
INTRODUCTION

Fundamental physics of remote sensing dictates that high spatial resolution at reduced 
size (and therefore power, cost) forces reduced swath. This places a premium on 
measurement on acquiring the highest science value data enabled by pointable 
instruments in Earth science missions. Dynamic targeting (DT) can improve the efficiency 
of conventional expensive narrow swath instruments. DT is a decision-making approach 
that leverages information from a lookahead sensor to identify targets for the primary 
instrument, which can then be pointed to improve science yield (Fig. 1). 

Fig 1. Dynamic targeting leverages information from a lookahead sensor to identify targets 
for the primary instrument to improve science yield given energy constraints.

RELATED WORK

Most work has focused on screening cloud cover and other poor observing conditions 
from airborne and spaceborne missions. This work is an extension of a NASA study for 
the Smart Ice Cloud Sensing (SMICES) satellite concept, whose objective is to employ 
Artificial Intelligence (AI) to make better decisions while collecting dynamic measurements 
of ice clouds and storms.

SIMULATION STUDY

The approach is evaluated in a simulation study that consists of an Earth-observing 
satellite with two onboard instruments: a primary radar with a narrow swath  of 217 km, 
and a secondary radiometer with a lookahead of 420 km. General Mission Analysis Tool 
(GMAT) was used to simulate and generate realistic satellite trajectories. The simulation 
study consists of the following mission scenarios and datasets: 

1) Storm Hunting: the goal is to observe storm clouds; global data comes from the 
Global Precipitation Measurement (GPM) mission (Fig. 2)

2) Cloud Avoidance: the goal is to acquire clear-sky measurements; data comes from 
global cloud fraction products from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) (Fig. 3).

Fig 2. GPM global storm data set and simulated satellite orbit with a 65 degree inclination.

Fig 3. MODIS global cloud fraction dataset and simulated satellite orbit with a 65 degree 
inclination. 
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APPROACH

We formulate DT as a pointing planning problem. We want to observe scientific 
phenomena of interest more often while screening poor observing conditions and 
respecting the energy constraints. In previous work, we developed several DT algorithms 
that draw from a rich heritage of decision-making methods involving AI, operations 
research, and heuristic search.

We use deep reinforcement learning to build upon this previous work as follows:

1) RL Simulator: we adapted our spacecraft mission simulator for the storm hunting and 
cloud avoidance scenarios so it conforms to this Markov Decision Process (MDP) 
formulation (Fig. 4):

• state space (continuous): [image derived from lookahead instrument, state of 
charge]

• action space (continuous): [sample flag variable, radius, angle] 
• time step: 1 second

2) Optimal actions for a few orbits: to this end we used a dynamic programming (DP) 
algorithm (Fig. 5); it is not deployable on missions as it requires unrealistic instrument 
and compute resources 

3) Imitation learning on a few orbits: we conduct behavioral cloning by training a 
convolutional neural network (CNN) to predict optimal actions from states (trained with 
~1 million states and actions)

4) Reinforcement learning on more orbits (ongoing work): we perform transfer learning by 
using the pretrained CNN, we continue its training on new orbits using the Proximal 
Policy Optimization (PPO) algorithm, which is an actor-critic method that supports 
continuous action spaces

 

RESULTS

Table 1. Algorithms’ performance in terms of observed targets of interest

Table 2. Average computation times per timestep for each algorithm

CONCLUSIONS AND FUTURE WORK

Experimental results indicate that DT together with deep imitation learning is a promising 
approach. When comparing it against the baseline algorithms, significantly more targets of 
interest are observed while respecting energy constraints. Also, its performance is 
relatively close to optimal (~90%) while being much faster.

Future work will wrap up ongoing work using PPO. Furthermore, it will keep improving our 
simulation studies so they reflect each unique use case more realistically. For each 
different mission scenario, we plan to capture its physical costs and constraints such as 
instrument warm-up times, variable power consumption, slew times, on-board reaction 
times, and quality degradation for off-nadir measurements collected by the primary 
instrument. Additionally, we want to explore more sophisticated reward functions that are 
nonlinear and mutually dependent, especially those that model diminishing (or increasing) 
returns in repeated measurements from the same point or cloud.

Random Greedy Imitation Learning DP
average time (ms) 3.9 20.8 31.52 1,322.75
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Scenario Random Greedy Imitation Learning DP
storm hunting 0.01 % 0.97 % 1.28 % 1.46 %

cloud avoidance 0.99 % 2.61 % 3.01 % 3.28 %

Fig. 5. The DP algorithm has a full lookahead 
(assuming the path is finite) and achieves 
optimality, but in general it cannot be deployed 
on missions.

Fig. 4. The Earth science mission 
simulator provides primary and 
lookahead instrument observations 
while conforming to an MDP 
formulation for reinforcement learning.

Fig. 6. Imitation learning: behavioral cloning 
using deep learning to predict optimal actions 
from states
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