

Benchmarking Deep Learning On a Myriad X Processor Onboard the International Space Station (ISS)

Léonie Buckley (Ubotica) and Emily Dunkel (JPL)

Flight Software Workshop 2022

[©] Copyright 2022, California Institute of Technology, All Rights Reserved. This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Onboard Deployment of Deep Learning Models

- Future space missions will need more powerful onboard autonomy to meet mission and science objectives
 - Time delay between earth and space system can be prohibitive to mission goals
 - Deep learning is state of the art in computer vision [DL]
 - Can commercial off the self computer systems withstand harsh space environments?
- Objective: Demonstrate deployment of deep learning to a Myriad X processor on HPE's Spaceborne Computer-2 payload onboard the ISS

HPE's Spaceborne Computer-2

Team

- Ubotica
 - Léonie Buckley
 - Dr. Jose Luis Espinosa-Aranda
 - Juan Romero-Cañas
 - Elena Hervas-Martin
 - ML algorithms: Elena Hervas-Martin
- Jet Propulsion Laboratory, California Institute of Technology
 - Dr. Emily Dunkel
 - Jason Swope
 - Dr. Zaid Towfic
 - Dr. Steve Chien
 - Dr. Damon Russell
 - Dr. Joseph Sauvageau
 - Dr. Douglas Sheldon
 - ML algorithms: Dr. Kiri Wagstaff, Steven Lu, Dr. Emily Dunkel, Dr. Michael Denbina, Dr. Zaid Towfic
- Hewlett Packard Enterprise
 - Dr. Mark Fernandez
 - Carrie Knox

Outline

- Myriad X Processor and Model Porting
- ISS Experiment
- Machine Learning Models and Myriad Results
- Prior Flights: Machine Learning Inference Onboard
- Future Work and Conclusions
- References

Myriad X Processor

16 VLIW SHAVE vector cores
2 Deep neural network processing
units: NCE
Dedicated Imaging and Vision
hardware accelerators

Up to 4 TOPS 1 TOPS of dedicated Neural Networks Compute

Software reconfigurable hardware—software platform

Ideally suited for in-orbit Low thermal budget Low power budget (~1.5 W)

Previous generation Myriad 2 flew on ESA's Phi-Sat [ESA]

Credit: Intel Movinius

Porting the models to Myriad X

ISS Experiment

Overview

- Objective: Demonstrate in space deep learning inference for future missions
 - Onboard processing could allow for autonomous targeted data collections and downloads, and decision making
- ISS Experiment
 - HPE's Spaceborne Computer-2 (SBC-2) delivered to the ISS onboard Cygnus NG-15: February 20, 2021
 - Powered on: May 12th 2021
 - Two Intel Myriad X VPU's have been delivered and integrated with SCB-2
 - Hosting of Myriad processors is enabled by HPE's SBC-2
 - A set of deep learning algorithms have been run onboard the ISS
 - Two Qualcomm Snapdragon 855 HDK's have also been delivered and integrated with SBC-2
 - See presentation by Jason Swope (JPL)
- Sponsored by the Earth Science Technology Office (ESTO)

Snapdragon

Myriad

Experiment Setup

Hewlett Packard Enterprise
100 N. Cashman Dr.

HPE Ground Testbed

2. JPL Tests

HPE Flight Testbed (Ground)

3. HPE Tests

HPE: Chippewa Falls, WI

JPL + Ubotica

Develops and Tests

5. Results \rightarrow JPL

Machine Learning Models and Results

Machine Learning Models Ported and Run on ISS

Objective: Deploy machine learning models for inference on a Myriad X onboard HPE's Spaceborne Computer-2 onboard the ISS

We will show a range of the models that can be deployed

- Mars HiRISE Classifier
- Mars MSL Classifiers (2)
- UAVSAR Flood Mapping
- Ship Segmentation
- DDR Test

Mars HiRISE: Deep Learning for Landmark Classification

- What: Mars surface feature classification using orbital imagery
- Applications: autonomous data collection, targeted downloads, commanding space assets, science interpretation

Details:

- Data: Imagery collected by the HiRISE instrument onboard the Mars Reconnaissance Orbiter (MRO) [PDS]
- Model: Transfer learning from AlexNet [Mars1, Mars2, DL]

Example of HiRISE Classes

Mars MSL1: Deep Learning for MSL Imagery

- What: Mars rover image classification
- Applications: onboard navigation, science interpretation
- Details:
 - Data: Collected by the Mast Camera and Mars Hand Lens Imager instruments on MSL Curiosity rover [PDS]
 - Model: Transfer learning from AlexNet [Mars1, Mars2, DL]

Drill Hole

Sun

Mars MSL 2: Deep Learning for Object Classification

- What: Rover part classification
- Applications: spacecraft health analysis
- Details:
 - Second classifier in a chain that classifies images from MSL Curiosity rover [PDS]

Observation Tray

Rear Rover Deck

Results for the 3 Mars Classifiers

Model	Model Size (MB)	Number images	Quantization Discrepancy*	Incorrect bits in-flight	Inference Time Per Image (ms)	FPS
HiRISE	121	1,793	2 (0.11%)	0	16.14	61.95
MSL 1	121	600	3 (0.5%)	0	16.09	61.11
MSL 2	121	1305	3 (0.2%)	0	16.077	62.2

*Compared to laptop run

HiRISE on PC - 56.9 ms/17.5 FPS

UAVSAR: Deep Learning for Flood Mapping

What: Pixel-wise flood classification of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) imagery

Applications: flood mapping, alert generation

Details:

Data: UAV polarimetric SAR data from Hurricane Harvey

real-time = 5.13 patches/second

Surface water extent model

Model: UNET-6 fully convolutional model [UAVSAR, UNET]

Hurricane Harvey Classified Image

UAVSAR: Quantization Discrepancy and Timing

Model	Model Size (MB)	Number images	Quantization Discrepancy: # missed pixels (out of 5058*2323 pixels) Full Classification / Binary Classification	Incorrect bits in-flight	Inference Time Per Image (ms)	FPS*
UAVSAR	4.3	3,633	184,820 (1.56%) / 82,519 (0.70%)	0	6	166.6
0						

*200 ms per image 1.3 images/second to meet real time

25 image patches per second on Linux

CPU-Keras output v Myriad X output

Ship Segmentation: Detection in Satellite Imagery

- What: Fast ship detection in satellite imagery
- Applications: situational awareness
- Details:
 - Data: Kaggle Airbus dataset
 - Model: UNET + MobileNetV2 backbone, 8 SHAVES [UNET, Mobile]
- Myriad timing:
 - Model Size 14.8 MB
 - 98 ms / image, 10.2 FPS
 - images of size 320 x 320 pixels

Airbus Ship Detection Dataset https://www.kaggle.com/c/airbus-ship-detection/data

Myriad X DDR test

Write pattern to DDR, read back and calculate memory bit errors

Provides full coverage of 512MB DDR

No in-flight errors recorded thus far

- Test 1 Write address value to address
 - 0x80000000 to 0x80000000
- Test 2 Write XOR of address value to address
 - 0x7FFFFFFF to 0x80000000
- Test 3 Marching test of 63 rounds
 - Check flipping of bits from 0 1 and 1 0.
 Same pattern written to each address each round

Prior Flights: Machine Learning Inference Onboard

- Autonomous Sciencecraft Experiment (ASE on EO-1)
 - Flew SVM 2005-2017
 - Flew Random Forest, Salience, Bayesian Thresholding 2017
 - Onboard image analysis for intelligent downlink and autonomous retargeting
- Intelligent Payload Experiment (IPEX)
 - CubeSat mission
 - Flew Random Forest, Salience 2013-2014
- PhiSat-1 (2020 2021)

 - CubeSat mission from the European Space Agency [ESA] Flew Myriad 2 (previous generation VPU), automatic discard of cloudy imagery

Earth Observing-1 (EO-1) Mission (ai.jpl.nasa.gov)

jpl.nasa.gov

Future Work / Conclusions

- Continually benchmarking new deep learning models on the Myriad X processor on SBC-2 onboard the ISS
 - Upcoming models include:
 - Volcano eruption detection
 - Viable road classification for disaster relief
- We have demonstrated fast and accurate inference with the Myriad X
 - Step toward new era of more complex and powerful processing with edge computing

References

Intel Movidus X Processor

https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html

HPE's Spaceborne Computer-2

https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html

Machine Learning References

[DL] Krizhevsky, Sutskever, Hinton. 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25, 1097-1105.

[PDS] https://pds-imaging.jpl.nasa.gov/search

[Mars1] Wagstaff, Lu, Dunkel, Grimes, Zhao, Cai, Cole, Doran, Francis, Lee, Mandrake, 2021. Mars Image Content Classification: Three Years of NASA Deployment and Recent Advances. Innovative Applications of Artificial Intelligence, 33.

[Mars2] Wagstaff, Lu, Stanboli, Grimes, Gowda, Padams. 2018. Deep Mars: CNN Classification of Mars Imagery for the PDS Imaging Atlas. The Thirteenth AAAI Conference on Innovative Applications of Artificial Intelligence. 7867-7872.

[UAVSAR] Denbina, Towfic, Thill, Bue, Kasraee, Peacock, Lou, Flood Mapping Using UAVSAR and Convolutional Neural Networks. IEEE Xplore 2020

[UNET] Ronneberger, Fischer, Brox, 2015. U-net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241.

[Mobile] Sandler, Howard, Zhu, Zhmoginov, Chen, 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. CVPR 2018.

[ESA] https://www.esa.int/Applications/Observing_the_Earth/Ph-sat

jpl.nasa.gov

