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Abstract

Mapping target bodies by imaging as much of the surface as
possible is a common scientific goal for space missions where
a spacecraft is orbitting a body, such as a comet, asteroid,
or planet. An observation schedule to achieve the mapping
goal is generally generated on the ground and then uploaded
to the spacecraft. However, without some re-planning capa-
bility onboard, opportunities may be lost due to observation
failures or unexpected changes in resource availability. The
computational and memory restrictions for spacecraft make it
difficult to perform the geometric reasoning and calculations
required to select observations to achieve the mapping goal
onboard, meaning that any re-planning capabilities are also
limited. In this paper we present a method for robust map-
ping by re-planning observations onboard using pre-compiled
backup observations. The nominal schedule and backup ob-
servations are generated using the Compressed Large-scale
Activity Scheduler and Planner, which are then translated into
a Task Network and goal definitions. These can be used by
MEXEC, an onboard planning and execution software. We
demonstrate our method using a hypothetical scenario of a
spacecraft orbiting a comet.

Introduction
Designing operations to achieve scientific objectives for
space missions requires a careful balance between meeting
observation requirements and satisfying onboard resource
constraints. Automated scheduling tools that model space-
craft state against scientific observation opportunities can
be used to generate schedules that optimize scientific ob-
jectives while respecting spacecraft trajectory and resource
constraints. For orbiting missions, one common objective is
to map a target body by covering as much of the surface as
possible with imaging observations. The geometric reason-
ing needed to calculate the coverage achieved by the map-
ping observations and to model resource usage against the
spacecraft state can require a significant amount of compu-
tational power and memory. Often, this type of scheduling
cannot be done on embedded hardware with limited compu-
tational resources.

A limiting factor for how much coverage can be achieved
is the data volume available onboard for scientific data. If the
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state of the data volume is not accurate when the schedule is
produced, science opportunities could be missed or dropped.
Furthermore, if an observation fails, re-planning an attempt
to map the missed observation using geometric reasoning is
unlikely due to the aforementioned computational and mem-
ory limitations available for planning onboard.

To overcome these challenges, we propose an approach
for robust mapping by using pre-compiled backup observa-
tions to re-schedule onboard. A baseline schedule, as well as
backup observations to be used onboard are generated on the
ground. To generate the baseline schedule and backup obser-
vations, we use an adaptation of the Compressed Large-scale
Activity Scheduler and Planner (CLASP) (Knight and Chien
2006; Rabideau et al. 2010). CLASP uses a variety of mod-
els to define a scenario, including: geometric models of the
spacecraft and its instruments, such as the field of view and
position of the instrument on the spacecraft; resource con-
straints, such as data volume and power available onboard
and usage by instruments; and trajectory and orientation of
the spacecraft and target body. It also takes definitions of sci-
ence goals, which includes a priority as well as instrument
and geometric constraints.

To represent the onboard planner and controller, we use
MEXEC (Verma et al. 2017). MEXEC uses spacecraft state
updates and projections to schedule and execute tasks. Tasks
are uploaded to MEXEC and represent an executable unit in
a plan that also contain information about constraints and
model behavior. By maintaining the contraints and effects
onboard in the tasks, both the controller and planner can re-
act to unexpected onboard events.

To demonstrate this approach, we use a model based on
the DAWN (Russell and Raymond 2011) spacecraft with
one of its framing cameras orbiting a miniature version of
the comet Finlay as a fictional mapping scenario.

This paper is organized as follows. We begin by setting
up a motivating scenario, followed by a description of the
CLASP algorithm and a summary of MEXEC. We then ex-
plain our approach for robust mapping and show experimen-
tal results, followed by related work, future work, and a con-
clusion.

Motivating Scenario
We have constructed an example scenerio where the scien-
tific objective is for an orbiting spacecraft to map as much of



a comet target body as possible. The images must be taken
with a solar incidence angle between 0 and 90 degrees (i.e.,
during the day). For the spacecraft, we use a model based on
DAWN, taking its framing camera, with a cross track look
angle of 2.735 degrees, as the sole instrument used for map-
ping and assume it is always nadir pointed. We then use a
modified version of the comet 15P/Finlay as the target body.
The model for Finlay was adjusted to set the radius to 25 me-
ters in order to create very fast orbits for quicker simulations.
This results in a polar orbit with a period of approximately
2.5 minutes. The spacecraft is limited to 70 Gibits of mem-
ory and the data rate for the framing camera is set to 0.17
Gibits per second. We focus on a mapping scenario between
downlinks, so we do not model the downlink rate. Without
data volume restrictions, it would take approximately 306
orbits to map the entire surface.

This mimics realistic scenarios, such as the recent
ROSETTA mission. The ROSETTA mission, an interna-
tional collaboration among the European Space Agency
(ESA), the National Aeronautics and Space Administration
(NASA), and some European national space agencies, high-
lighted the importance of studying comets as a means to bet-
ter understand the origins of our solar system (Glassmeier et
al. 2007). Part of the investigation included characterization
of the surface using the Optical, Spectroscopic, and Infrared
Remote Imaging System (OSIRIS), which mapped the sur-
face with different filters (El-Maarry et al. 2015).

CLASP
The presented scenario was converted into spacecraft, in-
strument, and target body models as well as science goals
that could be ingested into CLASP.

Spacecraft, Instrument, and Body Models
The spacecraft, instruments, and bodies are modeled through
the use of spice kernels and Keyhole Markup Language
(KML) files. Spice kernels define the spacecraft frames and
trajectory; any target body’s size, frames, trajectory, and ori-
entation; as well as instrument field of view and position
relative to the spacecraft. A KML file defines which instru-
ments are to be used in the scenario, their modes, their cross
track look angles, and data rates.

Science Campaigns
A request for scientific observations is specified in a cam-
paign written in KML. A campaign is defined by regions on
a body to be observed, which instruments and their modes
are to be used, geometric constraints (e.g., illumination or
distance), and a priority. Our scenario is interested in global
coverage, therefore we defined regions that cover the entire
body, with 6 regions evenly distributed around the equator
going from ±30 degrees latitude, and 4 evenly spaced at
each pole extending from the equatorial panels to ±88 de-
grees latitude (as appropriate for the pole).

Algorithm
The CLASP algorithm uses all of the aforementioned inputs
as well as a gridded representation of the surface to calcu-
late and select observations. The gridded representation of

the surface is generated by selecting a number of grid points
that should go around the equator. This defines the separa-
tion between grid points, D. Lines are created at constant
latitudes such that the lines are D apart and the spacing be-
tween gridpoints in the line are also spaced at D intervals.
For our scenarios, we use 800 gridpoints around the equator,
which results in approximately 200,000 gridpoints.

After the set of gridpoints have been established, CLASP
computes visibility swaths per instrument based on the tra-
jectory of the spacecraft, the field of view of the instruments,
and the position and orientation of the target body. CLASP
uses the CSPICE Toolkit provided by the Navigation and
Ancillary Information Facility (NAIF) (Acton Jr 1996; Ac-
ton et al. 2018) to calculate the visibility swaths. With these
visibility swaths, CLASP calculates the intersection with
campaigns based on gridpoints that are within the polygons
for both the instrument swaths and the campaign regions of
interest, resulting in potential observation records. A poten-
tial observation record is created for each unique instrument
mode that satisfies an observation. In other words, an obser-
vation record is created at a gridpoint in a visibility swath
if the visibility of the instrument meets all of the constraints
for a campaign at that point. Multiple observation records
can be generated at the same point if they are for different
instruments. If the same instrument is used to satisfy multi-
ple campaigns at the same point, only one potential obser-
vation record is created. The observation record inherits the
priority for the highest priority campaign it satisfies.

CLASP then uses Squeaky Wheel Optimization (SWO)
with a priority-based, greedy scheduler to schedule potential
observation records. SWO operates in two loops: the outer
loop, which adjusts the priorities of the potential observation
records that are inputs to the scheduler, which makes up the
inner loop. The scheduler loops through each observation
record in priority order, attempting to add each observation
to the schedule. When an observation record is added, all
other observation records that are in the same swath poly-
gon for the same instrument must also be added. This set
of obserservation records are all added to the schedule if no
spacecraft constraints are violated. When the inner schedul-
ing loop has completed, the outer loop increases the prior-
ity for any observation records that were not scheduled (i.e.,
the squeaky wheels). After the last iteration, the best scoring
schedule, calculated based on the original campaign priori-
ties, is returned. For our scenario, we only use one iteration
of SWO since there is only one campaign with a single pri-
ority for global coverage.

MEXEC
MEXEC is an onboard scheduling and execution software
that operates on Task Networks with a multi-mission design.
It monitors system state to respond to current conditions and
projects effects forward in time in order to predict future
state. It uses this information to schedule and execute tasks,
detect conflicts or constraint violations, and revise its cur-
rent schedule accordingly. MEXEC consists of three major
components, the Timeline Library, the Planner, and the Con-
troller, whose interactions are shown in Figure 1.



Figure 1: Diagram of the interactions between components
in MEXEC.

Task Networks
Task Networks allow for encoding of intents and constraints
that are lost when converting ground generated plans into se-
quences. Task Networks for MEXEC consist of tasks, tem-
plates, and timelines. A task represents the smallest opera-
ble unit in MEXEC and contains resource and timing con-
straints, expected effects (impacts), a command to execute
(if applicable), contingencies in case of failure (if desired),
and some metadata for goal tasks. Tasks can be used to rep-
resent Goals, which are higher level tasks that decompose
into lower level tasks to achieve a desired objective. For the
case of robust mapping, the Goal task stores which parts of
the body are covered or uncoverd by the lower level observa-
tion tasks, with the goal of maximizing that coverage. Lower
level tasks associated with a goal can come from existing
tasks or from templates. Templates are tasks that are not ex-
plicitly requested to be scheduled, but are instead used by the
Planner to either satisfy constraints or goals in the schedule.
Timelines represent the states and resources used by tasks.

Timeline
Timelines provide a representation of past and future (pre-
dicted) system state. The current state is incorporated by
subscribing to periodic state updates from the flight sys-
tem for the most recent state. They also store the impacts of
scheduled tasks and extrapolate them in order to predict fu-
ture state. This can then be used to calculate valid intervals in
which new tasks can be scheduled conflict free. Valid inter-
val calculation looks at all of the current contraints and im-
pacts on the timelines and provides intervals where adding
the new task’s constraints and impacts will not create any
new constraint violations. The Timeline library is also used
independently of the other components of MEXEC for other
software, such as the M2020 Rover’s Onboard Planner (Ra-
bideau and Benowitz 2017).

Planner
The Planner runs on a cycle with several actions taken dur-
ing each iteration. It first commits upcoming scheduled tasks
within a commit window to the Controller to be executed.
Next, the Planner uses valid interval calculation provided by
Timeline to schedule any unscheduled tasks. The Planner
then looks for any constraint violations, tries to repair them
by moving and adding tasks. Lastly, it attempts to improve
the schedule by shifting tasks closer to their preferred start
times. The Planner will continuously receive updates from
the Controller in order to maintain an accurate estimate of
the current state. If a task comes back from the Controller
with failure, the Planner will process the contingency ac-
tions defined in the Task.

Controller
When a Task is committed, ownership of that task is trans-
ferred from the Planner to the Controller. The Controller
runs on a shorter cycle than the Planner and converts the
committed task’s constraints into control conditions ex-
pressed as a boolean expression tree. Like the other com-
ponents, the Controller subscribes to system state in order
to monitor when a task’s constraints are met. When all con-
straints specified for the beginning of the task, including the
start time, are met, the command defined in the task is dis-
patched. Each task then follows an internal state machine,
constantly checking that all constraints on the task continue
to be met. The Controller also sends updates to the Planner
as tasks progress through their states, including the comple-
tion status when the task completes.

Approach
To generate the Task Network used by MEXEC for robust
mapping, we use CLASP to generate three different sets of
observations with varying time and data volume parameters.
A contact diagram of the flow of information from CLASP
to MEXEC can be seen in Figure 2.

Figure 2: Contact diagram for the flow of information from
the inputs to CLASP to MEXEC.



Generation of the Nominal Schedule
We first generate a baseline, or nominal, schedule of ob-
servations for one mapping cycle between downlinks using
the described motivating scenario, but with the assumption
that there are only 64 Gibits of data volume available on-
board. The resulting schedule generates 367 distinct obser-
vations covering 14,183 gridpoints, roughly 7 percent of the
total gridpoints on the body. The observations generated by
CLASP in this run are shown in Figure 3 and are used as
the nominal observation schedule, constituting an accurate
schedule if the ground estimate of available data volume is
accurate and if all observation tasks are executed without
fault. In either of the two cases where the model deviates
from actuality, science oppurtunities could be lost. MEXEC
will be able to use the backup observations generated by the
final CLASP schedule to fill in the gaps and maximize sci-
ence.

Figure 3: Surface coverage of the data limited nominal ob-
servation schedule.

Generation of the Backup Observations
Generating the backup observations requires two additional
CLASP runs. In the first additional run, we re-run the sce-
nario, but with no data volume limit, which results in an ob-
servation schedule that covers the entire body once. This ob-
servation schedule is discretized into unique 1 second obser-
vations, which we call coverage observations that are used
to segment the body into observation IDs. These IDs are
used as an estimate for the gridpoints used by the initial
CLASP schedule generation. For this experiment, the body
is segmented into 6,257 observation IDs covering 202,905
CLASP gridpoints. This segmentation helps MEXEC deter-
mine if a particular area is already covered by another sched-
uled observation.

The final CLASP iteration is run with unlimited data
volume and 5 images requested per gridpoint, generating
26,124 one second tasks. These observations are used as the
backup observations, i.e., the tasks that MEXEC can add in
order to take advantage of extra data volume in a useful way

or to replace a failed observation. These backup observations
are a super set of the first two CLASP schedules, containing
at least 5 observations of each gridpoint. There are not ex-
actly five times the 6,257 observation IDs as some of the
backup observations work as backups for multiple observa-
tion IDs.

Using all of the resulting observation schedules, we deter-
mine which observation IDs are covered and by which ob-
servations. An observation is considered to cover an obser-
vation ID if the overlap in coverage between the observation
being considered and the coverage observation correspond-
ing to the observation ID is greater than 75%. The overlap
in coverage between two observations is the size of the in-
tersection between their observation polygons. This is done
for both the nominal and backup observations, as either can
cover multiple observation IDs, as these IDs are only an esti-
mate of gridpoints. This makes backup observations a good
attempt at replacing lost science, but feasibly a backup ob-
servation could not cover up to 25% of the original observa-
tion gridpoints. Overlap between the backup observations is
not considered.

Scheduling the Observations in MEXEC
To initialize MEXEC, a timeline is created to represent the
data volume with the constraint that the value must remain
between 0 and the data volume limit. A template task for
backup observations is created with an impact to increase
the data usage rate by 0.17 for the duration of the task. Every
nominal and backup observation task can then be created as
an instance of this template. MEXEC is first provided with
the number of observation IDs in this experiment, as well
as the times of both the earliest and latest observations. It
uses this information in order to create a goal task, a task
with no execution command that spans the time of the entire
observation set and stores whether each observation ID is
covered by one of the observation tasks, with the goal of
maximizing the number of observation IDs covered.

MEXEC then reads the nominal observations, their ob-
servation IDs and start times, into fully specified tasks and
schedules them. This is the nominal observation schedule
generated on the ground by CLASP. As each task is sched-
uled by the MEXEC planner, its observation ID is marked as
covered in the goal task. This is followed by a list of backup
observations, each with a geometrically calculated list of ob-
servation IDs that they cover sufficiently. While MEXEC
runs, if there is data volume available, MEXEC will sched-
ule a backup observation task that covers at least one uncov-
ered observation ID. Data volume could be available either
because some other task failed to execute or because the ini-
tial CLASP data volume model was too conservative. For
this initial implementation, memory usage was not consid-
ered when uploading observations and backups to MEXEC.
Each task is relatively small, consisting of a few integers,
however there can be many tasks.

Simulations in MEXEC
We simulated three different scenarios in MEXEC. We first
look at the case where the ground estimate of data volume
used by CLASP to generate the nominal schedule was too



conservative and MEXEC is able to take advantage of the
additional available data volume onboard. Next, we report
task failure for every fixed number of observations to ob-
serve MEXEC replacing the lost science with backup ob-
servations that cover at least one additional observation ID.
The assumption is made that if an observation fails, the en-
tire observation is not achieved and there is no partial com-
pletion of the observation. We then look at a case where the
ground overestimated data volume availability and MEXEC
is unable to schedule the entire nominal schedule. For each
run, a list of observations that were scheduled and executed
successfully is produced, and from this list we calculate the
number of original CLASP target gridpoints that were cov-
ered.

Results
Figure 4 shows the observations scheduled when MEXEC is
able to determine that there is more data volume available
onboard than was anticipated when generating the nominal
schedule. As the discrepency between anticipated and actual
data volume onboard increases, a higher percentage of ad-
ditional gridpoints are covered, as shown in Figure 5. The
relationship between increase in data volume and increase
in coverage is expected, considering that every observation
is the same length and gridpoints are equally distributed
around the body.

When the onboard data volume is less than was antici-
pated when generating the nominal schedule, a similar ex-
pected relationship is seen. These observations are displayed
in Figure 6 and show more sparse observations than the
nominal. Figure 7 indicates that the linear relationship is
maintained, regardless of whether the anticipated data vol-
ume was over or under estimated. The less data volume that
is available, the fewer observations MEXEC is able to sched-
ule.

MEXEC handles observation task faults by replacing the
observation with another task that covers at least one obser-
vation ID currently uncovered in the schedule. By doing this,
MEXEC is able to minimize the effect of task faults on the
overall amount of coverage, as shown in Figure 9.

(a) 70 Gibit Data Volume (b) 80 Gibit Data Volume

Figure 4: Surface coverage when the nominal schedule is
based on an underestimate of the available data volume on-
board. The figure shows the results when the ground under-
estimate of data volume is 64 Gibits and the available data
volume onboard is (a) 70 Gibits and (b) 80 Gibits.

Nominal Tasks

Backup Tasks

Figure 5: Percent of gridpoints observed broken down by
nominal and backup tasks when the ground uses an under-
estimate of data volumen available.

(a) 60 Gibit Data Volume (b) 50 Gibit Data Volume

Figure 6: Surface coverage when the nominal schedule is
based on an overestimate of the available data volume on-
board. The figure shows the results when the ground over-
estimate of data volume is 64 Gibits and the available data
volume onboard is (a) 60 Gibits and (b) 50 Gibits.

Nominal Tasks

Figure 7: Percent of gridpoints observed when the ground
uses an overestimate of data volumen available.



(a) 0% Observation Failure (b) 5% Observation Failure

(c) 10% Observation Failure (d) 20% Observation Failure

Figure 8: Surface coverage when (a) 0%, (b) 5%, (c) 10%,
and (d) 20% of tasks fail during execution and backup tasks
are scheduled to take advantage of the available data volume.

Nominal Tasks

Backup Tasks

Figure 9: Percent of gridpoints observed broken down by
nominal and backup tasks when tasks fail during execution.

The percentage of gridpoints covered does not meaning-
fully change, regardless of how often observation tasks fail.
This makes the mapping very robust to faults in any part
of an imaging task, as the planner can make up for the lost
science. Figure 8 shows the observations scheduled with dif-
ferent task fault rates, and shows that the overall number of
observations scheduled only changes negligibly.

Using Scenario A as an example, robust mapping in this
way is not computationally prohibitive. The initial schedul-
ing of the nominal observations is the slowest process, tak-

ing an average of 40ms upfront, with the backup observa-
tion and goal calculations taking an average of 8ms per cy-
cle. These simulations were run with a 3.1 GHz Intel Core
i7 processor, significantly more powerful than the average
flight computer.

Related Work
Over the years, we have seen a tremendous amount of work
on AI planning and execution systems for spacecraft and
robotics (Gat et al. 1998; Simmons and Apfelbaum 1998;
Muscettola et al. 1998; Frank et al. 2001; Verma et al. 2005;
Rasmussen, Ingham, and Dvorak 2005). A few have been
used to autonomously control spacecraft operating in space
(Jónsson et al. 2000; Chien et al. 2005; 2016). At a high-
level, many of these have a similar architecture with sepa-
rate planner and executive components. The role of the ex-
ecutive, however, is quite different in each. In (Jónsson et
al. 2000), a smart executive reasoned about possible execu-
tion time ranges and projections into the future. (Chien et al.
2005) used separate planning and execution models, where
activities planned using a declarative model, would initi-
ate procedural scripts specified in the Spacecraft Command
Language (SCL). In (Chien et al. 2016), a simple sequencer
executes the activities at absolute times assigned by the plan-
ner, leaving the planner to handle all plan repair changes, big
and small.

Using lessons learned from previous systems, MEXEC
was first developed as a prototype for the Europa Clip-
per mission to show onboard fault recovery (Verma et al.
2017). A similar design was prototyped, and later adopted
for the Mars 2020 rover (Rabideau and Benowitz 2017). The
MEXEC planner and controller were developed in conjunc-
tion to ensure a consistent, cooperative design. The same
declarative constraint model used to plan an activity is also
used to execute the activity with some flexibility in its start
and end times. To ensure timely execution of activities, the
MEXEC controller focuses only on the issues that occur near
the current time, and is limited to making small changes to
the plan. The MEXEC planner is then left to handle future,
potential problems that may require more widespread plan
changes.

The charter for MEXEC has not been to provide a new AI
control architecture, but instead to be a new component in
low-risk, heritage flight software and operations. MEXEC
code was written completely from scratch. It inherits de-
sign from the literature but was developed to meet current
flight software requirements and constraints, and allow hu-
man operators the ability to control the level of autonomy. A
stripped down version is planned to be uplinked to ASTE-
RIA in June 2019. ASTERIA is a Cubesat originally used
to detect transitting exoplanets, now used for research and
experiments in its third extension (Smith et al. 2018).

CLASP has been used to evaluate potential coverage map-
ping for the planned Europa Clipper and JUipter ICy moons
Explorer (JUICE) missions (Troesch, Chien, and Ferguson
2017). In those scenarios, the goal was to determine what the
potential maximum coverage could be, given no data volume
restrictions, in contrast to the work in this paper, which con-
sidered data volume available and selected observations to



execute. CLASP has also been used for mission studies for
the NISAR mission (Doubleday and Knight 2014). The Or-
biting Carbon Observatory-3 (OCO-3) mission, scheduled to
launch in April 2019, is using CLASP to generate the nomi-
nal schedule for multiple different observation types (Moy et
al. 2019). CLASP was used as the ground scheduler for the
IPEX CubeSat, but used the CASPER planner onboard to
monitor resources, adjust the schedule, add follow-on activi-
ties based on feature detection, and add lower priority obser-
vations that did not make it into the original schedule (Dou-
bleday et al. 2015). The ECOSystem Spaceborne Thermal
Radiometer Experiment on Space Station (ECOSTRESS)
instrument has used CLASP for operations (Yelamanchili et
al. 2019).

Other recent orbital mapping work includes DAWN, the
spacecraft for which on which our model is based, which
used framing camera images to map from various altitudes,
including Survey Orbit (Roatsch et al. 2016a) and Low Al-
titude Mapping Orbit (LAMO) (Roatsch et al. 2016b). To-
gether, the multiple maps are combined to create an Atlas of
Ceres, a dwarf planet and the largest object in the Astroid
Belt. These images and others, together with Geographic In-
formation Systems (GIS) software have also been used to de-
velop a geologic mapping of Ceres (A.Williams et al. 2018).
Other mapping missions have also shown more complex
mapping cases. In our approach, the body considered was
generalized to be convex. The ROSETTA mission, specif-
ically observations using OSIRIS, has demonstrated more
challenging mapping scenarios such as coverage of a non-
convex body and more complex illumination requirements
(Preusker, F. et al. 2015).

Future Work
In this approach, the assumption was made that all grid-
points and areas of the body were of equal priority to im-
age. This is not always the case, which means that MEXEC
should make sure the chosen backup is the best choice,
rather than picking the first available choice.

An additional change could be made to allow for different
sized observations. Rather than only specifying one second
observation tasks, treating an entire observation swath as one
task would save memory and speed up valid interval calcu-
lation. The difficulty with this approach is that calculating
backups becomes more complex and unclear when observa-
tions are of varying size, but it also makes the problem more
interesting, with MEXEC only able to choose backups that
do not exceed the data volume limit. Presently all observa-
tion tasks require the same amount of data volume.

Using larger observation sizes is just one way in which
memory could be saved, and looking into other memory
saving optimizations is another direction to explore in the
future. Storing all of the constraints, impacts, parameters,
states, etc. of a task leads to large memory needs when there
are many tasks. On our work with ASTERIA this has already
begun to limit the number of tasks that MEXEC can simulta-
neously handle. In order to make re-planning mapping tasks
more robust and viable on flight missions, optimizing the
memory usage of the system would be essential.

In the future, it may become more feasable to generate the
backup observations onboard, given progress in flight com-
puter capabilities. For example, CLASP uses ray tracing al-
gorithms as part of its coverage calculations, and if future
missions include GPUs onboard, CLASP would be greatly
sped up and able to generate the nominal and backup sched-
ules onboard.

Conclusion
We have presented a method for robust mapping using
ground generated backup observations. Given an example
scenario to map the surface of a comet with an orbiting
spacecraft, we use CLASP to create a nominal observation
schedule as well as backup observations. These observations
are translated into a Task Network as tasks and goals to be
scheduled and executed by MEXEC. We have demonstrated
that when the system state onboard deviates from the esti-
mated state when generating the nominal schedule, MEXEC
can schedule tasks to maximize the use of the data volume
constraint to observe the body’s surface. In the case where
there is less data volume onboard than expected, MEXEC
schedules and executes as many of the tasks as allowed by
the data volume restriction. In the case where more data vol-
ume is availabe than expected during nominal scheduling,
MEXEC is able to add tasks that observe regions that have
not been completely covered already.
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