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Abstract— The discovery of ocean worlds such as Enceladus,
Titan, and Europa motivates the development of versatile
autonomous mobility systems to enable the next era of space
exploration where there is large uncertainty in terrain specifi-
cations due to a lack of prior surface reconnaissance missions.
To explore these environments, we propose Exobiology Extant
Life Surveyor (EELS): the first large-scale (4 lm long with
400 Nm peak torque) snake robot. The large scale is achieved
by using a screw-based active skin mechanism to decouple
motion and shape control. Autonomous mobility for such a
system remains an open problem due to its many Degrees of
Freedom (DoFs), complex terrain interactions, and intermit-
tent localization failures in GPS-denied perceptually degraded
environments due to the presence of fog, dust, featureless
terrains, etc. We propose NEO, an autonomy architecture
that scales to large DoFs to generate a versatile set of gaits
to achieve mobility in unknown extreme environments. We
also discuss the resilience capabilities of NEO that achieves
closed-loop tracking performance by leveraging exteroception
when available but can also operate with proprioception only,
leading to resiliency against localization failures via graceful
degradation in performance rather than unsafe behaviors.
A quantitative hardware evaluation of exteroceptive leader-
follower gait is performed indoors on synthetic ice along with
qualitative results of field deployment of the proprioceptive
leader-follower and sidewinding gaits in extreme environments
of icy and sandy terrains with mobility-stressing elements such
as trenches, undulations, and steep slopes (up to 35 degrees).
We present a set of lessons learned from field deployments with
a summary of challenges and open research problems.
Video: www.rohanthakker.in/eels-neo-autonomy.html

I. INTRODUCTION

Exploring ocean worlds in our solar system, such as
Enceladus, Europa, or Titan, is arguably our best option
to answer a pivotal question that reaches civilization-level
science: Are we alone? Due to the lack of prior surface
reconnaissance missions, there is significant uncertainty in
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Fig. 1: The Exobiology Extant Life Surveyor (EELS) robot
traversing over mobility-stressing extreme terrains

the terrain properties of such worlds. Furthermore, the
large distance from Earth induces a communication lag that
limits significant human-in-the-loop operations and failure
responses as frequently performed in Mars/Moon missions.
Additionally, plumes discovered at the south pole of Ence-
ladus provide a natural entry into the sub-ice ocean if the
mobility system can traverse through holes that are more
than 10 cm wide while resisting the potential upward force
of the plumes themselves [1].

www.rohanthakker.in/eels-neo-autonomy.html


EELS is a suitable platform for such a mission due to
1) its versatility, enabling a variety of gaits to adapt to a
wide variety of terrains; 2) its ability to traverse constrained
passages; 3) its large scale of 4m length and 400 N.m. peak
torque capability; and 4) its modular hardware architecture
with repeated joints that can provide resiliency through
redundancy [1], [2], [3].

There is a large body of literature on the design, modeling,
and control of snake robots, as reviewed in [4], [5]. Most
previous work uses “shape-based locomotion”, relying on
the cyclical movement of the robot’s joint angles to generate
displacement of the robot’s position. These gaits leverage
reactive control policies and generally struggle to navigate
steep slopes or avoid hazards such as negative obstacles [6].
Furthermore, these gaits operate the actuators much faster
than the quasi-static speeds limiting the torque capacity of
their actuators, which prevents building these robots at a large
scale.

Screw-driven snake robots not only open the door to
large-scale but also to the design of deliberative behaviors.
However, these robots have received limited attention in the
research community. Prior work includes a recent design
called the ARCSnake, which demonstrated the viability of
surface locomotion with screws using an architecture similar
to the EELS [2]. Control laws for limited surface mobility
on flat ground have been developed in [3] and studied for
controlling a single module with multiple screws in [7], [8].
Screw actuation has also been studied in surgical applications
as a propulsion mechanism for endoscopes [9], [10].

Despite this body of knowledge, the autonomous naviga-
tion of a screw-propelled snake robot for a space exploration
mission remains unstudied. The problem includes the follow-
ing challenges: 1) many (¿=36) Degrees of Freedom (DoFs)
in the mechanism, 2) the need to traverse mobility-stressing
geometries such as steep slopes, trenches, and undulating
terrains with a wide variety of terramechanical properties
(Fig. 1) the existence of failures in exteroceptive localization
and mapping algorithms in the presence of perceptually
challenging conditions of fog, rain, dust, and degenerate
geometries (e.g. tubes) [11], [12].

Contributions: In this work, we present the first large-
scale (4 m long with 400 Nm peak torque and 100 kg mass)
snake robot mobility architecture that achieves scalability to
large DoFs by exploiting the physics of a screw mechanism
that decouples the motion- and shape-control problem into
separate loops. We introduce the NEO Autonomy Architec-
ture designed for versatile robots to operate in unknown
extreme environments. Specifically, we present how NEO
achieves resilience to failures of exteroception by using
a control layer that can operate only on proprioceptive
feedback, but leverages exteroceptive planning when avail-
able. This allows for graceful degradation of the system in
the event of exteroceptive failures, which yields a slight
reduction in performance rather than unsafe behaviors or
relying on operator intervention. A novel path tracking and
motion controller is presented to achieve lower than 0.05m
tracking errors when exteroceptive feedback is available.

Fig. 2: The EELS exteroceptive sensor suite containing a 3D
LiDar, 4x stereo pairs, and an IMU).

A quantitative experimental evaluation of exteroceptive
closed-loop tracking is performed on synthetic ice, along
with a qualitative field demonstration of the proprioceptive
control layer on ice and sandy terrains. Finally, a summary of
the lessons learned and open research problems is presented.

Future Work: Autonomous switching between propri-
oceptive and exteroceptive modes of operation based on
localization failure state and autonomous gait selection is
not in-scope of this work and we welcome further research
in these areas.

II. EELS HARDWARE

EELS is a novel snake-like robot that was developed
at NASA Jet Propulsion Laboratory (JPL). The robot is
composed of ten identical modules, an exteroceptive head.
Each of the modules has three actuators: two control the
shape of the robot and one controls the screws. The robot
is unique in its scale: 4m long with 400 N.m. of peak
torque, which is enabled using the active-skin design which
decouples the shape and motion control. EELS is powered
externally via a 50 feet long tether which an analogue to an
Enceladus mission scenario where the external power can be
obtain using nuclear energy on a lander.

The shape actuators continuously modify the shape of the
robot in a quasi-static fashion while the robot’s propulsion
is handled by the screw actuators. Operating the shape
actuators in the quasi-static regime allows the actuators to
sustain significantly higher loads (2x-3x) compared to their
continuous rating. In fact, this would be true for any actuator
that features a high latent power ratio gearbox (true for the
majority of compact high reduction ratio gearboxes [13]).
Hence, EELS’s shape actuators can efficiently support very
high loads due to the interaction of the robot with the
environment, while the robot is efficiently locomoting using
its active skin propulsion system based on high-efficiency
planetary gearboxes. This allowed us to scale the robot to a
4m length and 100kg mass.

EELS features an exteroceptive head, shown in Fig. 2, at
the leading end of the robot, used to help access and navigate
the terrain and obstacles during the mission. This head
contains four stereo visual camera pairs and one 3D LIDAR



Fig. 3: NEO Autonomy Architecture to achieve versatile locomotion in unknown extreme terrains with resilience to
exteroceptive localization failures. Specifically, an implementation is shown to achieve a leader-follower gait that enables
the robot’s leader (black triangle) and follower modules to plan and travel along an SE(3) path to a waypoint, ξd. The
proprioceptive estimator uses various sensors to estimate the shape of the robot and the contact states of the screws.
The exteroceptive perception module estimates pose and computes a traversability map. The collision-free and curvature-
constrained paths are computed by the path planner. A path tracker computes a velocity correction based on the position
errors of all modules on the path. A shape controller computes the desired shape positions of the robot given its position
along the path and sends the desired position commands to the joint-level controller. A motion controller computes the
desired screw-joint velocities given the robot’s current shape and its desired commanded body velocity to progress along
the path and make holonomic corrections to stay on the path.

sensor. While in a normal orientation, these sensors are laid
out in such a way that one stereo pair and the LIDAR sensor
are facing forward, while the remaining three stereo pairs are
viewing left, right, and upwards, respectively. Additionally,
the head of EELS incorporates an Inertial Measurement Unit
(IMU). An onboard computer is used to organize all the data
from these sensors and forward it to the motion planner.

III. NEO: EELS AUTONOMY ARCHITECTURE

A. Overview and Resilience to Exteroception Failures

Robust exteroceptive localization and mapping in un-
structured icy terrains is still an active area of research.
The presence of featureless terrains, fog, and plumes on
Enceladus can cause exteroceptive perception systems to fail,
resulting in jumps, drift, and, in some cases, complete loss
of localization output [12]. Closing high-frequency control
loops during such failure events can significantly affect
the stability and safety of the robot. However, completely
ignoring the exteroceptive estimates can result in significant
sub-optimality. The NEO architecture, shown in Fig. 3,
exploits the best of both worlds by closing the low-level high-
frequency control loops only on proprioceptive estimates and
by using the exteroceptive measurements for the higher-level

perception and planning loop that generates the desired state
for the proprioceptive layer. This hierarchical approach has
two advantages: 1) it allows the robot to continue operation in
”blind mode” in the event of exteroception failures to escape
the perceptually degraded region, raising the opportunity
to recover exteroception, and 2) it provides an ability to
leverage the exteroception information when available.

B. Prorioceptive Estimation and Control

1) Shape Control: We first describe a leader-follower gait
that uses the screws to propel EELS along a given reference
path. Each module of the EELS robot has one bend and
one twist actuator, which control its shape task space 2.
Controlling the shape at the joint level is difficult because of
the DoFs of the mechanism. Our leader-follower formulation
instead controls the shape of the EELS robot in the task
space 3.

The approach assumes that both ends of a module are
perfectly on the given reference path and that this module is
fixed. The controller first calculates the required bend- and
twist-joint positions that place the end of the module adjacent
to the fixed module onto the reference path by solving
the corresponding inverse kinematics problem explained in
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Fig. 4: The task-space shape control approach (Section III-B.1) assumes that one module is fixed on the reference path (a)
(blue line). The coordinate frame of that module is translated to the beginning of the next module and the (x, y, z) coordinates
of the end of that module are expressed in the coordinates of that frame (b). The desired twist angle, τ , is computed as
τ = arctan z/y and the coordinate frame is rotated by τ around its x axis (c). The desired bend angle, β, is then computed
as β = arctan

√
y2+z2/x, and the frame is rotated by β around the twist-adjusted z axis (d). This frame is then assumed to

be fixed and the procedure is repeated until the desired twist and bend angles are calculated for all modules.

Fig. 4.
Shape-based sidewinding gait: EELS is not limited to the

screw-based leader-follower gait. We have also integrated
gaits from prior snake-robot work that locomote primarily
using the shape actuators. This is done by offsetting adjacent
twist actuators by π

2 radians such that the axes of adjacent
bend actuators are orthogonal. The result is a nominal kine-
matic configuration similar to prior snake robot designs [14],
allowing us to execute gaits previously developed based on
the “serpenoid” equation. The serpenoid equation is given
as a function of module number n and time t, with seven
user-specified parameters:

θbend (n, t) =

{
βe +Aesin (ωsn+ ωtt) n = even
βo +Aosin (ωsn+ ωtt+ δ) n = odd

(1)
where βe and βo are constant offsets, Ae and Ao are
amplitudes, ws is the spatial frequency, wt is the temporal
frequency, and δ is the phase shift. As shown in [15], modi-
fying these parameters can generate a variety of locomoting
gaits. Testing on EELS thus far has primarily focused on a
“sidewinding” gait, with βe = βo = 0, and δ = π

4 .
2) Motion Control: Active-skin allows us to decouple the

shape and motion control problem for screw-based gaits.
The objective of the motion controller is to track a desired
velocity of the floating base ξ̇ (our implementation places
this at the tail of the robot) by modulating the speed of
the screw actuators. We show that this can be achieved
by solving a linear system of equations. We formulate the
problem by enforcing a no-slip constraint along the direction
perpendicular to the blade of the screws in contact with the
ground. Fig. 5 shows the coordinate frames of the contact
point of the screws. Let misj be the frame associated with
ith module’s jth screw. The no slip constraint for this screw
can be written as follows:

(vmisj )
y = 0 (2)

Fig. 5: Screw Frame {misj} is placed at the point of contact
with the terrain along the center of the length of the screw.

where vmisj ∈ se(3) = R6 is the velocity of contact frame
misj of the screws w.r.t. an inertial frame represented in the
contact frame. This velocity can be calculated as follows:

vmisj = Tmisj
m0

ξ̇︸ ︷︷ ︸
from motion

of floating base

+Tmisj
m0

Jmisj θ̇shape︸ ︷︷ ︸
from

motion of shape joints

+ωmisj ×Rmisj︸ ︷︷ ︸
from

motion of screw

(3)

Where TA
B : R6 → R6 is the adjoint operator used to trans-

form the velocities from frame B to A. Jmisj : RNshape →
R6 is the jacobian of contact frame and θ̇shape is a vector of
velocities of the shape actuators. Finally, ωmisj ∈ R6 is the
velocity from the rotation of the screws actuator represented
in the contact frame and Rmisj is the vector of the radius
of the screw represented in the contact frame.

Stacking all the no slip conditions together gives [3]:

A(θ, c)ξ̇ = B(θ, c)ωscrew (4)

Where ωscrew ∈ RNscrews is a vector of all screw joint
velocities. Finally, the desired screws velocities are obtained



Fig. 6: Contact estimation block diagram

using:

ωd
screw = B−1(θ, c)A(θ, c)ξ̇d (5)

The shape controller performs shape adjustments θ and gets
sufficient number of screws are in contact c to ensure B−1

exists. Note that unlike [3], our formulation doesn’t make
the planar assumption about the velocities i.e. ξ̇d ∈ se(3).

3) Proprioceptive Contact Estimation: Note that while the
motion control algorithm in eq. 5 computes velocities of
all the screws, only those screws that are in contact with
the surface can propel EELS. A screw is said to be in
contact if there is enough traction between the screw and
the surface to provide the reaction force for mobility. The
contact estimation algorithm estimates whether a screw is
in sufficient contact with the surface, as defined earlier. As
shown in Fig. 6, we fit a second-order to predict the nominal
current of the screw actuator under no contact conditions
using the motor currents and encoder data. The screw is
considered in contact if the measured screw motor current is
significantly higher than that predicted by the model.

4) Joint Control: Each of the twist, bend, and screw
actuators within a module are controlled via an Elmo MC
motor controller [16], which implements the CiA 402 motion
control standard [17]. A control computer, in the form of an
Intel NUC, interfaces with each of the motor controllers via
an EtherCAT bus; with the software stack for the ‘master’
node within the computer supplied by the JPL-developed
FastCAT library [18]. This EtherCAT interface affords low-
latency, synchronous communication with each node within
the network; at the time of writing this is set to 100Hz, but
has allowed operation in similar JPL systems of up to 2kHz
control rate.

C. Exteroceptive Planning and Perception

1) Path Planner: A major benefit of EELS compared
to traditional mobility platforms is its many modes of
locomotion which allow it to traverse various types of
challenging terrain. This increased versatility results from the
many degrees of freedom which in turn result in increased
complexity. The combination of many degrees of freedom
with the difficult-to-model interactions of the screws with
the environment makes designing a path-planning algorithm
that can fully leverage the versatility of EELS a challenging
problem that is not in the scope of this paper. Instead, this
section presents the algorithm that was used to plan paths
on the surface for the leader-follower gait shown in Fig. 3.

Focusing on the leader-follower gait for surface operations
greatly simplifies the path-planning problem for EELS. In-
stead of considering all degrees of freedom, the presented

planner only considers the path of the head (i.e., the leader)
and assumes that this path is followed by all other modules
(i.e., the followers). For the other modules to be able to
follow the head, the head must not move backward and
following the path must not require shape-joint angles that
exceed the joint limits of EELS.

These requirements are satisfied by using a sampling-
based planning algorithm, that samples states in SE(2) and
connects them with Dubins’ curves [19]. The planner uses
the traversability layer described in Section III-C to lift the
path to SE(3) using the terrain geometry and discard states
and connections that are considered unsafe. The optimization
objective used in the planner combines path length with
a cost from the traversability layer. It assigns each path,
σ : [0, 1] → SE(3), a cost that is computed as∫ l

0

1 + wtt(σp(s/l)) ds, (6)

where l is the length of the path, wt ≥ 0 is a user-
specified weight for the traversability term, t : R3 → [0, 1]
is a traversability cost, and σp : [0, 1] → R3 is the position
component of the SE(3) path.

This optimization objective allows using the length of
Dubins’ path between two states as an admissible cost heuris-
tic in the planning algorithm. This additional information
was leveraged by using Advanced Batch Informed Trees
(ABIT*) [20] as the planning algorithm with the implementa-
tion provided by the Open Motion Planning Library (OMPL
v1.5) [21], with all default parameters except that ABIT*
was configured to sample deterministic states based on the
Halton sequence [22]. Rejection sampling was used to ensure
that sampled states are in the informed set [23].

2) Path Tracker: The screw-control algorithm (Sec-
tion III-B.2) enables holonomic motion for the floating base
of the robot. The path-tracking controller takes advantage
of this property to make rigid-body corrections to stay on
the path while operating in leader-follower mode. The path-
tracking algorithm is illustrated in Fig. 3. The controller first
computes the desired position of the robot (red robot), as the
position on the reference path that is closest to the current
position of the robot (black robot). Next, both current and
desired robot module poses are represented as point clouds
(black and red circles). A rigid SE(3) transformation be-
tween current and desired is computed using the closed-form
solution to align point clouds with known correspondences
formulated in [24]. We use a proportional control law to
convert this SE(3) pose to a se(3) velocity that is sent to the
screw-control algorithm to correct for path-tracking errors.

3) Multi-sensor SLAM: The EELS robot is designed to
navigate perceptually degraded glacial terrain such as flat
expanses of ice and conduits with repeating tunnel-like
geometries. To navigate these challenging terrains, the EELS
autonomy system makes use of a multi-sensor Simultaneous
Localisation And Mapping (SLAM) solution called State
Estimation through Robust Perception in Extreme and Novel
Terrains (SERPENT)[25]. The SERPENT algorithm gains re-
siliency against perceptually-degraded environments through



an uncertainty-aware tightly-coupled fusion of LiDAR, IMU,
Stereo, and altimeter data.

4) Traversability Analysis: The path planner reasons
about obstacles using the Elevation Mapping and Traversabil-
ity Analysis approach described in [26] i.e. implemented
using [27]. Filtered LiDAR pointclouds and state estimates
from SERPENT are sent to the Elevation mapping module
to compute 2.5D elevation maps centered around the robot.
Slope- and step-hazard layers are then computed and added
to the map before sending to the planner.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of NEO by performing
two categories of experiments: i) a qualitative analysis of
proprioceptive estimation and controls layer from section III-
B on challenging field environments (ice, snow, and sand).
Specifically, we tested the leader-follower screw-based gait
and sidewinding shape-based gait with the exteroceptive
sensor head completely removed. ii) a quantitative analysis
of the exteroceptive and proprioceptive layers (Fig. 3) on the
synthetic ice terrain.

A. Field Demonstrations of Proprioception Layer

Field Locations All experiments were conducted in three
unique field locations: 1) Big Bear: (Fig. 7.a,f) consisted of
a mixture of consolidated and unconsolidated snowy terrain
with trenches longer than the robot and roughly the height
of the robot module. 2) Table Mountain: consisted of a steep
slope (up to 35 deg) of unconsolidated snow (Fig. 7.b), a
globally planar ice rink with local undulations and bumps
(Fig. 7.c), and a shallow slope with repeating undulations up
to 0.75 m high. 3) Mars yard: testing area consisted of both
consolidated and unconsolidated sand (Fig. 7.d, 7.e).

Qualitative Analysis: We evaluate the performance of
the sidewinding and leader-follower gait’s ability to make
forward progress in these challenging terrains through a
qualitative analysis of the videos that generated the timelapse
imagery in Fig. 7. We look at two primary metrics, listed in
Table I, to evaluate forward locomotion: distance traversed,
and average speed. In Experiments 1-4, we evaluate the
performance of the leader-follower gait’s ability to make
forward progress in various undulating terrain types. In
Experiments 5 and 6, we evaluate the performance of the
sidewinding gait’s ability to overcome terrain: a robot-sized
trench at table mountain in Experiment 5, and sand in the
Mars Yard in Experiment 6. This relatively slow speed is due
to the robot becoming briefly stuck in the trench until it was
able to lift itself out. These experiments highlight the EELS
robot’s ability to recover from stuck situations in difficult
real-world terrains using shape actuators.

B. Quantitative Evaluation of Exteroceptive + Propriocep-
tive Layers on Synthetic Ice

Testing Environment: The experiments were conducted
in a laboratory environment with planar simulated synthetic
ice panels, which are used by ice skaters. In tests 1-5, the
leader-follower gait was used to follow a fixed, obstacle-free

path from a fixed start and goal location. In tests 6-9, the
leader-follower gait was used to navigate to a waypoint on
the other side of an obstacle field, with the ability to replan
its path if new obstacles emerge in the map. In test 10, the
leader-follower gait with no exteroceptive feedback was used
to navigate to a waypoint on the other side of the obstacle
field. An overview of these tests can be seen in Fig. 8.

Quantitative Analysis: Results of the leader-follower
gaits for both experiments can be found in Table II. For all
experiments we show the following metrics: i) the distance
the rover drove to arrive at the goal, ii) the number of
autonomous path replans that occurred, iii) the number of
manual interventions required, and iv) the mean, std. dev.,
and max path-tracking error of each module’s position to
the path. In experiments 1-5 where there were no obstacles
in the scene, the rover’s mean path tracking error stayed
below 6.7 cm and no manual interventions were required
to arrive at the goal. In experiments 6-10 while avoiding
obstacles, the rover’s mean path tracking error stayed below
2.9 cm, with manual interventions ranging from zero to three
per run. In experiments, 6 and 8, the rover successfully
drove from the start to the goal while avoiding obstacles
with no manual interventions required to avoid obstacles.
Experiment 7 required three manual interventions to arrive
at the goal. The first was due to a controller bug that caused
the front half of the robot to straighten out. This has since
been fixed. The latter two interventions were due to close
proximity to obstacles. This was due to a lack of robot
inflation in the obstacle map, causing the planner to ”hug”
corners around obstacles to optimize the path, this has also
been fixed. Experiment 9 required 1 manual intervention to
clear the traversability map due to a false-positive obstacle
blocking the way. In experiment 10, the robot is navigating
to the goal without correction from the path tracking loop.
In this open-loop mode, the robot quickly deviates into
obstacles, requiring two manual interventions until ultimately
colliding with an obstacle. This comparison shows the utility
of exteroception to reduce path tracking errors but also
highlights the system’s ability to make progress purely on
proprioception.

V. CONCLUSIONS AND LESSONS LEARNED

A. Lessons Learned

• As discussed in eq. 5, the controllability of the motion
controller depends on the contact state and robot shape.
Experiments at Big Bear showed significant degradation
in tracking performance of the motion controller when
the robot was close to pencil configuration with non-
uniform distribution of screw contacts. Implementing an
active compliance controller to ensure a more uniform
distribution of normal reaction force or avoiding shapes
close to a pencil could mitigate this issue.

• Another compelling alternative solution could be to
optimize the screw geometric parameters, which can
be a pretty high-dimensional problem. A couple of
specific trends are evident from the qualitative analysis
of the above experiments: i) increase in screw pitch



Test
No.

Field Location Terrain Geometry Material Gait Distance
Traversed
(m)

Time
(s)

Avg.
Speed
(cm/s)

1 Table Mountain 30◦ slope Unconsolidated Snow Leader Follower 5.3 103 5.2
2 Table Mountain Flat and rough, with bumps Hard Ice Leader Follower 5.6 150 3.7
3 Table Mountain Undulating Terrain Consolidated Snow Leader Follower 4.0 53 7.6
4 Mars Yard 20◦ slope Unconsolidated Sand Leader Follower 1.4 64 2.2
5 Mars Yard Flat terrain with small rocks Consolidated Sand Sidewinding 1.0 32 3.1
6 Big Bear Trench Unconsolidated Snow Sidewinding 2.5 249 1.0

TABLE I: Field demonstrations of proprioceptive gaits.

(a) Test 1: Leader Follower, Table Mountain Slope (b) Test 2: Leader Follower, Table Mountain Ice

(c) Test 3: Leader Follower Table Mountain Undulations (d) Test 4: Leader Follower Mars Yard Sand

(e) Test 5: Sidewinding, Mars Yard Sand (f) Test 6: Sidewinding, Big Bear Trench

Fig. 7: Timelapse imagery of the field experiments of the proprioceptive gaits

No. Ext. +
Prop. Obs. Dist.

(m)
Re-

plans
Inter-

ventions
Error (m)

Mean Std. Max
1 Y N 5.32 0 0 0.051 0.035 0.140
2 Y N 5.31 0 0 0.067 0.033 0.144
3 Y N 5.64 0 0 0.060 0.042 0.186
4 Y N 5.45 0 0 0.019 0.016 0.160
5 Y N 5.31 0 0 0.054 0.036 0.148
6 Y Y 7.14 1 0 0.027 0.031 0.300
7 Y Y 5.18 5 3 0.024 0.030 0.142
8 Y Y 7.91 7 0 0.024 0.025 0.290
9 Y Y 5.58 4 1 0.029 0.030 0.300

10 N Y 6.70 0 2 N/A N/A N/A

TABLE II: Indoor demonstrations of autonomous navigation
with obstacles using exteroceptive gaits on synthetic ice.

presents greater traction on steep slopes, but decreased
control authority to move sideways, and ii) increase in
screw length presents greater traction, specifically in
unconsolidated media.

• Screws don’t work for extremely unconsolidated mate-
rial (Fig. 7 Test 6). This is because the no-slip constraint
along the direction perpendicular to the screws doesn’t
hold. This makes shape-based gaits the ideal choice for
such terrains. Also, exploring a screw design that acts
more like propellers (e.g. larger radius and thread depth)

Fig. 8: Experimental setup for exteroceptive gaits experi-
ments 6-10. Autonomy algorithm visualization is shown in
top left.

could be another interesting alternative.
• Shape-based gaits make it difficult to stabilize and

ensure the safety of the sensor head, warranting a need
for gaits that simultaneously stabilize the head while
complying with the structure of the terrain.

B. Conclusions

This paper presented a large-scale multi-model snake-
robot mobility system for extreme icy terrain and its NEO



Fig. 9: Planned vs. traversed path (bottom) and tracking error
over time (top) for experiment 1

autonomy architecture. We demonstrated the system’s ability
to traverse icy, snowy, and sandy environments using both
shape- and screw-driven mobility modes with proprioception
only. Quantitative experiments showed that exteroceptive
closed-loop tracking with screws-based gaits can be achieved
with < 5cm error. This work is a small step towards
the development of a platform that is capable of reliable
autonomous navigation in extreme ice-world environments
to enable the next era of space exploration to discover the
origin of life.
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