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Qualcomm Snapdragon 855 HDK

● 8 core ARM system

○ 4 “silver” high efficiency cores ~ 1.80 GHz

○ 3 “gold” high performance cores ~ 2.42 GHz

○ 1 “gold prime” very high performance core ~ 2.84 GHz

● Adreno 640 Graphics Processing Unit (GPU)

● Qualcomm Hexagon 690 Digital Signal Processor (DSP)

● Neural Processing Engine

○ Directly supports Convolutional Neural Networks (CNNs) in hardware

● Running Android OS
3Also Snapdragon Automotive Development Processor Units running linux (for automotive).

All Snapdragon images courtesy Qualcomm
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Rad 750

Current computing for MSL, M2020

PowerPC Heritage
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Image re: MSL from CNET
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JPL’s Sabertooth

● LEON 4 Based CPU

● Target 8-10x improvement in evolution from Sphinx
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W. Whittaker
Sabertooth: Integrated Avionics for Small Spacecraft Missions
 2019 Space Computing Conference
https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/CL%2319-4553.pdf?sequence=1&isAllowed=y

Image credit citation below.

https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/CL%2319-4553.pdf?sequence=1&isAllowed=y
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Embedded Processors
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Processor Snapdragon 855 Rad750 Sabertooth

Power 5W 10+ W
5 W?

3W 
https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/
CL%2319-4553.pdf?sequence=1&isAllowed=y

MIPS https://www.notebookcheck.net/Qual
comm-Snapdragon-855-SoC-Bench
marks-and-Specs.375436.0.html

typical 266
up to 400

1200

Cores, Clocks 8 @ 1.7-2.8 GHz 1@110-200 MHz 4@ ?

RAM, NVM 16 GB 256 MB 2GB 192 MB 8 GB

Coprocessors GPU, DSP*, AIP* Motor controllers
*quantized models: 8 bit 
fixed point

**half-precision floating 
point
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International Space Station Experiment
Hewlett Packard Enterprise Spaceborne Computing-2

Delivered to ISS turnover: Fall 2020
Delivered to the ISS onboard Cygnus NG-15: February 20, 2021.
Powered on: May 12th 2021.

Hewlett Packard Enterprise Spaceborne Computing-2 package:
○ COTS Linux workstations from HPE
○ Intel Xeon 5215 Processor (10 cores)
○ 4 NVIDIA Tesla GPUs
○ 2  Machines aboard the ISS

2x Snapdragon 855 HDKs running Android
○ Radios disabled

2x Myriad X Processors

Uplinks possible periodically to load new SW
All SBC-2 images credit HPE.
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Experiment Setup
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HPE 
Ground 
Testbed

HPE Flight 
Testbed 
(Ground)

SBC-02 on ISS

HPE: 
Chippewa Falls, WI

1. JPL 
Develops and Tests

2. JPL Tests

3. HPE Tests

4. HPE Tests

5. Results →  JPL
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Test Harness Setup
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Test Harness 
Computer 

Results

Test Harness runs on laptop or SBC-02 linux host
Test Harness:

iterates through experiments: 
delivers experiment code and data to embedded processor,
runs experiments on embedded processor
cleans up after execution, retrieving test results, 
reboots if needed (timeouts)

Code, Data

or This setup is 
not 
completely 
unlike an 
“instrument 
coprocessor” 
setup



General Algorithms
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Fast Fourier Transform (FFT)
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Matrix Multiplication

Generic benchmarks: more extensive parameter changes relating to different libraries and input data sizes.
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Instrument Processing Applications
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Normalized Difference Index (NDI)

● Many target science products are normalized 
difference indices (e.g. normalized difference 
vegetation index, normalized difference snow)

● Future proposals would are expected to downlink 
higher resolution multispectral data (~30m)

● This extension necessitates selectivity to 
intelligently reduce data volumes to enable the use 
of economical ground stations

● Used to perform mineral detection on 8 minerals 
on AVIRIS-NG data from Cuprite Hills, Nevada

● Implemented on the Snapdragon ARM CPU
● Dataset: 20,000 pixels with 425 bands each
● Runtime: 56s  →  0.0028s per pixel

Normalized Difference Vegetation Index over the US



jpl.nasa.gov

Synthetic Aperture Radar (SAR) Image Formation
● Image Processing pipeline from Uninhabited Aerial 

Vehicle SAR (UAVSAR) instrument

● A pipeline of 3 ARM applications, 2 GPU 
applications

○ Mainly a row-wise and column-wise 2D FFT with filters 
applied

● Goal of <240 Seconds (~ real time)

● Image Size: 27916x26880

● Currently takes 217 seconds

○ Could possibly be further improved, as GPU usage is 
only at about 60%

The Rosamond Calibration Array (RCRA), 
located near the south beach of Rosamond 
Dry Lake Bed in California.

15



jpl.nasa.gov

Match Filters
● Running on images from the Airborne Visible / 

Infrared Imaging Spectrometer (AVIRIS) 

○ Images of Cuprite site in 2014

● Runs Kaolinite, Calcite and Alunite detection

● Runs on ARM only, single threaded

● Much of the runtime is I/O, so multithreading has 
modest effect

● Image Size: 670x2512x425

● Runtime through 8 images on 1 mineral on the graph

○ ~850s on Snapdragon ARM

https://www.jpl.nasa.gov/missions/airborne-visible-infrared-imaging-spectrometer-aviris
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Lunar Match Filters

● Running on a dataset of modified M3 imaging 
spectrometer images of the Karpinsky feature of the 
moon

● Aims to demonstrate the detection of volatile water 
molecules on the lunar surface

○ Currently running on different forms of water (OH, 
molecular H2O, and H2O ice)

● Runs on ARM only, single threaded

● Performance mirrors Match Filters

● Image size 304x1000x301

● Runtime 108.4s

17

https://photojournal.jpl.nasa.gov/catalog/PIA23236
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Hyperspectral Compression
● Benchmarked on test images for Earth Surface Mineral Dust Source Investigation (EMIT)

● 64 lines, 640 samples per line, 481 spectral bands

● MSamples/sec = lines * samples per line * bands / runtime

● EMIT Target is 23.1 MSamples/sec (near real time)

Image from https://earth.jpl.nasa.gov/emit/instrument/overview/
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CPU GPU DSP Virtex-5 GTX 580

CCSDS Standard 123.0.B-2 123.0.B-1 123.0.B-2 123.0.B-1 123.0.B-1

Compression Lossless

Runtime (ns) 14.12 6.5 184.5 25 16.18

Sample Rate 
(MSamples/sec) 70.82 153.85 5.42 40.00 61.80

Power (W) 6.1 3.5 1.9 2 >100
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• What: Landmark / regions of interest detection in imagery.

• Applications: autonomous data collection, targeted 
downloads, commanding space assets

• Details:
– Generates salience maps of large image swaths to enable 

reduction in data volume
– Uses computer vision techniques [Mars1]

• Ported to Snapdragon CPU
– Processes single grayscale image 2048x4032 pixels in 23 

seconds
• Compared w/ 12 seconds on my mac

Salience Detector: Computer Vision for Landmark Detection

Salience mapMars HiRISE Image

19



jpl.nasa.gov

Landing Vision System/Astrotipping

● Landing Vision System currently 
implemented as a hybrid FPGA + 
Processor solution

● Problem divided into COARSE and FINE 
modes

● COARSE
○ Run on 1024x1024 image
○ Image Warping
○ Match to template (FFT)
○ Runtime: 2.46s

● FINE
○ Run on 1024x1024 image
○ Normalized Cross Correlation
○ Runtime: 2s

● Implemented on the Snapdragon ARM

20
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High Order WaveFront Sensing (HOWFS)
● Python implementation of HOWFS for Roman Space 

Telescope Coronagraph Instrument

○ Onboard processing would facilitate the mission

○ Faster processor is necessary for onboard processing

● Single threaded non-optimized port - Currently a little slow

○ Original double precision code took 2.2 hours

○ Moving to single precision took 1.8 hours

● Further Work

○ GPU 

○ Multi-thread

○ Move from Python (allow easier use of specialized hardware)

21
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Europa Lander Stereo Vision

● Application determines the relative range of 
objects in a particular image is using a set of 
images from a stereo vision camera

● Success scored on the measurement of the sum 
of absolute differences (SAD) between five 
patches in the two images

● Implemented on the Snapdragon ARM

● Dataset: 24 image pairs
○ Each image is natively at 5120x3840

● Images processed at three different resolutions:

○ Level 0: 5120x3840: 15.6 minutes

○ Level 1: 2560x1920: 2.1 minutes

○ Level 2: 1280x960: 19 seconds 22

Stereo Vision Depth Map Example
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Spectral Algorithms

● Benchmark the match filter (MF) and spectral angle 
mapper (SAM) algorithms for spectral analysis

○ Both algorithms use a spectral library containing 
objects of interest to be searched

○ SAM is a distance function between a spectrum and 
an object of interest

○ MF is a linear detector that requires background 
statistics: the mean covariance matrix

● Used to perform mineral detection on 8 minerals on 
AVIRIS-NG data from Cuprite Hills, Nevada

● Implemented on the Snapdragon ARM CPU 
● Dataset: 20,000 pixels with 425 bands each

Spectral library of 8 minerals (left)
AVIRIS-NG hyperspectral image of Curpite Hills, Nevada (right)

Timing in ms per 
pixel

SBC2 Snapdragon Sabertooth

SAM 0.04 0.0425 0.16

MF 0.04 0.06 0.15

SAM:
3.8x speedup from the Sabertooth to the Snapdragon

MF:
2.5x speedup from the Sabertooth to the Snapdragon 
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Decision Trees - Thermal Anomaly Detection

● Decision tree logic to detect high thermal emissions 
(lava, wildfires) using radiance band ratios 

○ (Human expert constructed trees Davies et al. 2006 
RSE)

● Classifies into hot and extremely hot pixels utilizing 
multiple radiance bands

● Run over Aviris-NG data
○ Image size 4500x390x425

● Implemented on the ARM and GPU of the 
Snapdragon

24

Skysat image of  the Fagradalsfjall volcano in Iceland
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● Decision tree based on cryosphere detection
(human expert constructed tree Doggett et al. 2006 RSE) 

● Classifies clouds, water, snow, ice, and land within an image
● Run using AVIRIS-NG data over Alaska

○ Image size 4500x390x425

● Implemented on the Snapdragon ARM CPU and 
Snapdragon Adreno GPU

○ CPU runtime: 21s (cryosphere and lava)
○ GPU runtime: 13s (cryosphere and lava)

25

Decision Trees Cryosphere Detection

AVIRIS-NG 
image of Alaska

SBC2 Snapdragon 
CPU

Snapdragon 
GPU

Sabertooth

ms per pixel 0.00068 0.012 0.0074 .31

25.8x speedup from the Sabertooth to 
the Snapdragon CPU

41.9x speedup from the Sabertooth to 
the Snapdragon GPU
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Random Decision Forest - Thermal Anomaly
● Random Forest to detect thermal anomalies in images using radiance band 

ratios
● Classifies into the binary classes of thermal anomaly and not a thermal 

anomaly
● Run over Planet Skysat data (4 bands: Red, Green, Blue, NIR)
● Image labels were generated from radiance band ratios established by Ashley 

Davies
● Training Dataset: 13 images

○ Image size: ~ 4x10,000x12,500, pixel size = 50cm
○ 11 of Fagradalsfjall
○ 2 of Kilauea

● Test Dataset:
○ 4,000,000 pixels from a Fagradalsfjall image

● RDF: number of trees: 1,300 trees (100 trees trained on each training image), 
max depth: 10, weights equalized by class

● Runs single threaded on the CPU

26

Skysat image of  the Kilauea volcano in Hawaii

SBC2 Snapdragon Sabertooth RAD750

ms per pixel 0.034 0.057 0.725 1.075

12.7x speedup from the Sabertooth to 
the Snapdragon
18.9x speedup from the RAD750 to the 
Snapdragon
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• What: Deep Convective Storm Classification using Machine Learning
• Applications: Storm targeting, Cloud avoidance 
• Details:

– Uses simulated radiometer data from Global Weather Research and Forecasting 
(GWRF) simulations

– 5 classes: 
• Clear sky, thin cirrus, cirrus, rainy anvil, convective core

– Data has 8 channels
• Single pixel classification models have been ported as ARM CPU python app on the 

Snapdragon and ported in C for the Sabertooth and RAD750
– Models from scikit learn: Random Forest, MLP, Linear SVM, Gaussian Naive Bayes
– Runtime over 198,016 pixels
– Model accuracies same on ARM CPU as a laptop

SMICES: Machine Learning for Storm Classification

Time in ms per 
pixel

Random 
Forest

MLP Linear SVM Naive Bayes

SBC2 0.0017 0.003 0.00016 0.00025

Snapdragon 0.0025 0.0027 0.00032 0.0014

Sabertooth 0.013 0.108 n/a 0.039

RAD750 0.006 0.14 n/a 0.03

Snapdragon 
Speedup over  
RAD750

2.4x 51.9x n/a 21.4x

Pixel-wise pixel classification of cloud type
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SMACC
● Sequential Maximum Angle Convex Cone 

(SMACC) spectral endmember extraction

●  Snapdragon implementation run with AVIRIS-NG 
Data

● Extracts the top 5 endmembers from the data

● Can be used to extract radiance values that 
match with minerals and other materials

● Previously flown on EO-1 with 6h runtime (incl. 
superpixel segmentation) on Mongoose V 
(smaller image cube)

● Image Size: 638x679x425

● Based on D. Thompson et al. 2012 TGARS

28

Example endmember reflectance values compared to 
mineral reflectance base values

SBC2 Snapdragon Sabertooth RAD750

ms per pixel 0.027 0.039 1 2.3
59x speedup from the RAD750 to the 
Snapdragon

25.6x speedup from the Sabertooth to 
the Snapdragon



Targeting Remote Sensing Instruments
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Cloud Avoidance

● Algorithms developed to avoid imaging clouds while in orbit 
given a lookahead and instrument view

● Run over 50 images with dimensions 1354x2030
● Four algorithms developed

○ Greedy search
■ Median Runtime Per Image: 49.7 ms 

○ Graph search
■ Three Implementations

● Adaptive Grids
○ Median runtime per image: 199.2 ms

● Mixed Grids
○ Median Runtime Per image: 13.7 ms

● Fixed Grids
○ Median runtime per image: 9.7 ms

● Implemented in Rust for the Snapdragon ARM

30

Visualizations of the two cloud avoidance algorithms
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SMICES Pointing Planning 
● SMICES Point Planning is the Smart Ice Cloud 

Sensing (SMICES) storm targeting planner
● Running on the Caribbean region of a Global 

Weather Research and Forecasting (GWRF) 
model’s simulated data

● Uses a radiometer to identify cloud types in the 
orbit path and schedules a radar for further 
imaging

● Scientists define the value of each cloud type

● Generates an observation list based on the 
constraints of the radar and available clouds

● Run over 15,232 timesteps (1 timestep = 2 
seconds, ~8.5 hours simulation time)

● Runtime of 53.6 seconds on Snapdragon ARM
31

Radiometer 
derived 
classification

Instantaneous
Radar reachability

Reachability swath
aka
Algorithm “knowledge window”
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Dynamic Targeting Algorithms

● Dynamic targeting (DT) uses information from a lookahead sensor to identify targets for the 
primary, pointable sensor

● Improves science yield given energy constraints

● Scenario: maximize observations of storms clouds 

● Simulations using global storm dataset GPM IMERG (Candela et al., 2022)

● We benchmark and compare 5 DT algorithms:

○ Random sampling at nadir (baseline)

○ Smart sampling only at nadir

○ Smart sampling along cross-path direction

○ Smart sampling within the primary instrument’s FOV

○ Smart sampling within the primary instrument’s FOV while leveraging lookahead 
data

● Dataset: 18,000 timesteps at 2 seconds per timestep (10 hours of simulation time, 6.3 orbits)

Graphic of lookahead sensor with spacecraft targeting 
primary sensor based on lookahead sensor data (top)

Simulated orbit path over GPM IMERG dataset (bottom)

SBC2 Snapdragon Sabertooth RAD750

ms per 
timestep

0.39 20 1,500 2,800

75x speedup from Sabertooth to Snapdragon ARM CPU
140x speedup from the RAD750 to the Snapdragon ARM CPU



Mission Planning
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MEXEC
● Separately threaded Planner and Executive

● Takes “Task Network” as input

○ Set of state timelines, task templates, and 
tasks 

● Generates conflict free plans and monitors task 
execution, responding to deviations or exogenous 
events

Image from https://ai.jpl.nasa.gov/public/projects/mexec/

34
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MEXEC Benchmark Scenario

● MEXEC consists of multiple components, but the most computational demanding is the planner, so that is 
used for benchmarking purposes.

● MEXEC also runs continuously on a cycle, for benchmark purposes we only time the first plan generation.

● As a benchmark, we use the Europa Lander Prototype test scenario (Wang et al. 2020)

● Multi-day schedule, exercises hierarchical planning, valid interval search, constraint satisfaction, etc.

● Running as a single threaded ARM application

35
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MEXEC Results

36

Sabertooth

 (scaled to final clock 

speed)

Snapdragon 

8155 ARM

92s 1.6s

57.5x speedup from Sabertooth to 
Snapdragon ARM CPU
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CLASP
● CLASP is the Compressed Large-scale Activity Scheduler and Planner

● CLASP has been used for NISAR, ECOSTRESS, EMIT, OCO3, and other missions.

● Spacecraft, instrument, and orbiting body models define the scenario

● Science Campaigns define the scientific goals

● CLASP generates an observation schedule based on the scenario constraints

ECOSTRESS schedule portion of the Contiguous United States 37
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CLASP Benchmark Scenario
● For our benchmark, we generate 2 years of 2 week schedules using ECOSTRESS data from 2018-2020

● We generate a single 2 week schedule to collect our timing metric faster

● Currently CLASP is single threaded on the Snapdragon ARM

○ CLASP GPU port did not show significant speedup over the ARM version

38
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CLASP Results

39
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Copilot
● M2020 ground scheduler; currently in use for M2020 operations for scheduling wake/sleep and preheats 

● Uses the same scheduling algorithms as the M2020 onboard scheduler

● Challenges include wake/sleep constraints, preheat constraints, variability in execution, and complex 
operations handover handling.

Image from https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/ 40

Plan for sol type “medium drive with post drive imaging”
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Copilot Benchmark Scenario

● For this benchmark, we are running with ~800 x 1 martian day (or sol) planning problems that are 
generated by random variation of 7 base plans or “sol types”

○ Vary execution durations, incoming/outgoing energy state, and alternative action options

● Copilot has a single threaded and multithreaded version

○ Large problem already split into 800+ small problems, so easy to parallelize

● Benchmarked against SBC2 using 1 core, 8 cores (to match 855) and 20 cores

41
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Copilot Results

● Runtime of processors on the Copilot benchmark problem

○ Top: Serial

○ Bottom: Parallelized

● On the Intel, all 10 cores 2.5GHz 
On the Snapdragon, 8 cores range from 1.8-2.8 GHz 

● Generates 800 variants, so Snapdragon takes <1s per 
generated plan in parallelized results

42
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Porting to Android
● Most applications involve cross-compiling C/C++ code for ARMv8-A architecture

● CPU only ports are fairly straightforward

○ Some single threaded, some multithreaded

● Applications are ported to GPU, DSP and/or NPU with reasonable effort

● Some applications in python, ported using the python-for-android library provided by 

Kivy

● Long term flight usage will likely be under ADP/Linux

43
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Conclusion
● Ported machine learning, instrument processing, scheduling, mission planning, and benchmark applications on 

the Qualcomm Snapdragon on ISS and compared its performance with conventional flight hardware

● Benchmarked applications on

○ Qualcomm Snapdragon 855

○ Intel Linux (Mac Pro) and SBC-2 

○ Sabertooth 

○ Rad 750

● Work intended to facilitate future flight of these capabilities to enable future single and networked autonomous 
spacecraft missions.

44



jpl.nasa.gov

Team 
● Jet Propulsion Laboratory, California Institute of Technology

○ Faiz Mirza
○ Jason Swope
○ Dr. Emily Dunkel
○ Dr. Alberto Candela Garza
○ Evan Davis
○ Dr. Zaid Towfic
○ Dr. Damon Russell
○ Dr. Joseph Sauvageau
○ Dr. Douglas Sheldon
○ Dr. Steve Chien
○ Dr. Dennis Ogbe
○ Lauren West

● Ubotica
○ Juan Romero-Cañas
○ Dr. José Luis Espinosa-Aranda
○ Léonie Buckley
○ Elena Hervas-Martin
○ Fintan Buckley

● Hewlett Packard Enterprise
○ Dr. Mark Fernandez
○ Carrie Knox 45

● We would also like to thank many of the 
applications providers who also supported 
the testing of their applications, including: 

○ Dr. Kiri Wagstaff
○ Christopher Wells
○ Dr. Ashley Davies
○ Steven Lu
○ Michael Denbina
○ Deegan Atha
○ Michael Swan
○ Dr. Hiro Ono



jpl.nasa.gov

46


