
Introduction

Fundamental physics of remote sensing dictates that high spatial resolution at reduced size (and
therefore power, cost) forces reduced swath. This places a premium on measurement on acquiring
the highest science value data enabled by pointable instruments in Earth science missions. Dynamic
targeting (DT) can improve the efficiency of conventional expensive narrow swath instruments. DT is
a decision-making approach that leverages information from a lookahead sensor to identify targets
for the primary instrument, which can then be pointed to improve science yield (Fig. 1).

Fig 1. Dynamic targeting leverages information from a lookahead sensor to identify targets for the
primary instrument to improve science yield given energy constraints.

Related Work

Most work has focused on screening cloud cover and other poor observing conditions from airborne
and spaceborne missions. This work is an extension of a NASA study for the Smart Ice Cloud
Sensing (SMICES) satellite concept, whose objective is to employ Artificial Intelligence (AI) to make
better decisions while collecting dynamic measurements of ice clouds. We show that DT is
applicable across a wide range of missions and can enable better coverage of transient phenomena.

Simulation Study

The approach is evaluated in a simulation study that consists of an Earth-observing satellite with two
onboard instruments: a primary radar with a narrow swath (217 km), and a secondary radiometer
with a wider field of view (110-1000 km range) that can only be used for lookahead. General Mission
Analysis Tool (GMAT) was used to simulate and generate realistic satellite trajectories. The
simulation study consists of the following mission scenarios and datasets: 1) the objective is to
observe ice storm clouds and data comes from the Global Weather and Research Forecasting
(GWRF) model covering two different regions, the Caribbean (tropical) and the Eastern coast of the
United States (non tropical); 2) the goal is to observe storm clouds and global data comes from the
Global Precipitation Measurement (GPM) mission (Fig. 2); and 3) the purpose is to acquire clear-sky
measurements and data comes from global cloud fraction products from the Moderate Resolution
Imaging Spectroradiometer (MODIS) (Fig. 3).

Fig 2. Example of the GPM global storm data set and simulated satellite orbit with a 65 degree
inclination. This simulation consists of 36,000 time steps spanning 10 hours.

Fig 3. Example of the MODIS global cloud fraction dataset and simulated satellite orbit with a 65
degree inclination. This simulation consists of 36,000 time steps spanning 10 hours.
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Algorithms

We formulate DT as a pointing planning problem. The goal is to observe scientific phenomena of
interest more often while screening poor observing conditions and respecting the mission’s energy
constraints. We have developed several DT algorithms that draw from a rich heritage of decision-
making methods involving AI, operations research, and heuristic search (Fig. 4).

Fig 4. Dynamic targeting algorithms. The random and greedy nadir algorithms are exclusively aimed
at nadir (a and b). The greedy lateral algorithm can collect samples along the cross-path direction
(c). The greedy radar algorithm has an even wider field of view, but is restricted by the primary
instrument’s swath (d). The greedy window algorithm leverages a lookahead sensor with a farther
reach to better allocate resources for future measurements (e). The dynamic programming approach
has a full lookahead (assuming the path is finite) and achieves optimality via backward induction,
however it cannot be deployed using realistic instrument and computational resources (f).

Results

Table 2. Average computation times for each algorithm

Conclusions and Future Work

Experimental results indicate that DT is a promising approach. When comparing the best performing
algorithm, greedy window, against the baseline random algorithm, significantly more observations of
interest are collected. Also, its computation time is quite fast. Furthermore, its performance tends to
optimality when the lookahead range is increased.

Future work will keep improving the realism of the simulation study; for instance, we plan to capture
more physical phenomena such as off-nadir measurements with deteriorating quality. Further
research will continue to investigate the advantages of DT via other data sets and scenarios. Finally,
working closely with application scientists and specialists. we will refine use cases and quantify
performance improvement for other application domains.
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SMICES T 2.1 3.9 6.2 8.4 10.7 154,349.5
SMICES NT 2.2 3.8 6.3 8.6 10.3 156,401.2

GPM 3.9 6.7 9.3 12.8 20.8 9,840,236.4
MODIS 2.3 4.4 6.8 8.9 10.8 162,658.6

Mission Scenario Baseline Optimal
Tropical Storms 22.65 0.74

Non Tropical Storms 3.19 0.84
Global Storms 88.45 0.69

Global Clear Skies 2.63 0.79

Fig 5. Example of the greedy window algorithm
for storm hunting. Left: It saves energy for
observations in the near future, in this case
within the lookahead sensor range. Right: The
algorithm then uses the saved energy to collect
measurements now within the primary
instrument’s reach.

Table 1. Comparison factor between
greedy window and the baselines
regarding observations of interest .

Fig 6. Greedy window converges to
optimality as a function of the lookahead
range.


