

Learning-Based Planning for Improving Science Return of Earth Observation Satellites

Abigail Breitfeld¹, Alberto Candela², Juan Delfa², Akseli Kangaslahti³, Itai Zilberstein², Steve Chien², David Wettergreen¹

¹Robotics Institute, Carnegie Mellon University ²Jet Propulsion Laboratory, California Institute of Technology ³University of Michigan, Ann Arbor

> International Workshop on Planning & Scheduling for Space, 2025 (Presentation Only)

Jet Propulsion Laboratory California Institute of Technology

Problem Overview

Dynamic Targeting:

Pointing an instrument on an Earth-observing satellite to sample locations with the **most useful scientific information**

Satellite Configuration

primary instrument observation

primary instrument range

Goal: Point instruments to maximize samples of high-value scientific targets

lookahead sensor previous observations satellite travel direction

lookahead sensor current observation

Environment Overview

Cloud Avoidance:

Moderate Resolution Imaging Spectroradiometer (MODIS)

Storm Hunting: Global Precipitation Measurement (GPM)

Prior Algorithms

Prior Algorithms

Dynamic Programming

- Considers entire path of the satellite
- Not feasible for real-world use
- Can be used as an "oracle" baseline

Goal: Use machine learning techniques to improve the science return of satellites as compared to existing heuristic methods

Reinforcement Learning

Imitation Learning

Reinforcement Learning for Improving Science Return of Earth Observation Satellites

Learning for Dynamic Targeting

Reinforcement Learning

Q-Learning Update Function

Reinforcement Learning for Improving Science Return of Earth Observation Satellites

Learning for Dynamic Targeting

Q-Learning State and Action

Possible Actions:

- 1. Sample highest reward cloud type closest to nadir
- 2. Do not sample

Reinforcement Learning for Improving Science Return of Earth Observation Satellites

Learning for Dynamic Targeting

Q-Learning Improvements

- It is unlikely that all 6,500 states will show up naturally in training data
- Each cloud image is only associated with one state of charge, which limits the number of states encountered

Q-Learning Improvements: Consider Every Possible State of Charge

Behavioral Cloning

decision making draw action from policy $a_t \sim \pi_{\theta}(s_t)$

do not sample

Behavioral Cloning State and Action

Cloud Avoidance

Storm Hunting

Possible Actions:

- 1. Sample highest reward cloud type closest to nadir
- 2. Do not sample

State: [8, 1, 1, 1, 1, 1, 1, 1, 0.15, 0.71, 0.14, 0.09, 0.72, 0.19]

Behavioral Cloning Improvements: Balance Datasets

Unbalanced Data

Balanced Data

Results

Experimental Setup

- We use real satellite data from the MODIS and GPM missions
- Each dataset was collected during a different week of the year for experimental variety
- Each dataset contains 86,400 images, representing one day

Results

States Used for Training vs. Performance

Both methods can be effectively trained with relatively little data

Cloud Avoidance

Storm Hunting

Results

Improvement in Scientific Reward

Both methods significantly improve science return over prior work

Cloud Avoidance

Storm Hunting

Conclusions and Next Steps

Key Takeaway

 Using learning methods improves the science return for satellite pointing tasks and requires relatively little data to train

Improvements and Next Steps

- Consider additional satellite constraints in the reward model
- Use an algorithm like Proximal Policy Optimization (PPO) for continuous state representations
- Test on real satellite

Acknowledgements

• This work was supported by the NASA Earth Science Technology Office

References

- 1. Candela A., Swope J., Chien S. 2023. Dynamic Targeting to Improve Earth Science Missions. AAIA Journal of Aerospace Information Systems.
- Ogut, M., Bosch-Lluis, X., Kangaslahti, P., Ramos-Perez, I., Munoz-Martin, J.F., Cooperrider, J., Yue, Q., Swope, J., Tavallali, P., Chien, S., Pradhan, O., Deal, W., and Cooke, C., "Autonomous Capabilities and Command and Data Handling Design for the Smart Remote Sensing of Cloud Ice," *IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium*, 2022, pp. 7119–7122. https://doi.org/10.1109/IGARSS46834.2022.9883491.
- Bosch-Lluis, X.,Kangaslahti, P.,Ramos, I.,Ogut,M.,Tanner,A.,Cooperrider,J.,Munoz-Martini,J.F.,Yue,Q.,Deal,W.,and Cooke, C., "Smart Ice Cloud Sensing (SMICES): An Overview of its Submillimeter Wave Radiometer," *IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium*, 2022, pp. 4296–4299. https://doi.org/10.1109/IGARSS46834. 2022.9883671.
- Justice, C., Vermote, E., Townshend, J., Defries, R., Roy, D., Hall, D., Salomonson, V., Privette, J., Riggs, G., Strahler, A., Lucht, W., Myneni, R., Knyazikhin, Y., Running, S., Nemani, R., Wan, Z., Huete, A., van Leeuwen, W., Wolfe, R., Giglio, L., Muller, J., Lewis, P., and Barnsley, M., "The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research," *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 36, No. 4, 1998, pp. 1228–1249. https://doi.org/10.1109/36.701075.

References

- 6. Schulman, John, et al. "Proximal Policy Optimization." *OpenAI*, 20 July 2017, https://openai.com/research/openai-baselines-ppo.
- 7. Wouter van Heeswijk. "Proximal Policy Optimization (PPO) Explained." *Medium*, Towards Data Science, 31 Jan. 2023, https://medium.com/towards-data-science/proximal-policy-optimization-ppo-explained-ab ed1952457b.
- 8. Sutton, Richard S., and Andrew Barto. *Reinforcement Learning: An Introduction*. The MIT Press, 2020.
- 9. Huang, Shengyi, et al. "The 37 Implementation Details of Proximal Policy Optimization." *The ICLR Blog Track*, 2022, iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/.

jpl.nasa.gov

Portions of this research were carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work was supported by the Earth Science and Technology Office (ESTO), NASA. CC BY-NC-ND 4.0.