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Abstract

Previous missions have imaged active plumes at Io and Enceladus, as well
as outgassing by cometary nuclei. It is often difficult to predict where and
when these transient events will occur, so characterizing them requires col-
lecting long image sequences with many redundant frames. This demands a
prohibitive fraction of the spacecraft’s limited cache and bandwidth, and pre-
cludes sustained surveys of plume activity. Onboard processing could enable
long-term plume monitoring campaigns with high imaging rates. Specifically,
spacecraft can analyze image sequences onboard to identify plumes, with
events triggering preferential storage, prioritized transmission, or followup
with coincident observations by Thermal or Visible Near-Infrared imagers.
We propose a detection method based on horizon identification with Random
Sample Consensus (RANSAC). The approach evidences reliable performance
on a test set of plume images from Enceladus and Io.
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Previous missions have imaged active volcanic plumes at Io and Ence-
ladus, as well as outgassing by cometary nuclei. These phenomena provide
key constraints on subsurface processes and composition [1]. To date, over 70
distinct images containing plumes have been collected. In the case of Io alone,
Galileo NIMS images of the Jovian system identified 37 hot spots that could
be centers of volcanic activity associated with plumes [2]. However, plumes
are difficult to detect since one cannot predict their precise timing or location
in advance. The existing record consists mainly of disconnected events. Ex-
ceptions include a 10 hour sequence from the Voyager 2 observations of Io [3]
which imaged multiple plumes on a trajectory through the Jovian system.
Currently such sequences yield many redundant or uninformative frames.
They demand a prohibitive fraction of the spacecraft’s limited cache and
bandwidth, which discourages long-term monitoring of plume activity.

This work investigates an onboard processing technique to enable sus-
tained plume monitoring campaigns. A spacecraft in tour mode could collect
surplus images at a high rate, analyze them onboard to detect plumes, and
save the fraction containing key events for downlink. This could change the
nature of the plume catalog. A sustained survey would provide a temporally-
continuous record of plume activity, giving a new dimension to the previous
dataset and permitting time series analysis to constrain surface and subsur-
face dynamics. Plume monitoring is especially appropriate for early mission
or tour phases when narrow-field cameras could otherwise be idle. It could
also be used in small bodies exploration, to characterize outgassing activity
of cometary nuclei during rendezvous [4].

Onboard image processing has been used in various terrestrial and plane-
tary missions. Similar technologies have been demonstrated for change detec-
tion on the WATCH system aboard the Mars Exploration Rovers [5]. Here,
automated processing identified images containing dust devils. Candidate
image regions were enclosed in subframe images for preferential transmis-
sion. Similar selective downlink strategies could enable plume surveys, with
event detections triggering preferential storage and transmission of coincident
observations by Thermal or Visible Near-Infrared imagers.

In prior research, Bue et al. [6] demonstrate an efficient detection al-
gorithm based on finding ejected material beyond the planetary limb. We
expand on their work with a new method that evidences strong performance
on a test set of images from Enceladus and Io. We begin by describing the
approach and then evaluate its performance on a set of full-disk images from
Galileo and Cassini spacecraft. We briefly discuss the coverage and sensitiv-
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ity offered by horizon-based plume detectors.

1. Approach

Desirable characteristics of a plume detection algorithm include: sensi-
tivity, the ability to find faint plumes no more than a few pixels in height;
robustness to noise that is pervasive in high-radiation environments such as
Jupiter; and graceful degradation such that failure modes do not result in
unnecessary false detections. Sensitivity over large areas of the planetary
surface is desirable for accumulating statistics on total plume activity. How-
ever, it is equally important that performance be consistent over the sensitive
areas.

With these factors in mind we propose an algorithm based on identifying
the planetary horizon as in Bue et al. [6]. This approach can detect ejected
plume material that extends beyond the sunlit limb. We assume that any
significant lens distortion or off-axis effects have been corrected prior to run-
ning the algorithm. The basic method has three sequential stages. The first
step uses a classical edge detector to find pixels on boundary between the
planetary disk and the dark background. Second, we fit an ellipse to match
this horizon. Finally, if an ellipse is found we identify illuminated plume ma-
terial by analyzing pixel intensities in an annular region around the planetary
limb.

1.1. Edge Detection

We first find candidate horizon pixels with the edge detection algorithm of
Canny [7]. We favor the Canny algorithm because it is well studied and offers
robust performance on our test set. The Canny detector initially smoothes
the image with a low-pass operator to reduce noise. It then convolves a bidi-
rectional Sobel operator to find pixels that have high spatial derivatives. A
subsequent step known as nonmaximal suppression forces the final detected
edge to be a narrow line. The algorithm follows the resulting traces along
their dominant directions and suppresses any pixel not at the maximum.
Finally, it performs a threshold operation to find the final detected edges.
It accounts for edges fluctuating just over or under threshold by using a
hysteresis method; it suppresses borderline weak detections that are not sup-
ported by neighboring strong edge pixels. The result is a set of edge pixels
E = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
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Figure 1: Edge detection with the Canny edge detector. The horizon contour is the
strongest edge in the scene, permitting a strict detection threshold. False “noise pixels”
corresponding to surface features or imaging artifacts are expected at this stage. The data
product is Galileo 3178r, Image credit: NASA/JPL/University of Arizona.

An example of edge detection input and output appears in the Galileo
image of Io shown in Figure 1. It is not yet necessary to detect the entire
planetary disk or to exclude all other features. For example, the edges in
Figure 1 include several high-contrast surface features. Additionally, the unlit
parts of the disk are undetected. Neither issue impacts performance. It is
only important at this stage that a significant fraction of the limb is sampled
to constrain horizon location and curvature, and that the limb comprises
a significant fraction of the detected edge pixels. This is not difficult to
achieve in practice since the sunlit horizon generally has the highest contrast
of all the linear features in the scene. We use strict hysteresis thresholds
of 0.5 and 0.1 for strong and weak edges respectively. This combination
offers consistent performance across all contrast and illumination levels of
the images considered in this study.

1.2. Ellipse Fitting

The next stage finds the ellipse that intersects as many edge pixels as
possible. We presume the horizon line has the form of a conic F (x, a) where
x = [x2, xy, y2, x, y, 1] and a = [a, b, c, d, e, f ]. we represent the conic using
the second-order polynomial [8]:

F (a,x) = axT = 0

ax2 + bxy + cy2 + dx+ ey = −f (1)
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There are five degrees of freedom in the expression since the entire vector
a can be rescaled without changing the conic. In this work, we use the
constraint f = −1 following Rosin [9], and solve the resulting set of linear
equations with five candidate horizon points to define a single unique contour.
For the data matrix given by

X =

 x21, x1y1, y
2
1, x1, y1

. . .
x25, x5y5, y

2
5, x5, y5

 (2)

the optimal conic is

a = (XTX)−1X (−I)T (3)

Here (−I)T signifies a column vector of six −1 values. We count only true
ellipses, categorically rejecting all fits corresponding to parabola (for which
ac = 0) and hyperbola (for which ac < 0).

We search for the best ellipse using the Random Sample Consensus (RANSAC)
method of Fischler and Bolles [10]. RANSAC is a robust estimator for fit-
ting parametric models in the presence of outliers; it chooses random subsets
of edge points and computes a closed-form fit for each. In our case, we
choose subsets of size five and find the optimal interpolating ellipse using
the closed-form solution. The RANSAC algorithm is the slowest stage of the
plume detection procedure but one can trade some detection sensitivity for
additional speed by limiting the number of random attempts. The actual
number required varies by image quality. For example, consider a very poor
quality image where only 25% of the edge points lie on the horizon. All five
random pixels are horizon with probability 0.255 ≈ 0.097%. However, with
104 random subsets the probability is greater than 99.99% that this will hap-
pen at least once. Designers can significantly improve speed by prefiltering
the edge list with ephemeris information or with prior fits from earlier images
in a sequence.

We use a series of simple rules to score the candidate ellipses. We au-
tomatically reject ellipses whose shape alone suggests they are obviously in-
correct. These include ellipses that are greater than the size of the image or
whose aspect ratio exceeds a user threshold. We use a value of 1.05 for our
tests, which requires that valid ellipses be nearly circular. A large number
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of candidate horizons may still survive this filter. We find the best horizon
by counting the number of edge points that are located within 1 pixel of the
ellipse. One can require a certain minimum fraction of edge pixels to fall
within this boundary. This stage can easily recognize when an ellipse is non-
sensical or the fit has failed, since in these cases a significant portion of the
image’s edges or bright pixels will lie outside the horizon. For each candidate
we compute the geometric distance from every edge point to the ellipse using
the algorithm of Eberly [11]. This is an iterative approach based on Newton’s
method. If faster approximations are required one can substitute the closed
form algebraic error F (x, a) applied to normalized data. The total count is
used to select the best elliptical shape which is then taken to be the horizon.
Figure 2 shows several examples (large green ellipsoids).

1.3. Plume Detection

Having identified the planetary contour, we search an annular region be-
yond this horizon to find bright pixels corresponding to ejected material. We
look for plumes in pixels at altitudes up to a user defined range of the limb
(in this work we use altitudes up to 10% of the planetary diameter). The
set of all pixels in this annular region are taken to be the “background.”
The mean and standard deviation of these pixels form an estimate of the
noise distribution in the vicinity of the planetary horizon. Any pixels with
intensity greater than τ standard deviations above the mean are grouped into
contiguous features. For this work, we favor τ = 5.0 as our pixel intensity
threshold; more lenient values would result in higher detection rates at the
possible cost of false positive detections.

A final rule-based filtering step applies a series of simple tests on size
and aspect ratio. Valid detections must be at least 5 pixels in area, and
no larger along its longest dimension than a single planetary radius. We
also filter detections touching the image borders since these are also likely to
be artifacts. These tests are seemingly obvious but help to exclude several
imaging artifacts, like those noise and stripe features of Figure 2 Lower Left,
that could otherwise trigger a detection. Any remaining regions are estimated
as plumes, and their centroids taken as a list of detection locations D =
{(dxi, dyi)}ni=1, n >= 0.

Figure 2 shows an example of typical detections using this method. A
green line follows the best-fit ellipse, and a plus shows the size and location
of each detected plume. Image 3178r illustrates a small plume on the limb
of Io. Image PIA09761 is shown as an example Enceladus detection, but
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Figure 2: Typical detection results. The Green ellipsoids signify the best-fitting ellipse,
and a plus sign shows the location and size of each detection. Clockwise from upper left:
Galileo 3178r; PIA09761 shows an Enceladus scene (excluded from performance analysis);
Voyager C2066857 shows multiple simultaneous plumes, with the smallest less than 3 pixels
in height; Galileo 5147r evidences robust detection despite high noise and imaging arti-
facts. Image credit: NASA/JPL/University of Arizona (Galileo), NASA/JPL (Voyager),
NASA/JPL/Space Science Institute (Cassini).
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Figure 3: Typical failure modes. Left: Cassini N00028218, where glare and low SNR
causes an incorrect disk fit. Right: Cassini W00065133, a widefield image with insufficient
pixels to identify the limb. Neither failure results in a false detection. Image Credit:
NASA/JPL/Space Science Institute.

its contrast is improved by manual postprocessing so we exclude it from our
performance analysis. Image C2066854 contains multiple plumes which are
successfully detected as independent events. Image 5147r succeeds despite
significant noise and image artifacts.

Figure 3 shows typical failure cases. Errors in estimating the planetary
disk can occur if image quality is poor or the limb consists of few pixels.
Poorly-illuminated plumes occasionally fail to exceed the 5σ detection thresh-
old. In neither case does the failure generate a “false positive” detection. The
system could still recover and detect the plume on a subsequent image of the
sequence.

2. Spatial Coverage

The proposed detection approach is only sensitive to a subset of the po-
tential plume activity on the surface. Detected plumes must extend beyond
the planetary horizon, meaning they must reach a minimum altitude be-
fore becoming visible. This section characterizes the fractional coverage of
the planetary surface over which detection is possible, assuming that plumes
must achieve a minimum apparent pixel distance beyond the image of the
horizon. We derive the projected pixel altitude of the plume from known pa-
rameters such as focal length, planetary diameter, and the physical altitudes
of plume and spacecraft.
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We assume that the camera has been corrected for radial distortion so
that we can treat it as a true linear device [12]. Without loss of generality
we consider a single linear camera viewing a 2D scene. Figure 4 shows a
schematic diagram of the camera and scene geometry. Point p0 corresponds
to the camera center. It is located at a distance d from the planetary surface
and directly facing disk so that the camera z (depth) axis points directly from
the camera center toward the planetary center. We represent the planet itself
a circle for simplicity. A plume of altitude a and offset from centerline by an
angle of θ1 extends to a point p1 = (p1x, p1z) where:

p1x = (r + a) sin θ1 (4)

p1z = r + d− (r + a) cos θ1 (5)

Its projection in the image plane for a focal length f is inversely proportional
to the range [13]:

u1 = f
p1x
p1z

= f
(r + a)sinθ1

r + d− (r + a)cosθ1
(6)

The visible horizon corresponds to a point on the planetary surface with the
largest-magnitude image projection. We have labeled this point p2. It lies
on the tangent line from the camera center to the surface, so that its offset
angle is given by θ2 = acos(r/(r + d)). These expressions allow us to relate
pixel height in the image, spacecraft camera resolutions, focal lengths, and
altitude to the height of the smallest detectable plume.

We model an example based on the Voyager 2 flyby of Io on June 1979
which included a 10-hour “volcano watch” image sequence. The Voyager
spacecraft approached to within about 106 km of the moon, and imaged sev-
eral small plumes on the surface. For this sequence Io’s apparent radius was
approximately 170 pixels. [3] estimate the detected plumes to be approxi-
mately 70km high. This is consistent with our model, assuming the known
Io planetary diameter and a range of 106km. Figure 5 shows the apparent
pixel altitude of hypothetical plumes that are 50km and 100km as a function
of their longitudinal offset. In test analysis of the Io data the algorithm suc-
cessfully detected plumes down to approximately 2 pixels in altitude. This
suggests that for plumes of 50km and 100km height, an automated moni-
toring campaign using a similar trajectory and camera should be sensitive
across about 15 and 30 degrees of longitude, respectively.
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Figure 4: The projection of a plume reaching altitude a above the planet is determined
by the relative sizes of plume and planet, as well as the distance and focal length of the
camera. Sensitivity is determined by the apparent altitude in the image, that is, the
difference in image projections between the plume tip p1 and the planetary surface at the
tangent line p2.
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Figure 5: Apparent plume height in the image (in pixels) as a function of longitudinal
offset on the planet’s surface. Unless noted otherwise, these curves use the geometry
of Voyager 2’s Io observations on June 1979. The proposed algorithm regularly detects
plumes at heights of 2-3 pixels in test data, suggesting sensitivity over at least 15 degrees
of planetary longitude.

The solid line shows the projection that could be achieved with a closer
approach to 2 × 105km range. Note that the geometry of close approaches
favors plumes on the moon’s camera-facing side, and this curve is shifted
slightly to the left of the 90-degree offset.

Another factor affecting detectability (which we will not address here) is
the apparent brightness of the plume material. This hinges on orbit-specific
illumination conditions as well as unconstrained optical properties of the
plume itself and the detector sensitivity of the instrument used.

3. Evaluation

We evaluated the retrieval and false positive rates of the plume detection
algorithm on 19 sequences of single-band images of Io and Enceladus. The
images were taken by Voyager, Galileo and Cassini spacecraft; each sequence
contained one or more raw images that had been acquired in close succession.
We limit our test set to images containing at least half of the planetary
disk. A tour phase monitoring campaign would likely favor full-disk imagery
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Sequence Target Images Plume Alt. (px) Detected #Detections Notes

0085r Io 1 A 1 N 0/1
B 3 Y 1/1

2445r Io 1 - - - -
3178r Io 1 A 10 Y 1/1
3200r Io 3 A 9 Y 3/3
3485r Io 1 A 8 Y 1/1
4204r Io 2 - - - -
5045r-5123r Io 3 A 9 Y 3/3
5147 Io 1 A 14 Y 1/1 Artifacts
5407 Io 1 A 4 Y 1/1
554x Io 2 A 14 Y 2/2 Artifacts
6300r Io 1 - - - - Artifacts
8XXXr Io 3 - - - - Plume ambiguous
C2064X Io 2 - - - -
C2065X Io 2 - - - -
C2066X Io 18 A 3 Y 2/18

B 2 Y 2/18
N00015-N00016X Enc 3 A 6 Y 1/3 Faint plume
N148733X Enc 19 A >20 N 0/2 Low contrast
W0065133 Enc 2 A 7 N 0/2 r < 20px
W0065148 Enc 2 A 5 N 0/2 Artifacts

B 5 N 0/2
C 5 N 0/2

Table 1: Performance results. Columns show (Left to Right): a sequence identifier; target
planetary body; the number of images in the sequence; a character identifying the plume
event (there may be more than one physical plume per image sequence); the approximate
altitude of the plume in pixels above the horizon based on visual inspection of the images;
whether the plume was detected in at least one image; the number of images in which the
plume was detected; and specific notes about image quality. There were no false detections
in any of the 68 images.

to provide sensitivity across the entire limb, and a long horizon contour
provides the best possible constraint on the position and curvature. The
image set includes representatives from the Galileo SSI instrument, Voyager
2 and Cassini narrow- and wide-angle cameras. Many sequences consist of
single plume events, but there are also longer sequences such as the C2066X
series or the N148733X images of Enceladus. We ran the algorithm without
alteration on all images using identical parameters.

Table 1 gives performance details. Several images in the test set did not
contain plumes; we included these to test reliability against false positive
detections. In fact, no false positives were generated with this dataset. All
failures were “safe” in that missed plumes or incorrect horizon fits resulted in
obvious failure conditions rather than mistaken detections. Of all sequences
containing plumes, 76.9% generated at least one detection. Those sequences
for which detection failed entirely generally suffered from artifacts or poor
image quality (Figure 3). 11 distinct plumes were detected out of 17 total.
These tests suggest that image quality and the pixel intensity of the plumes
are primary constraints on plume detection performance.

12



0	


5	


10	


15	


20	


25	


30	


3	
 4	
 5	
 6	
 7	
 8	


N
um

be
r o

f e
ve

nt
s	


SNR detection threshold	


Plumes Detected	

False Positives	


Figure 6: The fraction of plumes detected as a function of the SNR threshold τ . The tests
in this work use τ = 5.0 but more lenient settings may yield higher retrieval rates.

We found performance changed little with respect to edge detection thresh-
olds or ellipse-scoring criteria. These parameters deal with horizon identifi-
cation, a task that is straightforward for images with good contrast. After
identifying the horizon, distinguishing weak plume features from image noise
and planet glow is more challenging. This makes the detection intensity
threshold the free parameter most affecting performance. Designers could
tune this threshold to achieve desired system behavior. Figure 6 shows how
accuracy and retrieval rates vary for different intensity thresholds; two curves
indicate the total number of distinct plume events detected and the number
of false positives returned. Due to the expense of transmitting data from
spacecraft in an outer-planets mission we assume designers would prefer a
low false positive rate. For this reason we favor a strict value of τ = 5.0.
However, if scientists wished to capture fainter events they could reduce this
threshold at the risk of incurring false detections.
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Figure 7: Left: Horizon models need not be ellipsoidal. Left: Nucleus of comet Hartley
2 as seen from the EPOXI flyby [4]. Center: Edge detection result. Right: Horizon
identification using a convex hull, and subsequent detections of plume activity. Image
credit: NASA/JPL-Caltech/UMD.

4. Discussion

We have described a robust system for detection of ejected plumes that
could enable monitoring campaigns during characterization, flybys, and long
tour phase operations when spacecraft telescopic imagers would otherwise
be idle. Our basic strategy is to find the extent of the target body in the
image and then mask it to reveal solar-illuminated plume material. These
horizon-based approaches could provide a temporally continuous picture of
plume activity, with significant benefit for our understanding of planetary
volcanic processes. They are capable of detecting most plumes and return
no false detections on our test set of plume images. A spacecraft could in-
corporate onboard ephemeris information for further improvements in both
efficiency and detection accuracy. Higher-resolution cameras, that could si-
multaneously localize small features while imaging a large portion of the
planetary disk, could also improve sensitivity to the smallest plumes. The
horizon masking approach requires the ejected material to lie near the sunlit
limb but it is possible to characterize the sensitive areas. Thus even limited
monitoring coverage can still constrain plume activity rates. The algorithm
should apply with very few changes to “partial disk” images where the hori-
zon is nearly flat.

Plume detection software could be incorporated into a mission at little
extra mass or power cost. The computation involved is generally tractable
for spacecraft processors. The primary factors influencing computational
cost are the number of RANSAC iterations and the edge contrast threshold
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(controlling the number of edge points used by RANSAC). These values can
be changed as needed to achieve the optimal sensitivity/time balance for
specific operational requirements. Note that there may be other constraints
to consider apart from computational resources, such as the limited lifetime
of mechanical items such as doors and camera shutters.

The general horizon-masking approach could also support monitoring of
outgassing from cometary nuclei. Simple variants to the horizon model can
accommodate these non-ellipsoidal targets. Figure 7 shows one example from
the EPOXI flyby of Comet Hartley 2 [4]. Edge detection finds surface con-
tours as before, but instead of fitting an ellipse we use the enclosing polygon
of edge points to estimate a conservative horizon. It is straightforward to
compute these convex hull polygons [14]. This algorithm variant does not
require RANSAC estimation and the resulting surface mask is effective for
finding diffuse plumes. Future missions will augment the catalog of small
bodies plume images, permitting more thorough performance studies for this
class of targets.
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