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Abstract

This paper presents a representation of the polygonal
footprint of an Earth-observing 2D framing sensor (i.e.
instruments on Rosetta, Planet Labs SkySat) for ob-
servation coverage planning that preserves curvature
of the footprint edge at little additional memory cost
compared to previously published techniques.

Binary operations on field-of-view, ellipsoid intersec-
tion edges are introduced, allowing them to serve as
edges in a polygon. A computational experiment ex-
amines the error produced by using this method versus
existing methods of camera footprint representation.
Edge approximation error is most significant when the
field of view footprint is large compared to the body be-
ing observed (small body exploration, fly-bys, or other
distant observer scenarios), and negligible when it is
small (low altitude Earth observers with narrow fields
of view). Great Circles polygons are degenerate ellip-
tic edge polygons, admitting them to the polygon and
edge operations in this paper.

Introduction

Planning a mapping campaign from space with a 2D
framing instrument implies reasoning about which parts
of the target body have been observed. Two ap-
proaches to this reasoning are the Footprint Placement
for Mosaic Imaging optimization problem (Mitchell et
al. 2018) and the Area Coverage Planning problem for
3-axis steerable, 2D framing sensors (Shao et al. 2018).
As planning problems, both formalizations may be de-
scribed as searches in a decision space for which obser-
vation footprint tuples (time,rg,6)! producing a set
of instrument footprints F' = {f1, fa,..., fn} such that
a target region of interest polygon P is contained in the
union of all scheduled observation footprints. The goal
state g(n) is

gm)=PelJf; (1)
i=1
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!(Mitchell et al. 2018) simplified the problem by fixing
time and 6, focusing their approach on optimizing regs.

with a heuristic distance to the goal state h(n) of

h(n) = area(P) — area (P - LnJ fi> (2)

How the planner computes the footprint f; is a lower
level detail that can cause problems with evaluation of
g(n) and h(n). (Shao et al. 2018) used 4-vertex great
circles quadrilaterals to represent footprints f; for com-
putational efficiency. In the post-talk Q&A session,
Valicka noted that these quadrilaterals did not resemble
the curved footprints he had seen in his research, and
rightly questioned the reasonableness of the quadrilat-
eral approximation (which Shao et al. did not justify).
As figure 1 shows, ignoring this curvature can cause the
plan to achieve insufficient coverage.
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Figure 1: A mosaic mapping campaign has insufficient
coverage because the distance to goal state heuristic
ignored footprint curvature.

This paper is an excursion into the computational ge-
ometry that supports observational coverage planning
with 2D framing instruments. First, we summarize ex-
isting ways to represent the edge of a footprint polygon
fi- An alternative data structure that preserves the in-
cidence angle of the field of view edge is introduced. A
computational experiment explores a practical concern
of when it is appropriate to use a quadrilateral approx-
imation of the footprint polygon for various algorithms
of drawing the edge, and when the planner should pre-
serve the footprint’s curvature.



Background
Special Needs of Space-based Planners

To plan a mapping campaign of a planet, moon, or other
small body, a planner should handle:

e Geometry on an arbitrary triaxial ellipsoid

e Polygons that contain the North or South pole
e Polygon edges that cross the antimeridian

e Edges defined by the shape of the instrument

While the planets of our solar system are modeled
as spheres or spheroids, many of the smaller moons
are modeled as non-spherical, triaxial ellipsoids (Archi-
nal et al. 2011). Comet 67P Churyumov-Gerasimenko,
which was later found to be very non-ellipsoidal (Jorda
et al. 2016), was modelled as a triaxial ellipsoid with
semi-axes 2.3, 1.9 and 1.7 km (Mysen 2004) before the
Rosetta observation campaign. For small body explo-
ration, an observational coverage planner shouldn’t rely
on spherical body assumptions.

The poles have been scientifically interesting areas of
Mars (Bibring et al. 2004) and the Moon (Spudis et
al. 2013). Tt’s a safe assumption that future missions
will study the poles of other celestial bodies. Studying
the poles, or making any complete mapping campaign,
requires handling observation polygons that cross the
antimeridian (-7 = 7 longitude).

One framing instrument (camera) model is a rectan-
gular pyramid of infinite height, with the detector at
the peak. Each side of the camera’s field of view is
a plane. The intersection of that plane and the tar-
get triaxial ellipsoid is a straight line from the camera’s
perspective, but it is being projected obliquely onto a
curved surface. This can be difficult to represent as two
points and a connecting edge.

Existing Spherical Polygon Edge Types

In planar Euclidean geometry, the edge that connects
two vertices of a polygon is a straight line. The closest
analog in spherical geometry is the Great Circle: the
intersection between a plane through the sphere’s cen-
ter and the surface of the sphere. Great-circles polygons
can be treated much like polygons on a Euclidean plane,
despite being on a non-Euclidean surface (the sphere).
One implementation, the Computational Geometry Al-
gorithm Library (CGAL), replaces 2D Euclidean lines
with oriented planes to partition half-spaces and points
with 3D vectors (Hachenberger and Kettner 2019).

Two other alternatives are rhumb and equirectangu-
lar lines?, which are conceptually related. They are
both curved paths across the sphere that are straight in
a 2D map projection (Mercator for rhumb, plate carrée
for equirectangular).

Rhumb lines are convenient for navigators because
they follow a path of constant compass heading. Rhumb

2“Lat-Lon lines” in (Chamberlain and Duquette 2007).
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Figure 2: The Great Circle arc is straight when viewed
from above a sphere

lines have the disadvantages of requiring special han-
dling when the line is nearly a line of constant longi-
tude (Bennett 1996) or following a logarithmic spiral
into the poles (Alexander 2004).
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Figure 3: The equirectangular line is straight in a plate
carrée projection

Equirectangular plate carrée lines are convenient for
programmers because latitude and longitude map di-
rectly onto Cartesian coordinates (Wikipedia contrib-
utors 2019). This admits simpler or more powerful
methods, such as the 2D planar packing algorithms
that Mitchell et al. applied to the frame instrument
footprint optimization problem (Mitchell et al. 2018).
While this is a compelling trait, it adds projection dis-
tortion, which is worse at extreme latitudes. The poles,
which are points in 3D, are horizontal lines in the 2D
projection. Either the prime meridian or antimeridian
(0 = 27 or —m=n radians longitude) requires special
handling when a polygon crosses it.

None of these methods are appropriate for long dis-
tances. Figure 4, shows that they can all deviate sig-
nificantly from the true shape (beige Elliptic).

The obvious workaround is to interpolate along the
edge of the footprint. Instead of four corner points,
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Figure 4: Large footprint with different edge types be-
tween 4 corners.

project look vectors at regular intervals along each edge
of the observer’s field of view. Consult a table? to
choose a point spacing close enough to keep the ap-
proximation error within a reasonable bound. These
extra points add space and computational complexity
to subsequent polygon operations. There is a cheaper
alternative, which we define in the next two sections.

Nomenclature

Unless otherwise specified ( /somethmg), assume that the
position vector is relative to the origin of the target
body in target-fixed (B-frame) coordinates.

€ Working floating point precision of a math op-
eration

d The direction of some line

n Surface normal of an ellipsoid-plane intersection

Tobs Normalized (unit) vector of rgps

b An argument (query) point to one of the poly-
gon/edge operations

c Position vector of a corner of the instrument’s

field of view
c1/0ps Corner 1’s position relative to the observer
do Position vector of a known point on some line
m Position vector of an ellipse’s center

Tobs Observer’s position vector relative to the target
body’s origin

»

A point on the surface of a target triaxial ellip-
soid

The target body-fixed coordinate frame

The camera coordinate frame

Edge containment check frame

Ellipsoid-plane intersection coordinate frame

A half-cone angle about some vector
3(Chamberlain and Duquette 2007) contains tables list-

ing the maximum allowed edge length before error exceeds
a critical bound.

A clock angle within an ellipse
Error
r Vector r expressed in M-frame coordinates
MPRi  Coordinate transformation matrix from B to M
x semi-axis of a 2D ellipse

A
B y semi-axis of a 2D ellipse

e A polygon edge

h; Point-to-plane distance of point i
P A polygon on a triaxial ellipsoid

t Some parametric scalar (general)

Formulation
Handedness conventions

The operations in this paper take the approach that
clockwise point ordering defines an enclosed region,
with each arc’s normal vector pointing inside. Reverse
the order of the cross products if implementing in a
framework that uses the opposite convention.

Intersection plane ellipse arcs as edges

The surface of a target triaxial ellipsoid is the set of

pointsx=[2 y =z ]T such that
22 g2 2
F + b_2 + 0_2 =1 (3)

The spacecraft’s position vector relative to the target
body is ryps, which is computed by an ephemeris library.
If the sensor field of view is w radians wide and h radi-
ans high, the four corners of its field of view, in C-frame
(camera) coordinates and relative to the observer, are

C _
Ci/obs =

1
+ tan(w/2) ] (4)
+ tan(h/2)

C
2
C3

Figure 5: Camera field of view, C-frame (red=z,
green=y, blue=z) relative to the observer

The coordinate transformation from the C frame to
the B frame is constructed by basis vectors as

BRe=[Ba Bv Bw | (5)



setting

= Tigt — Yobs (6)
|rtgt - robs|
choosing the secondary alignment axis to achieve a de-
sired target footprint alignment and using a cross prod-
uct to compute the third.

If the four corners of the footprint intersect the target
body, the intersection point will satisfy both equation
3 and

Ci = Tobs 1+ 1Ci/obs (7)

for some value of scalar t. We use the CSPICE function
surfpt_c() for this calculation (Acton 1996).

The observer’s position and the surface intercepts of
two consecutive imager field of view corner points ¢y,
cy form a plane that defines a field of view edge. This
plane’s surface normal i may be computed as

C1/0bs = €1 — Tobs (8)
C2/0bs = €2 — Tobs 9)

C1/0bs X C2/0bs (10)

fi = _Lfobs 7 ¥2/obs
|C1/obs X CZ/ObS‘

The position vector x = [ = y =z ]T of each point
on the edge e between c¢; and cy satisfies the target’s
ellipsoid surface equation 3 and is entirely in the plane
defined by c¢; and ii:

(x—c1)-1=0 (11)

Ea

Figure 6: 3D view of the observer, target and FOV edge

The intersection of this plane and the ellipsoid is an
ellipse with a solution of the form (Klein 2012)*

x =m + Acos6f + Bsin 6§ (12)
4Klein’s paper has instructions for computing m, A, B, #

and 8. Van Wal and Scheeres present an abridged version
(Van wal and Scheeres 2016).
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Figure 7: 2D view of the FOV intersection ellipse plane

The polygon edge e covers the domain 61 < 6 < 6,
where 0 corresponds to ¢y and 0 corresponds to cs.
We can compute 61 and 05 by defining a new coordinate
frame M centered at m and basis vectors { ¥ § 10 }.
The coordinate transformation from target body-fixed
frame B to M is
T

r (13)

L}

MRB:

B
!

To transform some arbitrary vector b to M-frame co-
ordinates relative to the ellipse center,

Mb,, = [MRg] (b - m) (14)

The arc edge e may be represented minimally as e =
(Cl, Co, fl)

Operations on intersection ellipse arcs

This section defines some primitive operations on ellipse
arc edges that are required by many polygon operation
algorithms. They are listed constructively, building on
the prior operations.

Operation 1 (Is point b € e?). Is some point b =
[ b by b, ]T on the arc e = (m, 1, ¢y, c)?
If b € e, the relative position vector
b/m =b-—-m (15)

must be within the intersection plane and in a sector
bounded by lines (m,c;) and (m,c3)®. The in-plane
condition can be checked with the dot product

|b/m 0| <e (16)

°If b is actually on the surface (not inside or outside of
the target ellipsoid), b must also satisfy the triaxial ellip-
soid surface equation. This check is deliberately omitted so
that the operation handles sub-surface and irregular terrain
points.



The sector bounds may be checked by computing the
dot product of b, with two line normal vectors: nor-
mal to (m, ¢1) and in the ¢y direction (c¢1, ) and its con-
verse, normal to (m, c2) and in the ¢; direction (co ).

Ci/2 =C; —C (17)
€11 =¢€y/2 — €12 CiCy (18)
C21 = —Cy/2 +Cy/2 - CaC2 (19)

The vectors, n,c;; and co; may be computed once
and memoized as a non-orthogonal frame basis £, where
the coordinate transformation from B to £ is

fRp=[ciL cu 0] (20)
Transform b, to £-frame coordinates:
bl/m

5b/m = b?/m
3/m €

= ["Rs] ["b/m]  (21)

Point b € e iff, in £-frame coordinates,
(b1/m = 0) A (baym = 0) A (|bsym| <€) (22)

Operation 2 (Are arcs ey, e3 coplanar?).

Defining each arc as

e1 = (my,fiy, c11,€12) (23)
ez = (my, fiz, 21, C22) (24)
Arc e is coplanar with eq if
\(mg—ml)-ﬁ1| <€ (25)
and
|1 — |f; - hsl| <€ (26)
Operation 3 (Find intersection of arcs eq, e3). Where,
if anywhere, does arc ey intersect arc eo? Possible out-
puts: 0,p1 or (p1,P2)

If e; intersects eo, conditions 3.1, 3.2 and 3.3 must be
satisfied. Checking the conditions in that order reduces
corner cases later.

Condition 3.1 (Planes are not parallel). Equation 26
must be false.

If the two planes are not parallel, then the planes will
intersect at a line of the form
dy + td (27)

This line will be orthogonal to both plane normal vec-

tors, so its direction d can be computed from their cross
product (McKinnon 2012):
N n; x n
d= "2 (28)
\nl X Il2|
There are an infinite number of correct dg, so choose
a convenient form:

d() =m; + Cf‘l (29)

Because dg must also be in ey’s plane,
(m; +cfp —my) -1y =0 (30)

yielding
ms; —my)-n
CZ—( 2 Al) 2 (31)
r;-ng
Equation 31 contains a singularity when £ - fis = 0. If
this occurs, substitute §; for £; in equations 29 to 31.

Condition 3.2 (Intersection line crosses ellipses). The

line of planar intersection dg + td must intersect both
ellipses 1 and 2.

This condition is easier to evaluate in the M-frame of
ellipse 1, relative to its center m;. Transform equation
27 as

e (do +t&) = [MRB (do +t€1 - ml)
g; ‘| if #7 -0 #0
0

01

02 ] otherwise
0

+t

c
0
0

0
[c
0

The first case corresponds to equations 29 to 31 as
written. The second case applies when §; must be used
to avoid equation 31’s singularity. Removing ¢, the first
case reduces to

+t

Y o2 0y

= h—y=—x— — 32
T c+52 1 Y 5133 510 (32)
or, if §; were used instead of 1,
0
y=2a+c (33)
1

Equations 32 and 33 have the form y = mx +b. If there

is an intersection between this line and the ellipse, it

will also satisfy the ellipse equation %22 + %22 = 1 for

some real-valued x and y. Substituting for vy,
22 (mx+b)?
A? B2

arranging in quadratic form,

(A*m® + B?) 2* 4+ 2A%mbx + A** — A’B*> =0 (35)

1 (34)

defining
a= A’m?* + B? (36)
B =2A%mb (37)
K= A% — A°B® (38)

then applying the quadratic formula,

e —B+ \/ij —4dak (39)

If 32 > 4ak, then there are two real valued solutions
(two intersections). If 32 = 4ak, then there is a single
intersection (a tangent point), and if 3% < 4ak, then



the plane intersection line does not intersect the ellipse.
Evaluate equation 39 to obtain z;, then either equation
32 or 33 (as appropriate) to obtain y; in M frame co-
ordinates. Reverse the transformation in equation 14
to construct the intersection point position vectors in
body-fixed B-frame coordinates:

My,
pi = [MRB}T My, | +my (40)
0

Condition 3.3 (Ellipse-line intersections within the
arc). One or two of the line-ellipse intersections must
be within the each ellipse’s angle bounds 0;1 and 0;5.

The points p; are intersections of the two ellipses. We
must now check that they fall within the bounds of the
arcs, which are subsets of the ellipses. Invoke operation
1 for p; and p2 against arcs e; and ey. Point p; is an
arc intersection if

Pi€e1ANp; €er (41)

Operation 4 (Split an arc). Given a point b € e =
(f,c1,c2),b # ¢1 Ab # ¢, subdivide e into arcs e;
and ea at b.

Trivial:
e1 = (f,c1,b) (42)
€9 = (fl, b, Cg) (43)

Operation 5 (Furthest point from cone center). Find
the point Xpae € € that is the furthest from the center

of a unit vector b drawn from the origin, where

x-b
d=1—-cos¢p=1—— (44)
x|

Equation 44 is continuous and differentiable because
x(#) is a linear sum of constants and continuous, dif-

ferentiable functions. Its derivative with respect to 6

od 0x <xf) b ) (45)

990 \|x I
and
g—z = —Asin 6t + B cos 63 (46)

Use a second derivative concavity check to determine
whether e is the one local maximum or one local min-
imum case. If d(6) is concave up on (1, 6s), then the
local max of d will be either 6; or 6. If d(6) is con-
cave down, gradient ascent or bisection may be used to
locate the maximum.

After locating

Omaz = argmax d, b€ (017 92) (47)

the most extreme point on the arc x,,.. is obtained
from evaluating equation 12 for 6 = 0,,4,.

Operation 6 (Compute polygon bounding cone).
Construct a bounding cone (B,dmax) enclosing polygon
P, where b is a unit vector drawn from the center of
the triazial ellipsoid and d corresponds to a half-cone
angle ¢ about b.

Start by using the optimal bounding cone algorithm
for vectors in three dimensions (Barequet and Elber
2005), where each 3D vector to be bounded is a vertex of
polygon P. Because the edges of P are not great circles
arcs, we must expand the bounding cone to enclose the
most extreme point on each arc:

dmaz + max (dmar, max (d(Omaz(e:)),e; € P))  (48)

The expansion in equation 48 doesn’t consider alter-
nate pointings for B, causing (B, dimaz) to lose its guar-
antee of optimality. The cone retains the trait of com-
pletely enclosing P, however, which is sufficient for our
purposes.

Operation 7 (Point-in-convex-polygon check). Is
some point b inside, outside, or on the boundary of
convex polygon P = {(c1,ca,...,¢n),(e1,€2,...,en)}?

Because our bounding planes are not required to pass
through the ellipsoid’s center, the volume that they en-
close may intersect the ellipsoid on both sides. We use
a bounding cone to to separate the polygon of interest
P from its antipodal polygon P’.

Condition 7.1 (Bounding cone containment). If point
b is contained by polygon P, b must also be contained
by the bounding cone (b, dpmas) enclosing P.

Define x; as the position vector corresponding to
point b. Compute the distance d; between x; and b
using equation 44. Point b is contained by the bound-
ing cone iff d < dpaz-

Condition 7.2 (Convex bounding plane containment).
To be contained in P, point b must also be on the inside
of each edge’s intersection ellipse plane.

Evaluate the signed point to plane distance h; for
each edge e;:
If any h; < —e¢, b is outside. If all h; > ¢, b is inside.
Otherwise, point b is on the boundary of P.
Theorem 1 (Interoperability with Great Circles).
Polygons may be composed of any miz of Great Circles
and ellipsoid-plane intersection arcs.

Lemma 1.1 (Great Circle degeneracy). Great Circle
arcs are degenerate ellipsoid-plane intersection arcs.

Set m=0,f =cy and i = (ca x ¢1)/|ca x c1]. The
center of the intersection ellipse will be at the origin
(center of the target body). All intersections of a plane
and a sphere are a circle, which makes this particular
elliptic edge also a Great Circle.

Corollary 1.1. Great Circle arcs may be converted to
ellipsoid-plane intersection arcs.

The Great Circle arc (cj,c2) may be augmented
with il = (c2 X ¢1) /|c2 X ¢1| to completely define e =
(Cl, Co, fl)



Methodology

We hypothesize that the choice of polygon line is impor-
tant for large, oblique footprints of distant observers,
but not important for small footprints of closer ob-
servers. A computational experiment will test this hy-
pothesis for two mission cases.

The first mission case (near/narrow) is modeled on
the Earth-observing Planet Labs (formerly Skybox,
Terra Bella) SkySat-1 in a Low Earth Orbit (LEO). Its
field of view is derived from nominal scene size at refer-
ence orbit altitude in the Planet Image Product Spec-
ifications (Planet Labs, Inc. 2018). The nadir altitude
is based on a propagation of the SkySat-1 ephemeris
from the STK Data Federate (Analytic Graphics, Inc.
2019).

The second case examines a smaller, more distant
body, with a larger observer field of view. The Mars
Reconnaissance Orbiter (MRO) aerobraking phase (Se-
menov and You 2006) is used with the 6° MRO context
camera (Malin Space Systems, Inc. 2005) and a nadir
footprint that is 17% of the Mars ellipsoid’s smallest
semiaxis. This is similar to the closest approach in the
Rosetta OSIRIS mapping campaign (Jorda et al. 2016),
where a 9 km altitude image with the 2.2° square field of
view NAC has a footprint approximately 16% comet’s
smallest approximating ellipsoid® semiaxis.

Table 1: Observer footprint configurations

Near/Narrow Far/Wide
Spacecraft SkySat-1 MRO
Body observed Earth Mars
Trajectory LEO Aerobraking
Nadir Altitude 578 km 8992 km
Field of view 0.37° x 0.15° 6° x 6°

Rhumb lines, equirectangular lines and great cir-
cles arcs as approximations of the true shape (an
ellipsoid-plane intersection arc). Error of this approx-
imation is computed as a fractional disagreement e
between the truth polygon P; and the approximation
(rhumb/equirectangular/great circle) polygon P,:

area (P, U P;) — area (P, N P;)

°= area (P;) (50)

Large € is a poor approximation and € = 0 is a perfect
approximation.

Polygon area is computed using the great circles poly-
gon algorithm in (Chamberlain and Duquette 2007).
All footprint polygons will be interpolated with 100
points per side according to the edge type under test
and stored as great circles polygons. Polygon intersec-
tions and unions will use the Margalit and Knott al-

(Jorda et al. 2016) provides an approximating triaxial
ellipsoid, but notes that 67B’s structure is more properly
modeled as bilobate.

gorithm (Margalit and Knott 1989), adapted for great
circle arcs.

Results
Impact of the footprint polygon line type

Figure 8 shows that for a low altitude observer with a
small footprint, the approximation error of the footprint
is small (less than 1%). In general, error increases as
off-nadir angle increases.
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Figure 8: Error caused by non-elliptic edges for a low
altitude observer with a small footprint (SkySat-1)

When the observer was further away and had a larger
field of view, the error grew to almost 10% (figure 9).
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Figure 9: Error caused by non-elliptic edges for a larger
footprint further from the target body (MRO/CTX)

Discussion
Does the type of edge line matter?

Sometimes. For commercial imagery operators in Low
Earth Orbit (close relative to the target body’s radius)
with small fields of view, choice of edge type doesn’t
matter. All of the edge types in the Earth LEO mission
case had less than 1% approximation error, even up to
55° off-nadir angle.

When the observer is far from the target or has a large
field of view relative to the target, yes, the choice of
line can matter. The edge type was more significant as
off nadir angle increased. Even at 10% error, however,



a planner could compensate by margining the field of
view size or using more interpolation points.

Round trip error to/from ellipse angle

While testing against Earth, we found that repeat-
edly transforming a point between position vector and
ellipse-frame clock angle 6 via equation 12 had round
trip error ranging from 0.01 km (single trip, nadir) to
44 km (10 round trips, 35° off-nadir). The error gen-
erally increased with off-nadir angle and accumulated
linearly with each invocation. We did not identify the
root cause, but did find a workaround.

Earth, which is near spherical, is an edge case in
Klein’s algorithm where D1t ~ D;§. Klein recommends
using w = 7/4 in this case (Klein 2012). w = 7/4
removed the compounding effect from the round trip
error, but did not correct the first round trip error.

The best workaround we found was to first define the
unit vector b pointing in the direction of 6, expressed
in M-frame coordinates, as

Mp =[ cosf sinf 0] (51)
then transform it to body-fixed B-frame coordinates
Sh=[f & ] [Mb] (52)

Projected to the surface of the triaxial ellipsoid, the
output point b can be written as

b=[b, b, b.]|=m+1tb (53)
where only ¢ is unknown and
oY b
2tpta=? 54

Evaluating these equations with CSPICE surfpt_c() had
10~!2 km round trip error (machine precision).

Generalizations and Applicability

No spherical approximations are used in the formula-
tion of the elliptic edge polygon. Without modifica-
tion, these polygons may be used for any triaxial ellip-
soid where the field of view is small enough that it does
not span more than 180° of the ellipsoid (defined by a
cutting plane through the ellipsoid’s origin).

Elliptic edge polygons treat the edge of the instru-
ment footprint as a plane. Pushbroom sensor swath
sides are solids of revolution formed by the sensor
center line. Elliptic edge polygons are applicable to
the ASPEN Eagle Eye scheduler (Knight, Donnellan,
and Green 2013), but not the Compressed Large Ac-
tivity Scheduler-Planner (CLASP) (Knight and Chien
2006) or AEOS strip selection problems (Lemaitre et
al. 2002).

Related work

Shao et al. showed that footprint size and skew change
during an overflight, but used 4-corner Great Circles arc

polygons for the footprints, losing the curvature of foot-
print edges (Shao et al. 2018). GeoPlace used a square
camera footprint with more realistic curvature at the
edges (Mitchell et al. 2018). The publicly released Geo-
Place source code appears to use an oblique intersection
of the square field of view and a sphere, treating the
footprint as a 2D planar polygon thereafter. Edge cur-
vature was preserved by adding intermediate vertices”.
This paper presents a method of achieving footprint
edge fidelity similar to (Mitchell et al. 2018), but at a
lower space complexity and on a triaxial ellipsoid.

The Computational Algorithms Geometry Library
(CGAL) implements Nef polygons on a sphere, where
edges are segments of the intersection of a sphere and
plane through the origin (Hachenberger and Kettner
2019). This is sufficient for great circles polygons, but
has no explicit provision for triaxial ellipsoids or halfs-
paces from planes that do not intersect the origin.

Recommendations for future work

The equation for the area of an arbitrary polygon on
a sphere is supported by a proof that approximates
a polyhedron with a sphere. It is not clear that
this proof also covers polygons on ellipsoids whose arc
edges do not pass through the body’s center. Handed-
ness checks and winding number point-in-polygon algo-
rithms should be similarly scrutinized.

This paper is missing a critical operation: point-in-
concave-polygon containment checks, required for poly-
gon intersection, union and subtraction (Margalit and
Knott 1989). Our next step would have been to decom-
pose the concave polygon into convex polygons using
the method outlined in (Li, Wang, and Wu 2007).

Conclusion

By storing an observer’s camera footprint polygon as
an elliptic edge polygon, the planner can preserve the
curvature of the footprint without adding intermediate
points along the edge. The experiment showed that
curvature is only a concern when the observer’s field
of view is large compared to the observed body, more
so when the observer obliquely views the target body.
The elliptic edge polygon algorithms in this paper can
be used more broadly to handle edge cases in existing
Great Circles polygon/arc algorithms.
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