stages during the mission. The a priori stage,822

before the mission, is called sol zero (S 0). A sol is a day on823

Mars. The subsequent stages are S 4, S 8 and S 12, for sols four824

(early mission), eight and twelve (end of the mission).825

We collected demographic information from the participants826

at sol zero (S 0), that is before the beginning of the mission. Par-827

ticipants were instructed to complete an UEQ+ questionnaire828

(User Experience Questionnaire) (Schrepp & Thomaschewski,829

2019), a modular extension of the UEQ evaluation method830

in which we selected 12 scales (i.e., Attractiveness, Ef-831

ficiency, Perspicuity, Dependability, Stimulation, Novelty,832

Trust, Adaptability, Usefulness, Visual aesthetics, Intuitive833

use, and Trustworthiness of content) among 20 scales to fo-834

cus on evaluating the user experience of participants interacting835

with the system. Each scale is in turn decomposed into four836

subscales or items to be evaluated (e.g., attractiveness is de-837

composed into four subscales: annoying vs. enjoyable, bad vs.838

good, unpleasant vs. pleasant, and unfriendly vs. friendly),839

each subscale being a differential scale with 7 points between840

items of each pair (e.g., annoying → enjoyable). We measure841

each item employing a 7-point Likert-type scale with response842

categories “Strongly disagree” (=1) to “Strongly agree” (=7).843

UEQ+ was selected as an evaluation method because it is a844

modular and modern interface evaluation method where scales845

can be decided based on the interface to evaluate and covers the846

user experience (UX), not just usability, as assessed by ques-847

tionnaires such as IBM PSSUQ (Lewis, 2006). UEQ+ is also848

easy to administer to participants and remains valid even with849

a limited number of participants. For some scales, a bench-850

marking of their values leads to an interpretation of five effect851

sizes (Schrepp et al., 2017): bad, below average, above average,852

good, and excellent. Consequently, for each sol S 0, S 4, S 8, S 12,853

we have two additional dependent variables:854

1. The Scale mean score, a real variable measuring the aver-855

age score obtained on all items of a particular scale, nor-856

malized in the interval [−3, ...,+3]. In order to better clas-857

sify positive values (above 0) and negative values (below858

0), UEQ+ averages all scores of all items, which are rang-859

ing from 1 to 7, then reduces them by 4 (-4) to come up860

with a scale mean score between -3 and +3.861

2. The Scale mean importance, a real variable measuring the862

average importance of a particular scale. Similarly to the863

scale mean score, the scale mean importance is also nor-864

malized in the interval [−3, ...,+3], as recommended by865

UEQ+ Schrepp & Thomaschewski (2019).866
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Fig. 11. UEQ+ scale mean scores for all sessions S i. Significant differences between between S 0 and S 12 are represented in blue on the top, between S 4 and S 12
are represented in white. Error bars show a confidence interval of 95%.

Participant answers are interpreted with the UEQ data analy-867

sis tool. According to (Schrepp & Thomaschewski, 2019), “it868

is extremely unlikely to observe values above +2 or below -869

2,..., the standard interpretation of the scale means is that val-870

ues between -0.8 and 0.8 represent a neutral evaluation of the871

corresponding scale, values superior to 0.8 represent a posi-872

tive evaluation, and values inferior to -0.08 represent a nega-873

tive evaluation“. The same interpretation holds for the scale874

mean importance. Fig. 11 shows the scale means for all sessions875

S 0, S 4, S 8, S 12 with their corresponding mean importances.876

5.1. Before the mission: S 0877

Considering the measurements done at sol zero (S 0), that is878

before the beginning of the mission, only two scales of twelve879

are negatively assessed in the neutral zone. First, Perspicu-880

ity (M=−0.22, SD=1.36) expresses that the participants did881

not quickly familiarize themselves with the system, which they882

nevertheless judged to be very important (M=1.88, SD=0.60),883

since this was their first discovery of the system. Second, Vi-884

sual aesthetics (M=−0.34, SD=1.63) was also negatively as-885

sessed for user interface aspects estimated unimportant with886

the lowest score (M=−0.38, SD=1.58). Intuitive use (M=0.31,887

SD=1.45) is the only scale assessed positively in the neu-888

tral zone although very important too (M=2.13, SD=0.60).889

However, three scales were borderline, that is, Attractive-890

ness (M=0.86, SD=0.88), Adaptability (M=0.88, SD=1.19),891

and Trust (M=0.94, SD=1.27), thus reflecting that participants892

were still not convinced that the system fulfilled their needs for893

these three important aspects. Fortunately, six of 12 scales are894

positively assessed, even above the threshold, thus suggesting895

that the participants felt these aspects are already well fulfilled896

at first glance: Usefulness (M=2.00), Stimulation (M=1.91),897

Trustworthiness (M=1.81), Novelty (M=1.78), Dependabil-898

ity (M=1.38), and Efficiency (M=1.16).899

5.2. During the mission: S 4, S 8, S 12900

We now consider the scales for S4, that is, at an early901

stage of the mission, at the end of the fourth day. Only Nov-902

elty (M=1.25) exceeds the 0.8 threshold with small disper-903

sion (SD=0.50), thereby meaning that participants recognise904

that the software was original, partly because they were never905

confronted to any similar software. Seven of 12 scales are pos-906

itively assessed in the neutral interval, representing a slight im-907

provement with respect to S 0: Trustworthiness of content908

(M=0.72, S D=1.10) Trust (M=0.66), Usefulness (M=0.66),909

Stimulation (M=0.63), Intuitive Use (M=0.44), Perspicuity910

(M=0.38), and Visual Aesthetics (M=0.31). The three most911

positive scales refer to the utility character of the application,912

which is considered as the most important part. Four scales are913

negatively assessed in the neutral interval, thus calling for im-914

provement: Efficiency (M=−0.66), Adaptability (M=−0.41),915

Dependability (M=−0.19), and Attractiveness (M=−0.13).916

While Novelty received the highest mean score, it also re-917

ceived the lowest importance (M=−0.13), because participants918

become more accustomed with the software and therefore re-919

duce its importance over time. Similarly, Visual aesthetics920

(M=0.25) were no longer considered as important as before.921

Utility scales take precedence over usability scales in terms of922

mean importance: Efficiency (M=2.38), Usefulness (M=2.25),923

Perspicuity (M=2.13), Trustworthiness of content (M=1.88),924

Adaptability (M=1.88), Dependability (M=1.75), Intuitive925

Use (M=1.75), Trust (M=1.50), Attractiveness (M=1.13),926

and Stimulation (M=0.88).927

For the first time, at sol eight S8, all scales become posi-928

tively assessed with only four belonging to the neutral zone:929

Attractiveness (M=0.75), Dependability (M=0.75), Perspicu-930

ity (M=0.66), and Visual aesthetics (M=0.53). The remain-931

ing eight scales are located above the threshold: Trustwor-932

thiness of content (M=1.47), Usefulness (M=1.38), Adapt-933

ability (M=1.09), Novelty (M=1.38), Efficiency (M=1.03),934

Intuitive use (M=1.00), Trust (M=0.94), and Stimulation935

(M=0.81). Trustworthiness received the highest scale means936

https://ueqplus.ueq-research.org/Material/UEQ_Plus_Data_Analysis_Tool.xlsx
https://ueqplus.ueq-research.org/Material/UEQ_Plus_Data_Analysis_Tool.xlsx
https://ueqplus.ueq-research.org/Material/UEQ_Plus_Data_Analysis_Tool.xlsx
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Fig. 12. UEQ+ mean importance for all sessions S i. Error bars show a confidence interval of 95%.

and a high importance (M=1.75), thereby suggesting that par-937

ticipants progressively acquire more trust in manipulating the938

data. The functions attached to these data are well perceived939

based on Usefulness with a high importance (M=2.00). Effi-940

ciency (M=2.13, S D=0.60) was rated the most important factor941

although its scale was not the highest one.942

The last session S12 (sol twelve, last day of the mission) ob-943

tained all scale means above the threshold, thereby indicating944

the most positive appreciation of the software, except for Vi-945

sualAesthetics (M=0.75, SD=0.83), which is also consistently946

rated as the least important factor (M=0.63, SD=1.32). Sur-947

prisingly, Novelty obtained the highest scale mean (M=1.88)948

with the smallest deviation (SD=0.48), with a moderate impor-949

tance (M=1.75, SD=0.66), thus suggesting that participants es-950

timate that the software stays original, even after several us-951

ages. Trustworthiness of content remains the second highest952

scale means (M=1.66, SD=0.77) as it was the case before, with953

a very high importance (M=2.00, SD=1.00). Attractiveness954

(M=1.06, SD=0.90) suffered from the lowest mean with the955

second lowest importance rate (M=1.13, SD=1.36), thus sug-956

gesting that this factor does not deteriorate much the overall957

software quality. Just before this factor, Adaptability (M=1.09,958

SD=1.07) and Efficiency (M=1.09, SD=0.80) share the second959

lowest scale mean, with the highest importance for Efficiency960

though (M=2.38, SD=0.48).961

5.3. Inter-session evolution: Results and Discussion962

In this section, we first use statistical tools (inter-rater agree-963

ment, inter-rater consistency) to address two questions: Do we964

have obvious consensus, or did the astronauts answer indepen-965

dently?; Did the participants answer in a random fashion, or966

based on logical assumptions? We use two statistical tools:967

Kendall’s coefficient of agreement, and Cronbach’s coefficient968

of consistency. The later measures how relevant is the measure-969

ment tool (form), while the first quantifies the quality of the970

sample (group of participants). Finally, we focus on the evolu-971

tion of the results, during the mission, from Sol 0 (before the972

mission) to Sol 12 (end of the mission).973

5.3.1. Inter-rater agreement974

Table A.4 reports Kendall’s coefficient of concordance W975

(Legendre (2005)), a measure of agreement among raters which976

is equal to 0 when there is no agreement among them. The977

lower the concordance, the more heterogeneous is the survey978

sample (participants). A high coefficient reflects either one (or979

several) of the following facts: the sample is too small, the par-980

ticipants were selected with a bias, the participants communi-981

cated while answering the questions.982

Although all W values are positive, some of them are low,983

indicating that there is limited agreement (e.g., Dependability984

in S 0 received W=0.041 interpreted as poor agreement and Vi-985

sual aesthetics in S 0 received W=0.21 interpreted as fair agree-986

ment). Some others depart more from 0, but rarely in a signifi-987

cant way. In particular, Usefulness in S 0 received W=0.34 with988

p=.041∗, which is the scale benefiting the most from inter-rater989

agreement in a significant way, thus rejecting the null hypoth-990

esis that there is no agreement among participants. W slightly991

decreases across sessions, but stays interpreted as ’fair.’ An-992

other example is Efficiency, which received a fair agreement993

(W=0.40, p=.021∗) for S 4, but decreases over sessions. The994

limited agreement can be partially explained by the diversity995

of the profiles of the participants, but also by the varying ex-996

perimental conditions: S 0 was carried out in a room with lim-997

ited pressure, while S 4, S 8, and S 12 were carried out with more998

mental, temporal, and physical pressure.999

5.3.2. Inter-rater consistency1000

Table A.2 reports Cronbach’s α coefficient computed to1001

quantify the internal consistency, which expresses the extent1002

to which the scale measurements remain consistent within a1003

session or over subsequent sessions under identical or different1004

conditions. This test measures how the different components of1005

the form permit to well reflect the global user experience, or in1006

contrary, if the questions asked in the form are not relevant. A1007

value above 0.7 is considered as acceptable (Nunnally, 1975),1008

meaning that the scale is most likely to be relevant for the study.1009

Again, S 0 was conducted in lab, while S 4 to S 12 were con-1010

ducted under experimental conditions mimicking the target real1011
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conditions. Individually speaking, scales’ α range from an un-1012

acceptable interpretation (e.g., Perspicuity received α=0.48 for1013

S 8) to an excellent interpretation (e.g., Adaptability received1014

α=0.93 for S 12). S 0 obtained 8 values above the 0.7 threshold1015

and 4 values below. The first real condition session, i.e. S 4,1016

obtained a balanced consistency: 6 values above the threshold1017

and 6 below. This balance evolves positively across sessions1018

in favour of a consistency above the threshold: 7 above and 51019

below for S 8 to 9 above and 3 below for S 12, thus suggesting1020

that participants rated scales more consistently over time. In-1021

deed, the mean α starts at 0.79 (acceptable) for S 0 and always1022

improves session after session: 0.61 (questionable) for S 4, 0.701023

(acceptable again) for S 8 and 0.80 (good) for the final S 12.1024

5.3.3. Evolution of scales and importance rates1025

Fig. 11 and Fig. 12 show how the mean scores and impor-1026

tance evolved across all four sessions. Overall, most scales1027

obtained a high mean for the first S 0, which dramatically de-1028

creased for S 4 carried out in real conditions, revealing a differ-1029

ent appreciation of the software between the ideal conditions in1030

vitro and the real conditions in vivo. Fortunately, these mean1031

scores positively evolved until reaching positive values above1032

the threshold during the last session. These results suggest1033

that participants, although they were probably influenced by the1034

difficult conditions of S 4, progressively improved their assess-1035

ment, being less influenced by these contextual constraints and1036

more accustomed to deal with them. The results obtained for1037

the last sessions S 12 therefore represent an overall stable as-1038

sessment of the software after several continuous usages.1039

More precisely, Table A.3 shows how scale mean scores and1040

their mean importance evolved in terms of difference of per-1041

centage between sessions: first, between the initial in vitro S 01042

session and the first in vivo S 4 session, then between the two1043

next iterations and, finally, between the first session S 0 and the1044

last session S 12. Some scales largely improved since the begin-1045

ning: Perspicuity received the best mean gain from one session1046

to the last (∆=643%), followed by Visual aesthetics (∆=318%)1047

and Intuitive use (∆=260%), suggesting that the user experi-1048

ence gained during the sessions positively impacted these scale1049

means, even if their mean importance changed over time. Four1050

scales decreased between the first and the last session: Use-1051

fulness is reduced by ∆=−33%, followed by Stimulation by1052

∆=−26%, Trustworthiness of content by ∆=−9%, and Effi-1053

ciency by ∆=−5%, suggesting that participants expressed their1054

needs at a higher level of expectation during the first session1055

than during the last one. This does not depreciate the overall1056

user experience of the interface, but indicates that the experi-1057

ence accumulated by participants let them to adjust their assess-1058

ment more precisely since all scale means in S 12 were highly1059

positive (Fig. 11). Participants also increased their importance1060

rates of nine scales and decreased the rates for three scales only:1061

Trust by ∆=−25%, Usefulness by ∆=−23%, and Trustwor-1062

thiness of content by ∆=−11%, suggesting that participants1063

have lowered the importance due to the experience gained and1064

the rapid learning curve. The progress acquired during succes-1065

sive sessions is therefore a determining factor for the adjust-1066

ment of the scales and their importance to converge towards an1067

equilibrium representing a stable value after a continuous inter-1068

action. We investigated whether these differences are statisti-1069

cally significant by computing a Wilcoxon signed-rank test for1070

paired samples between S 0 and S 12, then between S 4 and S 12.1071

Between S 0 and S 12. Perspicuity is significantly lower1072

(p=.00064∗∗∗) with a small effect size (r=0.34), thus suggest-1073

ing that participants felt that they were in control much more1074

in the end of the mission than before ((Fig. 11-blue top bars);1075

Stimulation is significantly smaller (p=.049∗) with a small ef-1076

fect size (r=0.21), Trust is significantly smaller (p=.013∗) with1077

a small effect size (r=0.28), Usefulness is significantly larger1078

(p=.020∗) with a small effect size (r=0.25), Visual aesthetics1079

are significantly smaller (p=.0037∗∗) with a small effect size1080

(r=0.33), Intuitive use is significantly larger (p=.0049∗∗) with1081

a small effect size (r=0.32). With respect to importance, no1082

significant difference was found between means of all corre-1083

sponding scales, thus suggesting that participants estimated the1084

importance of the respective scales not in a very different way.1085

Between S 4 and S 12. Many scales saw their mean scores sig-1086

nificantly higher in S 12 than in S 4 (Fig. 11-white): Attrac-1087

tiveness is significantly different (p≤.0001∗∗∗∗) with a medium1088

effect size (r=0.51), Efficiency is different (p≤.0001∗∗∗∗) with1089

a medium effect size (r=0.54), Perspicuity is different (p =1090

.00033∗∗∗) with a small effect size (r=0.42), Dependability1091

is different (p≤.0001∗∗∗∗) with a small effect size (r=0.48),1092

Stimulation is different (p=.00047∗∗∗) with a small effect size1093

(r=0.40), Novelty is different (p≤.0001∗∗∗∗) with a small ef-1094

fect size (r=0.46), Trust is different (p≤.0001∗∗∗∗) with a small1095

effect size (r=0.47), Adaptability is different (p≤.0001∗∗∗∗)1096

with a medium effect size (r=0.50), Usefulness is differ-1097

ent (p=.0062∗∗∗) with a medium effect size (r=0.31), Visual1098

aesthetics are different (p=.01007∗) with a small effect size1099

(r=0.29), Intuitive use is different (p=.0076∗∗) with a small ef-1100

fect size (r=0.30), Trustworthiness is different (p=.00028∗∗∗)1101

with a small effect size (r=0.41). The effect size is interpreted1102

as ‘medium’ more frequently between S 4 and S 12 than between1103

S 0 and S 12 or as ‘small’. With respect to importance, a sig-1104

nificant difference was found between means only for Novelty1105

(p=.15∗) with a large effect size (r=.52).1106
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Fig. 13. Benchmarking of UEQ+ scales for each session with respect to Play-
Book (Shelat et al., 2022) in brown. S 4, S 8, and S 12 are represented in light
blue, medium blue, and dark blue, respectively.
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Fig. 14. Final schedule at the end of the mission (Sol 12). In the end, the astronauts managed to complete all the scientific projects, even though several projects had
to be adapted during the course of the operations to fit the field realities.

5.4. Benchmarking of Scales1107

Each UEQ+ scale is typically evaluated as follows: between1108

-0.8 and 0.8 for a neutral evaluation, superior to 0.8 for a pos-1109

itive evaluation, and inferior to -0.08 for a negative evaluation,1110

as explained in the end of Section 5. Beyond this universal1111

evaluation, Schrepp et al. (2017) mentions some more precise1112

intervals for interpreting some of these scales based on a bench-1113

marking obtained by observing the distribution of the values1114

over a large set of evaluated cases. The mean value of each1115

benchmarked scale therefore falls into one of five categories1116

defined as follows (Schrepp et al., 2017): excellent (among the1117

best 10% of all cases), good (10% of the cases are better than1118

the evaluated product), above average (25% of the cases are1119

better than the evaluated product), below average (50% of the1120

cases are better than the evaluated product), and bad (the eval-1121

uated product is among the worst 25% of cases).1122

Fig. 13 shows the distribution of the benchmarked scales1123

according to the five categories and compares it with Play-1124

Book (Shelat et al., 2022), another operations management1125

system, developed and tested by NASA in analogue condi-1126

tions. Playbook is one of the three components of the Min-1127

erva suite (Section 2.2). Scales for S 12 are benchmarked1128

as follows: Attractiveness is ‘excellent’ (M=1.06≥0.75)1129

as well as PlayBook (M=1.53≥0.75), Perspicuity is ‘excel-1130

lent’ (M=1.19≥0.6), Efficiency is ‘excellent’ (M=1.09≥0.72),1131

Dependability is ‘excellent’ (M=1.44≥0.85), Stimulation1132

is ‘excellent’ (M=1.41≥0.95) and slightly above PlayBook1133

(M=1.36≥0.75), and Novelty is ‘excellent’ (M=1.88≥1.1) and1134

above PlayBook (M=0.98≤0.75, interpreted as ‘good’). Over-1135

all, Playbook provides significantly better Perspicuity. Com-1136

pared to Playbook, Romie has additional features, such as the1137

visual modeling framework and the (re)optimization engine.1138

These come at the cost of a slightly increased complexity of the1139

system from the user’s point of view at discovery stage. After1140

a training period of a couple of weeks, these features no longer1141

affect the usability as its factors are no longer deteriorated.1142

6. Conclusion and Future work1143

We study the capability of a crew of analogue astronauts,1144

composed of novice planners, to manage the operational sched-1145

ule of their mission in an autonomous setup, by using a1146

computer-aided decision system. Techniques from human com-1147

puter interaction (HCI) were exploited to measure and analyse1148

how well the participants succeed at doing so: the astronauts1149

were asked to evaluate their experience of the system and the1150

quality of the computed decisions using UEQ+.1151

The results gathered before, and at different stages of the1152

mission, show that the proposed decision system appears as1153

being an adequate approach, from a functional point of view1154

(usefulness), whereas it is perceived as difficult to use by the1155

participants, especially during the first days of the mission.1156

Empirical evidence has shown that even provided a strong1157

provisional schedule, rethinking and reshaping all the a priori1158

decisions related to the research projects, to be carried out dur-1159

ing the mission, is unavoidable. As activities take place, the1160

scientific objectives and constraints must be adapted according1161

to unpredictable events. EVAs must be cancelled due to bad1162

weather conditions. The entire project must be adapted to fit1163

the limited duration of the mission. Figure 14 shows the plan-1164

ning at the end of the mission. Due to the inherent complexity1165

of the underlying combinatorial problem, modifying the sched-1166

ule by hand is not an option. To that extent, the tested deci-1167

sion system includes an artificial intelligence, which proved its1168

usefulness by computing optimised solutions to the scheduling1169

problem, for the astronauts, based on a graphical description of1170
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their objectives and constraints. The main limitation of the ap-1171

proach lies in the learning time required by the participants to1172

master the system. Future missions will need a more adequate1173

preparation.1174

Astronaut qualitative impression. Finally, apart from the quan-1175

titative analysis of the questionnaires, the eight astronauts have1176

been asked to describe their impression on the technology, what1177

they liked or disliked: “We believe that Romie is a very useful1178

program for this type of mission, which involves a lot of con-1179

straints simultaneously in terms of personnel, time and equip-1180

ment. Although it was not yet fully functional at the beginning1181

of the mission, it was able to perform a maximum number of1182

pre-programmed activities. The interface could be improved to1183

become more intuitive. Indeed, without adequate prior training,1184

it is very difficult to get used to it, which was relatively energy1185

consuming and time consuming at the beginning. However, as1186

the mission evolved, the program was continually readapted to1187

finally offer us the adequate and appreciated handling for the1188

autonomous management of operations.”1189
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Table A.2. Consistency reliability. Cronbach’s α: ≥ 0.9=excellent (E), 0.9>α ≥ 0.8=good (G), 0.8>α ≥ 0.7=acceptable (A), 0.7>α ≥ 0.6=questionable (Q),
0.6>α ≥ 0.5=poor (P), 0.5>α=unacceptable (U).

Scale Cronbach’s α (interpretation)

S 0 S 4 S 8 S 12

Attractiveness 0.62 (Q) 0.68 (Q) 0.55 (P) 0.91 (E)
Efficiency 0.46 (U) -0.10 (U) 0.70 (A) 0.52 (P)
Perspicuity 0.95 (E) 0.56 (P) 0.48 (U) 0.78 (A)
Dependability 0.67 (Q) 0.75 (A) 0.72 (A) 0.67 (Q)
Stimulation 0.94 (E) 0.96 (E) 0.93 (E) 0.89 (G)
Novelty 0.89 (G) 0.63 (Q) 0.63 (Q) 0.63 (Q)
Trust 0.76 (A) -0.25 (U) 0.82 (G) 0.88 (G)
Adaptability 0.85 (G) 0.80 (G) 0.68 (Q) 0.93 (E)
Usefulness 0.69 (Q) 0.91 (E) 0.81 (G) 0.88 (G)
Visual Aesthetics 0.96 (E) 0.70 (A) 0.82 (G) 0.76 (A)
Intuitive Use 0.88 (G) 0.53 (P) 0.53 (P) 0.83 (G)
Trustworthiness 0.76 (A) 0.55 (P) 0.77 (A) 0.84 (G)

Mean 0.79 (A) 0.61 (Q) 0.70 (A) 0.80 (G)

Table A.3. Evolution of scale means and their importance rates across sessions in terms of difference of percentage (M=mean scale, Imp.=importance rate).

Scale S 0 → S 4 S 4 → S 8 S 8 → S 12 S 0 → S 12

M Imp. M Imp. M Imp. M Imp.

Attractiveness -114% 80% 700% -33% 42% 50% 21% 80 %
Efficiency -157% 19% 257% -11% 6% 12% -5% 19 %
Perspicuity 271% 13% 75% -24% 81% 23% 643% 7 %
Dependability -114% 0% 500% 7% 92% 13% 5% 21 %
Stimulation -67% 17% 30% -14% 73% 117% -26% 117 %
Novelty -30% -111% 10% 600% 36% 180% 5% 56 %
Trust -30% 0% 43% -17% 70% -10% 70% -25 %
Adaptability -146% 15% 369% 0% 0% 0% 25% 15 %
Usefulness -67% -18% 110% -11% -2% 6% -33% -23 %
Visual Aesthetics -191% -33% 70% 100% 41% 25% 318% 67 %
Intuitive Use 40% -18% 129% -14% 13% 33% 260% -6 %
Trustworthiness -60% -17% 104% -7% 13% 14% -9% -11%

Table A.4. Inter-rater agreement. Kendall’s W≤0.2=low (L), 0.21≤W≤0.4=fair (F), 0.41≤W≤0.6=moderate (M), 0.61≤W≤0.8=high (S), 0.81≤W≤1=very high (V).

Scale Kendall’s W (p-value, interpretation)

S 0 S 4 S 8 S 12 Mean

Attractiveness 0.14 (0.35, L) 0.31 (0.057, F) 0.094 (0.52, L) 0.08 (0.59, L) 0.156 (L)
Efficiency 0.098 (0.50, L) 0.40 (0.021, F) 0.034 (0.84, L) 0.023 (0.90, L) 0.14 (L)
Perspicuity 0.11 (0.43, L) 0.0394 (0.81, L) 0.18 (0.23, L) 0.12 (0.40, L) 0.11 (L)
Dependability 0.041 (0.80, L) 0.21 (0.15, F) 0.16 (0.26, L) 0.11 (0.44, L) 0.13 (L)
Stimulation 0.16 (0.26, L) 0.077 (0.60, L) 0.095 (0.51, L) 0.023 (0.90, L) 0.08 (L)
Novelty 0.042 (0.79, L) 0.014 (0.95, L) 0.03 (0.87, L) 0.13 (0.37, L) 0.05 (L)
Trust 0.20 (0.17, L) 0.02 (0.92, L) 0.05 (0.75, L) 0.058 (0.71, L) 0.08 (L)
Adaptability 0.11 (0.43, L) 0.058 (0.70, L) 0.045 (0.78, L) 0.056 (0.72, L) 0.07 (L)
Usefulness 0.34 (0.041, F) 0.25 (0.11, F) 0.13 (0.36, L) 0.26 (0.10, F) 0.24 (F)
Visual Aesthetics 0.21 (0.16, F) 0.15 (0.32, L) 0.039 (0.81, L) 0.10 (0.48, L) 0.12 (L)
Intuitive Use 0.17 (0.24, L) 0.084 (0.57, L) 0.13 (0.36, L) 0.028 (0.88, L) 0.10 (L)
Trustworthiness 0.077 (0.60, L) 0.24 (0.12, F) 0.14 (0.34, L) 0.22 (0.14, F) 0.17 (L)

Mean 0.14 (L) 0.15 (L) 0.09 (L) 0.10 (L)
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