International Workshop on Planning & Scheduling for Space, 2025 (Presentation Only)

Search Applications for Integrated Planning and Execution of Satellite Observations using Dynamic Targeting

Akseli Kangaslahti, Itai Zilberstein, Alberto Candela, Steve Chien

Jet Propulsion Laboratory California Institute of Technology

Dynamic Targeting Concept

- Dynamic Targeting (DT): use look-ahead sensor to optimize plan for agile primary sensor
 - Identify high utility targets to observe
 - e.g. storm features
 - Identify low utility targets to avoid
 - e.g. clouds

Related Work

- Operational:
 - FORMOSA-2: examine weather (Liao and Yang 2005)
 - TANSO-FTS-2: avoids clouds (Suto et al. 2021)
 - EO-1: modified schedule (Chien et al. 2005)
- Non-operational:
 - Greedy algorithms (Chien and Troesch 2015)
 - Storm hunting, cloud avoidance (Swope et al. 2021; Candela et al. 2022; Candela, Swope, and Chien 2022, 2023)
 - Tree-search, dynamic utility, slewing (Kangaslahti et al. 2024)

Dynamic Targeting Challenges

Model Definition

Discretized Dynamic Targeting

- *H:* Planning horizon composed of *n* cycles
- c: Time between cycles
- D: Set of look-ahead views

Model Definition

- C: constraints
 - Power: can only observe with sufficient charge ۲
 - Slew: rest-to-rest time w/ acceleration & max velocity (slew can span multiple cycles) •
- A: actions
 - Observe: discharge battery (optional slew) ۲
 - Wait: recharge battery (optional slew) ۲

Model Definition

• U: utility function

- Base utility 4^L where $L \in \{0, 1, 2\}$ is pixel class
- Linear off-nadir penalty relative to distance
- After observation, apply Gaussian kernel and linearly recover utility over time

Goal:

- Construct a plan π = (a₀, ..., a_{n-1}) where a_i ∈ A such that C is satisfied and U is maximized
- One action per cycle

Ring due to off-nadir penalty Brighter colors = higher utility

State Space

- State:
 - Sensor position
 - State of charge
 - Look-ahead view / time / cycle
 - Utility function
- Search tree:
 - States are nodes
 - Actions are edges
 - Each depth corresponds to a cycle
- Exhaustive search: $O((m^2)^d)$
 - *d:* search depth (number of cycles)
 - *m*: diameter of reachable range of sensor

Algorithms

- Nadir Only (NO): observe nadir when sufficient power
- Greedy (G): locally optimal action
- Beam Search (BS): k locally best actions
- Partitioned Depth-First Search (PDFS): best action in *k* spatial partitions
- Monte-Carlo Tree Search (MCTS): UCB
- A*: *h* = Upper bound (admissible)
- Upper Bound (UB): infinite slewing capability and non-decreasing utility
- Re-planning: each cycle, prune search tree and continue planning with new look-ahead
- Theoretic Results:
 - PDFS, BS, A*: *O*(*m*²*k*^{*d*})
 - Locally optimal action in searched space: BS, PDFS, A* ≥ G

Experiments

- Datasets:
 - GPM: Storm hunting
 - MODIS: Cloud avoidance

from https://www.eoportal.org/satellite-missions/gpm

Parameter	Value	Description
Primary	15°	Max off-nadir angle
Sensor		for primary sensor,
Range		from SMICES
		(Swope et al. 2021)
Look-ahead	45°	Off-nadir angle for
Sensor		look-ahead sensor,
Range		from SMICES
		(Swope et al. 2021)
Power	1%/	Rate at which
Recharge	cycle	battery power
Rate		increases
Power	1%/	Rate at which
Discharge	obs	battery power
Rate		decreases during
		cycles when an
		observation is
		made
Cycle	3s	Total time allocated
Time		for each cycle
Gaussian	75 km	Size of Gaussian
Kernel	×	kernel used in
Size	75 km	utility models
Gaussian	15 km	Standard deviation
Kernel		of Gaussian kernel
Standard		used in utility
Deviation		models
Angular	$1.08^{\circ}/s^{2}$	Angular acceleration
Acceleration		of slewing along the
		pitch and roll axes. The
		value we use is
		realistic for small satellites
Maximum	5.40°/s	The maximum angular
Angular		velocity of slewing
Velocity		along the pitch and roll
		axes. The value we use is
		realistic for small satellites
Processing	0.1 s	Amount of time allocated
Time		for observation acquisition
		and processing
Minimum	0.25	The minimum utility
Utility		multiplier in our
Multiplier		utility model
Maximum	20%	Penalty for an observation
Off-Nadir		as far off-nadir
Penalty		as possible

Planning vs. Execution

- Compute resources onboard are scarce
- Planning action for next cycle cannot take longer than c
- Planning time subtracted from available slew time
- Tune search parameters (d, k) to trade-off search vs. execution

Table 2: Optimal Parameters Found during Parameter Selection

	GPM Data set	MODIS Data set
BS	Depth = 3, Width = 3	Depth = 7, Width = 3
PDFS	Depth = 5, Width = 3	Depth = 5, Width = 5
MCTS	Depth = 4, Width = 2	Depth = 4, Width = 5
A*	Depth = 3, Width = 2	Depth = 7, Width = 4

Table 3: Maximum Single Cycle Run-Time during First Parameter Sweep for Optimal Parameters (ms)

	GPM Data set	MODIS Data set
BS	40.7457	475.0683
PDFS	172.4098	484.0328
MCTS	100.7869	30.8206
A*	36.8192	441.7007

Results

Table: Total Accrued Utility

	GPM Data set	MODIS Data set
NO	16098	34713
G	19901	37521
BS	23960	43555
PDFS	24614	43238
MCTS	22488	41273
A*	23992	43070
UB	37953	71038

Figure 6: Total utility accrued vs. cycle number for all planning algorithms in GPM final testing (top) and MODIS final testing (bottom).

Conclusion

- Tree-based search algorithms outperform previous work
- Trading off planning and execution time important to DT
 - Slewing + observing dominates execution time
- Future work:
 - Anytime algorithms
 - Continuous search space
 - Dynamic environments & uncertainty
 - Execute DT onboard a satellite (coming soon!)
- Apply DT to other domains

jpl.nasa.gov

Portions of this research were carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). This work was supported by the Earth Science and Technology Office (ESTO), NASA. CC BY-NC-ND 4.0.