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Qualcomm Snapdragon 855 HDK

● 8 core ARM system

○ 4 “silver” high efficiency cores ~ 1.80 GHz

○ 3 “gold” high performance cores ~ 2.42 GHz

○ 1 “gold prime” very high performance core ~ 2.84 GHz

● Adreno 640 Graphics Processing Unit (GPU)

● Qualcomm Hexagon 690 Digital Signal Processor (DSP)

● Neural Processing Engine

○ Directly supports Convolutional Neural Networks (CNNs) in hardware

● Running Android OS

3Also Snapdragon Automotive Development Processor Units running linux (for automotive).

All Snapdragon images courtesy Qualcomm
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Rad 750

Current computing for MSL, M2020

PowerPC Heritage
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Image re: MSL from CNET
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JPL’s Sabertooth

● LEON 4 Based CPU

● Target 8-10x improvement in evolution from Sphinx

5

W. Whittaker
Sabertooth: Integrated Avionics for Small Spacecraft Missions
2019 Space Computing Conference

https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/CL%2319-4553.pdf?sequence=1&isAllowed=y

Image credit citation below.

https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/CL%2319-4553.pdf?sequence=1&isAllowed=y
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Embedded Processors
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Processor Snapdragon 855 Movidius Myriad X Rad750 Sabertooth

Power 5W < 1W 10+ W
5 W?

3W 
https://trs.jpl.nasa.gov/bitstream/handle/2014/51550/
CL%2319-4553.pdf?sequence=1&isAllowed=y

MIPS https://www.notebookcheck.net/Qual
comm-Snapdragon-855-SoC-
Benchmarks-and-
Specs.375436.0.html

typical 266
up to 400

1200

Cores, Clocks 8 @ 1.7-2.8 GHz 7 SHAVE @ 
700MHz

1@110-200 MHz 4@ ?

RAM, NVM 16 GB 4 GB 256 MB 2GB 192 MB 8 GB

Coprocessors GPU, DSP*, AIP* AIP** Motor controllers
*quantized models: 8 bit 
fixed point

**half-precision floating 
point
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International Space Station Experiment
Hewlett Packard Enterprise Spaceborne Computing-2

Delivered to ISS turnover: Fall 2020
Delivered to the ISS onboard Cygnus NG-15: February 20, 2021.
Powered on: May 12th 2021.

Hewlett Packard Enterprise Spaceborne Computing-2 package:
○ COTS Linux workstations from HPE
○ Intel Xeon 5215 Processor (10 cores)
○ 4 NVIDIA Tesla GPUs
○ 2  Machines aboard the ISS

2x Snapdragon 855 HDKs running Android
○ Radios disabled

2x Myriad X Processors

Uplinks possible periodically to load new SW
All SBC-2 images credit HPE.
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Experiment Setup
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HPE 
Ground 
Testbed

HPE Flight 
Testbed 
(Ground)

SBC-02 on ISS

HPE: 
Chippewa Falls, WI

1. JPL 
Develops and Tests

2. JPL Tests

3. HPE Tests

4. HPE Tests

5. Results →  JPL
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Test Harness Setup
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Test Harness 
Computer 

Results

Test Harness runs on laptop or SBC-02 linux host
Test Harness:

iterates through experiments: 
delivers experiment code and data to embedded 

processor,
runs experiments on embedded processor
cleans up after execution, retrieving test results, 
reboots if needed (timeouts)

Code, Data

or This setup is 
not 
completely 
unlike an 
“instrument 
coprocessor” 
setup



Flying Machine Learning Models

10



jpl.nasa.gov

Machine Learning Models Ported and Run on ISS

• Mars HiRISE Classifier
• Salience Detector
• Mars MSL Classifiers (2)
• NavCam Image Segmentation
• UAVSAR Flood Mapping
• SMICES Storm Classification
• Super Resolution for 

Spectroscopy
• Standard Deep Learning 

Benchmarks (7)
● We will show a range of the models that can be deployed

For model deployment on another COTS processor, please see:  “Benchmarking Deep Learning On a Myriad X Processor 
Onboard the International Space Station” by Léonie Buckley (Ubotica) and Emily Dunkel (JPL)

• Objective: Deployment of machine learning models 
for inference on a Snapdragon on HPE’s Spaceborne 
Computer-2 onboard the ISS to demonstrate the 
power of CNN hardware support
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• What: Mars surface feature classification using 
orbital imagery

• Applications: autonomous data collection, 
targeted downloads, commanding space 
assets, science interpretation

• Details: 
– Data: Imagery collected by the HiRISE instrument 

onboard the Mars Reconnaissance Orbiter (MRO)
– Model: Transfer learning from AlexNet [Mars1, 

Mars2, DL]

Mars HiRISE: Deep Learning for Landmark Classification

12

Example of HiRISE Classes

• [Mars1] Wagstaff, Lu, Dunkel, Grimes, Zhao, Cai, Cole, Doran, Francis, Lee, Mandrake, 2021. Mars Image Content Classification: Three Years of NASA 
Deployment and Recent Advances. Innovative Applications of Artificial Intelligence, 33. 

• [Mars2] Wagstaff, Lu, Stanboli, Grimes, Gowda, Padams. 2018. Deep Mars: CNN Classification of Mars Imagery for the PDS Imaging Atlas. The Thirteenth AAAI 
Conference on Innovative Applications of Artificial Intelligence. 7867-7872.

• [DL] Krizhevsky, Sutskever, Hinton. 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 
25, 1097-1105
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Mars HiRISE: Classification Discrepancy, Timing, and Power
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Platform Classification 
Discrepancy 
(out of 1,793 
images)

Runtime (per 
image, 227 x 227 
grayscale)

Energy 
Consumption per 
image

Linux 0 56.9 ms

Snapdragon CPU 0 87.8 ms 0.5 J

Snapdragon GPU 1     (0.06%) 16.3 ms 0.051 J

Snapdragon 
DSP/NPU

15   (0.84%) 7.6 ms 0.016 J

x5

x2

- Classification discrepancies are relative to a laptop run

x10

x3
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• What: Mars Terrain hazard assessment

• Applications: onboard navigation, science 
interpretation, slip analysis

• Details:
– Data: From MSL Curiosity rover Navigation 

Cameras (NavCams)
– Model: DeepLabv3 architecture for image 

segmentation [Seg, NavCam]
– Developed to support MSL Rover Planners, 

but could also be run onboard

NavCam: Deep Learning for Terrain Classification

14

Mars MSL NavCam Image and Label

• [Seg] Chen, Papandreou, Schroff, Adam, 2017. Rethinking Atrous Convolution for Semantic Image Segmentation, ArXiv.
• [NavCam] Deegan Atha, R. Michael Swan, Annie Didier, Zaki Hasnain, Masahiro Ono. “Multi-mission Terrain Classifier for Safe Rover Navigation and 

Automated Science,” Submitted to IEEE Aerospace Conference, 2022.
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NavCam: Classification Discrepancy and Timing

15

Platform Total # missed pixels 
out of 322 images
(513 x 513 pixels per 
image)

Runtime (per image)

Linux 0 1,886 ms

Snapdragon CPU 23 (0%) 6,258 ms

Snapdragon GPU 373,464 (0.4%) 2,233 ms

Snapdragon DSP
(w/ run-time quantization)

7,867,709  (9.3%) 192 ms

/3

/11

- Were not able to pre-quantize the model so could not run on NPU
- Using run-time quantization increases network initialization time, peak 

memory usage, and DLC file size. Accuracy may also be affected.
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• What: Model for inferring high-resolution data from low-resolution 
data

• Applications: improved rock and mineral identification for onboard 
data sub-selection

• Details:
– Data: 85-band AVRIS-NG data from 5-band ASTER data

• AVIRIS-NG = Airborne Visible IR Imaging Spectrometer Next Generation
– ASTER (Advanced Spaceborne Thermal Emmision and Reflection Radiometer) 

data
– Model: DCGM (Deep Gaussian Conditional Model) [SRes]

• Runtime:
– Inference on Snapdragon DSP/AIP is twice as slow as running on the 

Snapdragon CPU
• 45 vs 21 ms per input
• This is most likely due to the small size of the model and single-pixel 

nature

Super Resolution for Spectroscopy

Remote Spectroscopic 
Measurements of Cuprite, 

Nevada [SRes]

● [SRes] A. Candela, D.R. Thompson, D. Wettergreen, K. Cawse-Nicholson, S. Geier, M.L. Eastwood, R.O. Green, “Probabilistic Super Resolution 
for Mineral Spectroscopy”. Proc AAAI Conf. on Artificial Intelligence Vol. 34, No. 08, pp. 13241-13247, 2021.
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• Autonomous Sciencecraft Experiment 
(ASE on EO-1)

– Flew SVM 2005-2017
– Flew Random Forest, Salience, Bayesian Thresholding 

2017
– Onboard image analysis for intelligent downlink and 

autonomous retargeting

• Intelligent Payload Experiment (IPEX)
– CubeSat mission
– Flew Random Forest, Salience 2013-2014

• PhiSat-1 (2020 - 2021)
– CubeSat mission from the European Space Agency 

[ESA]
– Flew Myriad 2 (previous generation VPU), automatic 

discard of cloudy imagery

Prior Flights: Machine Learning Inference Onboard  

Earth Observing-1 (EO-1) Mission 
(ai.jpl.nasa.gov)



Flying Other AI
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Summary
● General Algorithms

○ Fast Fourier Transform Benchmarks
○ Matrix Multiplication Benchmarks

● Instrument Processing
○ Synthetic Aperture Radar (SAR) Image Formation
○ Hyperspectral Compression
○ High-Order Wavefront Sensing
○ Match Filters
○ SMACC
○ Decision Trees
○ EL Stereo Vision
○ Astro Tipping
○ OWLS
○ Match Filters

● Planning Algorithms
○ MEXEC (Multi-Mission Executive)
○ CLASP (Compressed Large-Scale Activity Scheduling and Planning)
○ Copilot (M2020 Ground Scheduler)
○ SMICES Pointing Planning
○ Cloud Avoidance

19
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Porting to Android

● Most applications involve cross-compiling C/C++ code for ARMv8-A architecture

● ARM only ports are fairly straightforward
○ Some single threaded, some multithreaded

● Applications are ported to GPU, DSP and/or NPU with reasonable effort

● Some applications in python, ported using the python-for-android library provided by 

Kivy

● Eventual goal is to benchmark all applications on all processors that make sense for 

that application

20
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Fast Fourier Transform (FFT)

21
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Matrix Multiplication

Generic benchmarks: more extensive parameter changes relating to different libraries and input data sizes.

22
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Europa Lander Stereo Vision

● Application determines the relative range of 
objects in a particular image is using a set of 
images from a stereo vision camera

● Success scored on the measurement of the sum 
of absolute differences (SAD) between five 
patches in the two images

● Implemented on the Snapdragon ARM
● Dataset: 24 image pairs

○ Each image is natively at 5120x3840
● Images processed at three different resolutions:

○ Level 0: 5120x3840: 15.6 minutes
○ Level 1: 2560x1920: 2.1 minutes
○ Level 2: 1280x960: 19 seconds

23

Stereo Vision Depth Map Example
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Stereo Vision 

● Stereo vision runtimes over one 384x512 pixel image
● Run over the Snapdragon CPU, GPU, DSP, and a RAD750
● Further improvement possible on the Snapdragon by utilizing Qualcomm’s libraries

24

Snapdragon CPU Snapragon
GPU

Snapdragon DSP RAD750

SISD NEON SISD HVX Estimate

Runtime (ms) 95.78 39.24 244 172.92 42.40 12400

Power (W) 4.55 4.57 2.00 1.80 2.35 10

Energy (J) 0.44 0.18 0.49 0.31 0.10 124
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Decision Trees - Thermal Anomaly Detection

● Decision tree logic to detect high thermal emissions 
(lava, wildfires) using radiance band ratios 

○ (Human expert constructed trees Davies et al. 2006 
RSE)

● Classifies into hot and extremely hot pixels utilizing 
multiple radiance bands

● Run over Aviris-NG data
○ Image size 4500x390x425

● Implemented on the ARM and GPU of the 
Snapdragon

○ ARM runtime: 21s (cryosphere and lava)
○ GPU runtime: 13s (cryosphere and lava)

25

Skysat image of  the Fagradalsfjall volcano in Iceland
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● Decision tree based on cryosphere detection
(human expert constructed tree Doggett et al. 2006 RSE) 

● Classifies clouds, water, snow, ice, and land within an 
image

● Run using AVIRIS-NG data over Alaska
○ Image size 4500x390x425

● Implemented on the ARM and GPU of the Snapdragon
○ ARM runtime: 21s (cryosphere and lava)
○ GPU runtime: 13s (cryosphere and lava)

26

Decision Trees Cryosphere Detection

AVIRIS-NG 
image of Alaska
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Random Decision Forest - Thermal Anomaly
● Random Forest to detect thermal anomalies in images using 

radiance band ratios
● Classifies into the binary classes of thermal anomaly and not 

a thermal anomaly
● Run over Planet Skysat data (4 bands: Red, Green, Blue, 

NIR)
● Image labels were generated from radiance band ratios 

established by Ashley Davies
● Training Dataset: 13 images

○ Image size: ~ 4x10,000x12,500, pixel size = 50cm
○ 11 of Fagradalsfjall
○ 2 of Kilauea

● Test Dataset:
○ 4,000,000 pixels from a Fagradalsfjall image

● RDF: number of trees: 1,300 trees (100 trees trained on each 
training image), max depth: 10, weights equalized by class

● Runs single threaded on the CPU
● Runtime: 10.5 minutes

27

Skysat image of  the Kilauea volcano in Hawaii
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High Order WaveFront Sensing (HOWFS)
● Python implementation of HOWFS for Roman Space 

Telescope Coronagraph Instrument

○ Onboard processing would facilitate the mission

○ Faster processor is necessary for onboard processing

● Single threaded non-optimized port - Currently a little slow

○ Original double precision code took 2.2 hours

○ Moving to single precision took 1.8 hours

● Further Work

○ GPU

○ Multi-thread

○ Move from Python (allow easier use of specialized hardware)

28
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Synthetic Aperture Radar (SAR) Image Formation
● Image Processing pipeline from Uninhabited Aerial 

Vehicle SAR (UAVSAR) instrument

● A pipeline of 3 ARM applications, 2 GPU 
applications

○ Mainly a row-wise and column-wise 2D FFT with filters 
applied

● Goal of <240 Seconds (~ real time)

● Image Size: 27916x26880

● Currently takes 217 seconds

○ Could possibly be further improved, as GPU usage is 
only at about 60%

The Rosamond Calibration Array (RCRA), 
located near the south beach of Rosamond 
Dry Lake Bed in California.

29
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Match Filters
● Running on images from the Airborne Visible / 

Infrared Imaging Spectrometer (AVIRIS)

○ Images of Cuprite site in 2014

● Currently running only Kaolinite, Calcite and Alunite 
detection

○ Plan to expand to ~20 minerals

● Runs on ARM only, single threaded

● Much of the runtime is I/O, so multithreading has 
modest effect

● Image Size: 670x2512x425

● Runtime through 8 images on 1 mineral on the graph

○ ~850s on Snapdragon ARM

https://www.jpl.nasa.gov/missions/airborne-visible-infrared-imaging-spectrometer-aviris

30
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Lunar Match Filters

● Running on a dataset of modified M3 imaging 
spectrometer images of the Karpinsky feature of the 
moon

● Aims to demonstrate the detection of volatile water 
molecules on the lunar surface

○ Currently running on different forms of water (OH, 
molecular H2O, and H2O ice)

● Runs on ARM only, single threaded

● Performance mirrors Match Filters

● Image size 304x1000x301

● Runtime 108.4s
31

https://photojournal.jpl.nasa.gov/catalog/PIA2323
6
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Hyperspectral Compression
● Benchmarked on test images for Earth Surface Mineral Dust Source Investigation (EMIT)

● 64 lines, 640 samples per line, 481 spectral bands

● ARM only port, GPU port in progress

● MSamples/sec = lines * samples per line * bands / runtime

● EMIT Target is 23.1 MSamples/sec (near real time) Image from https://earth.jpl.nasa.gov/emit/instrument/overview/

32

CPU GPU DSP Virtex-5 GTX 580

CCSDS Standard 123.0.B-2 123.0.B-1 123.0.B-2 123.0.B-1 123.0.B-1

Compression Lossless

Runtime (ns) 14.12 6.5 184.5 25 16.18

Sample Rate 
(MSamples/sec) 70.82 153.85 5.42 40.00 61.80

Power (W) 6.1 3.5 1.9 2 >100
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SMACC

● Sequential Maximum Angle Convex Cone 
(SMACC) spectral endmember extraction

● Snapdragon implementation run with AVIRIS-
NG Data

● Extracts the top 5 endmembers from the data
● Can be used to extract radiance values that 

match with minerals and other materials
● Image Size: 638x679x425
● Runtime: 16.9 seconds
● Based on D. Thompson et al. 2012 TGARS

33

Example endmember reflectance values compared to mineral 
reflectance base values
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Landing Vision System/Astrotipping

● Landing Vision System currently 
implemented as a hybrid FPGA + 
Processor solution

● Problem divided into COARSE and FINE 
modes

● COARSE
○ Run on 1024x1024 image
○ Image Warping
○ Match to template (FFT)
○ Runtime: 2.46s

● FINE
○ Run on 1024x1024 image
○ Normalized Cross Correlation
○ Runtime: 2s

● Implemented on the Snapdragon ARM

34
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Ocean Worlds Life Surveyor (OWLS) autonomous algorithms● Project aimed at autonomously detecting 
signatures of life in water at the molecular and 
cellular scale

● Algorithms process data from different 
instrument bands from instruments aboard the 
OWLS instrument

○ They process and prioritize autonomous data 
science products (ADSPs) to send the most 
scientifically viable subsets of information back

● Implemented on the ARM of the Snapdragon
○ Multithreaded version is in progress

● Dataset: 24 images, 1024x1024
● Runtime: 22.5s

35
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ESPRIT

● ESPRIT is a method to detect signal 
interference 

- Algorithm requires eigen-decomposition of 
20x20 to 100x100 matrix.

● The compute capability required for ESPRIT 
was too prohibitive with the 50MHz SPARC 
(LEONv3) softcore available on the modem 
FPGA.

● Snapdragon can detect this interference 
and configure nulling filters present on the 
modem FPGA (or in software for software 
defined radios).

● Implemented in Python
● Runs single threaded on the CPU
● Runtime: 20 minutes

36
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ESPRIT Runtimes

37

Config. 
ID

LEON3 No 
FPU,

No HW 
MUL/DIV

LEON3 with 
FPU, no HW 

MUL/DIV

LEON 3 with 
FPU and HW 

MUL/DIV

Snapdragon 
8155

(Single 
Threaded)

Snapdragon 
8155

(Multi 
Threaded)

A 150 s 74 s 15 s 1.320 s 0.477 s

B 60 s 23 s 6 s 1.049 s 0.441 s

C 36 s 14 s 4 s 0.988 s 0.425 s

D 24 s 9 s 2 s 0.959 s 0.418 s

E 5 min ? ? 2.841 s 0.587 s

● Comparison of Snapdragon performance to LEON 3 processors
● Dataset comprised of recordings of tone interference on the uplink of an Iris radio
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Delay Tolerant Networking (DTN)

● The additional memory space and 
compute power of the Snapdragon 
makes it possible to implement the 
delay tolerant networking (DTN) 
algorithm onboard

○ Algorithm works by traversing a 
graph to setup a relay network, and 
to find the next node to forward 
data to

○ Uses Dijkstra’s algorithm to identify 
the best nodes to forward data

● Implemented in Python
● Runs single threaded on the CPU
● Runtime: 35 minutes

38
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Planning/Scheduling FSW on Conventional Flight CPU's
● AI-based Planners have flown onboard spacecraft as early as 1999
● Remote Agent Experiment onboard Deep Space 1 flew for 48 hours (Jonsson et al. 2000)

○ Demonstrated closed-loop, goal-based commanding and batch replanning onboard a RAD 6000 PPC
● The Autonomous Sciencecraft Experiment flew CASPER on Earth Observing 1 for over 12 years 

(2003 - 2017) (Chien et al. 2005)

○ Encountered limited observability, limited memory, and limited CPU constraints onboard a Mongoose V 
(enhanced version of RAD 3000; no FPU)

○ “Continuous replanning” in response to state changes and goal adds/deletes
● Intelligent Payload EXperiment Cubestat (IPEX) in 2013 flew CASPER (Chien et al. 2016)

○ Used an 200 MHz Atmel ARM9 (no FPU) running Linux 

● ASTERIA was a 6U Cubesat running Linux on a Cortex 160 (Troesch et al. 2020)

○ Ran several MEXEC scenarios, encountered similar RAM and CPU limitations

39
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SMICES Pointing Planning 
● SMICES Point Planning is the Smart Ice Cloud 

Sensing (SMICES) storm targeting planner
● Running on the Caribbean region of a Global 

Weather Research and Forecasting (GWRF) 
model’s simulated data

● Uses a radiometer to identify cloud types in the 
orbit path and schedules a radar for further 
imaging

● Scientists define the value of each cloud type
● Generates an observation list based on the 

constraints of the radar and available clouds
● Run over 15,232 timesteps (1 timestep = 2 

seconds, ~8.5 hours simulation time)
● Runtime of 53.6 seconds on Snapdragon ARM

40

Radiometer 
derived 
classification

Instantaneous
Radar reachability

Reachability swath
aka
Algorithm “knowledge window”
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Cloud Avoidance

● Algorithms developed to avoid imaging clouds while in orbit 
given a lookahead and instrument view

● Run over 50 images with dimensions 1354x2030
● Four algorithms developed

○ Greedy search
■ Median Runtime Per Image: 49.7 ms 

○ Graph search
■ Three Implementations

● Adaptive Grids
○ Median runtime per image: 199.2 ms

● Mixed Grids
○ Median Runtime Per image: 13.7 ms

● Fixed Grids
○ Median runtime per image: 9.7 ms

● Implemented in Rust for the Snapdragon ARM

41

Visualizations of the two cloud avoidance algorithms
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MEXEC
● Separately threaded Planner and Executive

● Takes “Task Network” as input

○ Set of state timelines, task templates, and 
tasks 

● Generates conflict free plans and monitors task 
execution, responding to deviations or exogenous 
events

Image from https://ai.jpl.nasa.gov/public/projects/mexec/

42
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MEXEC Benchmark Scenario

● MEXEC consists of multiple components, but the most computational demanding is the planner, so that is 
used for benchmarking purposes.

● MEXEC also runs continuously on a cycle, for benchmark purposes we only time the first plan generation.

● As a benchmark, we use the Europa Lander Prototype test scenario (Wang et al. 2020)

● Multi-day schedule, exercises hierarchical planning, valid interval search, constraint satisfaction, etc.

● Running as a single threaded ARM application

43
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MEXEC Results

44

Sabertooth
(scaled to final clock 

speed)

Snapdragon 
8155 ARM

92s 1.6s
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CLASP
● CLASP is the Compressed Large-scale Activity Scheduler and Planner

● CLASP has been used for NISAR, ECOSTRESS, EMIT, OCO3, and other missions.

● Spacecraft, instrument, and orbiting body models define the scenario

● Science Campaigns define the scientific goals

● CLASP generates an observation schedule based on the scenario constraints

ECOSTRESS schedule portion of the Contiguous United States 45
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CLASP Benchmark Scenario
● For our benchmark, we generate 2 years of 2 week schedules using ECOSTRESS data from 2018-2020

● We generate a single 2 week schedule to collect our timing metric faster

● Currently CLASP is single threaded on the Snapdragon ARM

○ CLASP performs a large amount geometric reasoning to compute feasible observations (target 
visibility) which could benefit greatly from GPU acceleration (in progress).  Visibility computations 
are independent in overflight time so can be parallelized in that dimension.

46
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CLASP Results

47



jpl.nasa.gov

Copilot
● M2020 ground scheduler; currently in use for M2020 operations for scheduling wake/sleep and preheats 

● Uses the same scheduling algorithms as the M2020 onboard scheduler

● Challenges include wake/sleep constraints, preheat constraints, variability in execution, and complex 
operations handover handling.

Image from https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/ 48

Plan for sol type “medium drive with post drive imaging”
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Copilot Benchmark Scenario

● For this benchmark, we are running with ~800 x 1 martian day (or sol) planning problems that are 
generated by random variation of 7 base plans or “sol types”

○ Vary execution durations, incoming/outgoing energy state, and alternative action options

● Copilot has a single threaded and multithreaded version

○ Large problem already split into 800+ small problems, so easy to parallelize

● Benchmarked against SBC2 using 1 core, 8 cores (to match 855) and 20 cores

49
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Copilot Results

● Runtime of processors on the Copilot benchmark problem

○ Top: Serial

○ Bottom: Parallelized

● On the Intel, all 10 cores 2.5GHz 
On the Snapdragon, 8 cores range from 1.8-2.8 GHz 

● Generates 800 variants, so Snapdragon takes <1s per 
generated plan in parallelized results

50
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Future Work
● Measure additional computing performance metrics

○ Power/Energy Consumption

○ RAM Footprint

● Benchmark on additional processors:

○ LEON4 Sabertooth, RAD/PPC 750, NVIDIA Jetson Nano, and more

● Parallelize Applications across multiple cores

● Make greater use of hardware acceleration

○ GPU, DSP, NPU as applicable

● Port more applications - see next slide

51
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Future Planned Applications
● Normalized Difference Index Science Product Generation

● Volcanic plume detection

● TIR (ECOSTRESS) Data Processing Pipeline

● VSWIR (EMIT) Science Data Processing Pipeline

● Sensorweb Tasking

● Surface Wa980—ter Extent (SWE)

● and more!

52
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Conclusion
● Ported machine learning, instrument processing, scheduling, and benchmark applications

● Benchmarked above on problems on

○ Qualcomm Snapdragon 855

○ Intel Movidius

○ Intel Linux Benchmark

○ Sabertooth 

○ Rad 750

○ NVIDIA Jetson Nano

● Working towards measuring runtime performance, power/energy, RAM against other flight processors

● Work intended to facilitate future flight of these capabilities to enable future single and networked 
autonomous spacecraft missions.

53

in progress!
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