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Dynamic Targeting

Problem Overview
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Dynamic Targeting: 
Pointing an instrument on 

an Earth-observing satellite 

to sample locations with the 
most useful scientific 

information
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Goal: Point instruments to maximize

samples of high-value scientific targets
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Environment Overview

Cloud Avoidance:

Moderate Resolution Imaging 

Spectroradiometer (MODIS) 

Storm Hunting:

Global Precipitation

Measurement (GPM) 
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Figure: Candela A., Swope J., Chien S. 2023
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Prior Algorithms
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Prior Algorithms
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• Considers entire 

path of the satellite

• Not feasible for 

real-world use

• Can be used as an 

“oracle” baseline
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Reinforcement Learning Imitation Learning
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Goal: Use machine learning techniques to improve the science 
return of satellites as compared to existing heuristic methods
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Possible Actions:

1. Sample highest reward cloud type closest to nadir

2. Do not sample
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• It is unlikely that all 6,500 
states will show up 

naturally in training data

• Each cloud image is only 

associated with one 

state of charge, which 
limits the number of 

states encountered
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State:
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[[0-100], 1, 1, 0, 1, 1, 1]
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Possible Actions:

1. Sample highest reward cloud type closest to nadir

2. Do not sample
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Behavioral Cloning Improvements: Balance Datasets
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Unbalanced Data Balanced Data
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Experimental Setup
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• We use real satellite data from 
the MODIS and GPM missions

• Each dataset was collected 
during a different week of the 

year for experimental variety

• Each dataset contains 86,400 

images, representing one day

Cloud
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States Used for Training vs. Performance
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Cloud Avoidance Storm Hunting

Both methods can be effectively trained with relatively little data
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Cloud Avoidance Storm Hunting

Both methods significantly improve science return over prior work
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Conclusions and Next Steps

Key Takeaway

• Using learning methods improves the science return for satellite pointing 

tasks and requires relatively little data to train

Improvements and Next Steps

• Consider additional satellite constraints in the reward model

• Use an algorithm like Proximal Policy Optimization (PPO) for continuous 

state representations

• Test on real satellite
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