Cooperative Autonomous Distributed
Robotic Exploration (CADRE)

Lunar Leader:
Persistent, Optimal
Leader Election for

Multi-Agent Exploration
Teams

Keenan Albee, Sriramya Bhamidipati, Federico Rossi,
Joshua Vander Hook, Jean-Pierre de la Croix

Jet Propulsion Laboratory, California Institute of Technology

Presented at the

International Workshop on Autonomous Agents and Multi-
Agent Systems for Space Applications (MASSpace '24)

Auckland, New Zealand

May 7, 2024

X Jet Propulsion Laboratory
¥ California Institute of Technology

r"

World Model
Sync

Coordination Architectures: figures of merit

1. Bandwidth

How many messages are exchanged

among agents? Monarch: O(n);
flooding: O(n?)

4. Scalability
Will this work for 10, 100, 1000
agents?

2. Interpretability

How easy is it to understand a given
system behavior?

Is it emerging, or can it be attributed
to a specific line of code on an
agent?

5. Consistency

Can agents make inconsistent
decisions (e.g., two agents assigned
to the same task)?

3. Expressivity

How hard is it to encode our problem
in the distributed system?

Do we need to carefully design local
behaviors, or can we just solve a
centralized optimization problem?

6. Resilience

What happens when an agent is lost?

Coordination Architectures

Monarch

Bandwigdth erpretability

Resilience EXpressivity

Consiste alability

Resilience

Explitit Coordination

Bandwigdth

Resilience

Consiste

Bandwidth

erpretability

Expressivity

Elected Leader

Expressivity

Bandwigdth

Implicit Coordination

Bandwidth

erpretability

Expressivity

5

erpretability

Expressivity

jpl.nasa.gov

Coordination Architectures

Elected Leader

erpretability

Resilience

Consistet Scalability

Coordination Architectures

Elected Leader

erpretability

O(n log(n) + E) for leader election, Deqisions are not emerging but
O(n) for subsequent decisions attributable to the leader

Resilienc EXpressivity

Recovery from leader loss Can solve any centralized
requires re-election decision-making problem
transparently

Decisions are consistent so long Consiste

as agents agree on the leader

Assumptions and Requirements

Assumptions 4
» Agents have unique IDs _L st Leader
« Each agent has a list of neighbors Electi on

« Communication is asynchronous
but reliable (messages are not lost)

Requirements
 All agents agree on one leader

* |f leader is lost, a new leader is
selected within specified timeframe
(nominally, 10 [s])

* | eader iIs selected based on health
metrics

PS&E Manager

Concept of Operations

1. Leader election runs continuously in
background

2. A unigue agent is selected as “Appointer”

3. Appointer queries all other agents for health
metrics (convergecast)

4. Appointer appoints leader and informs all
agents (broadcast)

5. Process repeats periodically as a failsafe
(e.g., leader has died)

Rationale: decouple (i) finding a unique agent
from (i) finding the best leader, making leader
selection a centralized problem

Request for _
: entrypoint to
leader election . .
leader election

/_Z/ startup

...............................

leader election:
"Appointer"

: core
: leader election/
selection

leader selection:
: "Appointer
: \appoints Leader"

Leader changed

PS&E
process shutdown;
update Leader;
process transfer

new Leader
configured

PS&E
process startup
on leader

10

Selecting the Appointer: GHS

e Fach rover and the base station is a
GHS agent that only interacts with the

How should I respond to
msg xxx based on

world through messages from/to o
neighbors o 5 .
» Messages are delivered in order but -
can have arbitrary delays Q
send /receive msg traffic incident edg
« Each agent only knows its neighbors’ NI / R N L7
» Somehow, an algorithm needs to allow 5

these uncoorqllnate“d agents 1o all A GHS Agent's View of
agree on a unigque “Appointer the World

11

Selecting the Appointer: GHS

Distributed Minimum Spanning Tree using Gallager,
Humblet, and Spira;s algorithm
Intuition: recursively merge trees log(n) times.

0. Everyone is root (M) of its own one-
node subtree

1. Ping neighbors to find edge cost, send
to root along own subtree’s MST

2. Nearest™ neighbor subtrees merge
“defined by edge cost

3. Repeat

up to log(n) times

»
»

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight spanning trees,” ACM Trans. Program.
Lang. Syst., vol. 5, no. 1, pp. 66-77, Jan. 1983, doi: 10.1145/357195.357200. 12

https://doi.org/10.1145/357195.357200

Selecting the Appointer: GHS

 Start with a forest of single GHS agents; initialize each to a level; set
leader of this component

.
‘e
*e
.
.
.,
‘e
.
*e
.
0

‘e
.,
‘e
.
.
*e
.

component, C;
......................... _,edge, €; {level I

Q component leader

jpl.nasa.gov

Selecting the Appointer: GHS

 Build up using repeated merge and absorb operations
* Very important: operations can lbbe asynchronous

\ core edge

jpl.nasa.gov

Selecting the Appointer: GHS

« Continue until No new components to probe

jpl.nasa.gov

Selecting the Appointer: GHS

« GHS output: a rooted MST, which can be used for leader election using a
unigue “Appointer” node

‘.
ot -
0
o .
. .
o 0
K .
) 3
o . .
.
o+ o .
o K 0
o o 0}
o . .
+ o)
Q .
0 . "
o .
5
+ 0
.
K
+
.
o
. K
. 8
0 .
0 .
o, 0
0 5
0 8
. K
. 8
0

e
.
.
.
.
Y
.
.
.
.
.
.
O
.

jpl.nasa.gov

Selecting the best leader

* Appointer requests health information from all agents
» Broadcast request on MST
 Wait for convergecast via MST

» Appointer decides best leader
« Appointer informs all agents of new leader via MST broadcast

jpl.nasa.gov

End-to-end leader election

® . Q
@&
“& ©
-

©® component, C; MST edge

®
O Appointer update Leader

(d) (e)

jpl.nasa.gov

| eader re-election

* |dea: re-run leader election periodically

« Concern 1: how do we ensure that messages from multiple leader election epochs
do not overlap?
* Append epoch ID to messages
« Reject messages with old epoch IDs
 Quiescent period at start of new epoch
» Leader electipn duration << leader, election period + A

0
agent, A > N
f tetart,l i t 425

=

agent, | — > §
: : 4

tepoch k=1k=2 k=N ~

tsta:rt,l tstm‘t,Q t

| eader re-election

* |dea: re-run leader election periodically

« Concern 2: what if agents’ clocks are not perfectly synchronized?
« Buffer messages near the beginning of a re-election period

msg recv'd at ¢, — [dta]: msg recv'd at £, + df;:
queued by agent, ignored by agents
0tq
agent, __—_|__—>t agent, — "
agent, _|_—>t agent, e

—
5t2 tq
tepoch k=1 k=1

| eader Election

ubuntu- L1nux-2¢ -desktop ubuntu- linux-2€ -des
.500000, w temp: 0.500000, soc norm: 0.000000, temp norm: 0.738095 .500000, w temp: 0.500000, Joc norm: 0.000000, temp norm: ©.738095

EVENT: (26887) (2024-04-29T19:08:34.814219) ACTIVITY LO: () Outputs : **¥Lead|EVENT: (26887) (2024-04-29T719:08:34.611164) ACTIVITY LO: () Outputs ¥Lead

er election is complete.*** phase: 2, start round flag : 1, recv queue: 0, leader id: 4 er election is complete.*** phase: 2, start round flag 1, recv queue: 0, leader id: 4

EVENT: (26888) (2024-04-29T19:08:35. 617397 ACTIVITY LO: () leaderIdTransmitted : Sent lead|EVENT: (26888) (2024-04-29T719:08:36.220444) ACTIVITY LO: (leaderIdTransmitted Sent lead

er change to listening components (leader id: 4) er change to listening components (leader id: 4)

EVENT: (26887) (2024-04-29T719:08:40. 038586) ACTIVITY LO: () Outputs Reset EVENT: (26887) (2024-04-29T719:08:40.038580) ACTIVITY LO: () Outputs Reset
cycle. phase: 0, start round flag ©, recv queue: 0, leader id: 4 cycle. phase: 0, start round flag : ©, recv queue: 0, leader id: 4

EVENT: (26880) (2024-04-29T19:08:40.038609) ACTIVITY LO:) GenericEvent Connected agen|EVENT: (26880) (2024-04-29T19:08:40.038609) ACTIVITY LO: () GenericEvent Connected agen

s List: 2, 3, 4 s lisE: 1;..3, 4

EVENT: (26887) (2024-04-29T719:08:41.043012) ACTIVITY LO: () Outputs Started [EVENT: (26887) (2024-04-29T719:08:41.043026) ACTIVITY LO: () Outputs Started
new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4 new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4

EVENT: (26880) (2024-04-29T719:08:44.255308) ACTIVITY LO: () GenericEvent : [] soc: O.0|EVENT: (26880) (2024-04-29T719:08:44.657048) ACTIVITY LO: () GenericEvent : []: soc: 0.6

00000, valid: 1, temp: 0.000000, valid: 1, health: 0.369048 00000, valid: 1, temp: 0.000000, valid: 1, health: 0.369048

EVENT: (26880) (2024-04-29T19:08:44.255331) ACTIVITY LO: () GenericEvent [l: w soc: O|EVENT: (26880) (2024-04-29T19:08:44.657067) ACTIVITY LO: () GenericEvent : []: w soc: €

.500000, w temp: 0.500000, soc norm: 0.000000, temp norm: ©0.738095 .500000, w temp: 0.500000, soc norm: 0.000000, temp norm: ©.738095

EVENT: (26887) (2024-04-29T19:08:44.858952) ACTIVITY LO: () Outputs : **¥Lead|EVENT: (26887) (2024-04-29T19:08:44.657197) ACTIVITY LO: () Outputs **Lead

er election is complete.*** phase: 2, start round flag 1, recv queue: 0, leader id: 4 er election is complete.*** phase: 2, start round flag 1, recv queue: 0, leader id: 4

EVENT: (26888) (2024-04-29T19:08:45.663600) ACTIVITY LO: () leaderIdTransmitted Sent lead|EVENT: (26888) (2024-04-29T19:08:46.266369) ACTIVITY LO: () leaderIdTransmitted Sent lead

er change to listening components (leader id: 4) er change to listening components (leader id: 4)

EVENT: (26887) (2024-04-29T19:08:50.087549) ACTIVITY LO: () Outputs Reset EVENT: (26887) (2024-04-29T19:08:50.082527) ACTIVITY LO: () Outputs Reset
cycle. phase: 0, start round flag 0, recv queue: 0, leader id: 4 cycle. phase: 0, start round flag 0, recv queue: 0, leader id: 4

EVENT: (26880) (2024-04-29T719:08:50.087572) ACTIVITY LO: () GenericEvent Connected agen|EVENT: (26880) (2024-04-29T19:08:50.082556) ACTIVITY LO: () GenericEvent Connected agen

tslists 2; 3,:4 ts Tist: 1, 3; 4

EVENT: (26887) (2024-04-29T719:08:51.096650) ACTIVITY LO: () Outputs Started [EVENT: (26887) (2024-04-29T719:08:51.087368) ACTIVITY LO: () Outputs Started
new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4 new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4

—2 "ubuntu-linux-20-04-desktop 3

EVENT: (26887) (2024-04-29T719:08:34.959570) ACTIVITY LO: () Outputs ¥*Lead |EVENT: (26887) (2024-04-29T719:08:35.060013) ACTIVITY LO: () Outputs ¥Lead

er election is complete.*** phase: 2, start round flag 1, recv _queue: O, leader id: 4 er election is complete.*** phase: 2, start round flag : 1, recv queue: 0, leader id: 4

EVENT: (26888) (2024-04-29T19:08:39.887698) ACTIVITY LO: () leaderIdTransmitted : Sent lead|EVENT: (26888) (2024-04-29T19:08:36.569942) ACTIVITY LO: () leaderIdTransmitted Sent lead

er ctavqe to listening components (leader id: 4) er change to listening components (leader id: 4)

EVENT: (26887) (2024-04-29T19:08:40.089345) ACTIVITY LO: () Outputs Reset EVENT: (26887) (2024-04-29T719:08:40.089400) ACTIVITY LO: (Outputs Reset
cycle. phase: 0, start round flag 0, recv queue: 0, leader id: 4 yCLE phase: 0, start round flag 0, recv queue: 0, leader id: 4

EVENT: (2 3880» (2024-04-29T719:08:40.089377) ACTIVITY LO: () GenericEvent Connected agen|EVENT: (26880) (2024-04-29T719:08:40.089425) ACTIVITY LO: () GenericEvent Connected agen

ts. tists 1; 2,4 tslist: A2y 3

EVENT (2(887 (2024-04-29T719:08:41.093328) ACTIVITY LO: () Outputs Started |EVENT: (26887) (2024-04-29T19:08:41.093080) ACTIVITY LO: () Outputs Started
new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4 new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4

[error] Could not call ghs.process(): Received SRCH msg from parent, while still waiting for replies-|[error] Could not call ghs.process(): Received SRCH msg from parent, while still waiting for replies-

-new round? -new round?

EVENT: (26880) (2024-04-29T19:08:44.004215) ACTIVITY LO: () GenericEvent : [soc: O.0|EVENT: (26880) (2024-04-29T719:08:44.004215) ACTIVITY LO: () GenericEvent : []: soc: 1.6

00000, valid: 1, temp: 0.000000, valid: 1, health: 0.369048 00000, valid: 1, temp: 0.000000, valid: 1, health: 0.869048

EVENT: (26880) (2024-04-29T719:08:44.004233) ACTIVITY LO: () GenericEvent : [l]: w soc: O|EVENT: (26880) (2024-04-29T19:08:44.004233) ACTIVITY LO: () GenericEvent : []: w soc: @

.500000, w temp: 0.500000, soc norm: 0.000000, temp norm: ©0.738095 .500000, w temp: 0.500000, soc norm: 1.000000, temp norm: ©.738095

EVENT: (26887) (2024-04-29T719:08:45.110390) ACTIVITY LO: () Outputs Lead |[EVENT: (26887) (2024-04-29T19:08:45.110425) ACTIVITY LO: () Outputs ¥Lead

er election is complete.*** phase: 2, start round flag 1, recv qu O, leader id: 4 er election is (omplete."' phase: 2, start round flag : 1, recv queue: 0, leader id: 4

EVENT: 6888) (2024-04-29T719:08:49.931609) ACTIVITY LO: () leaderIdTransmitted Sent lead |EVENT: (26888) (2024-04-29T719:08:46.617896) ACTIVITY LO: () leaderIdTransmitted Sent lead

er change to listening components (leader id: 4) er change to 1i 5t9“1hq components (leader id: 4)

EVENT: (26887) (2024-04-29T19:08:50.032459) ACTIVITY LO: () Outputs Reset EVENT: (26887) (2024-04-29T19:08:50.032584) ACTIVITY LO: () Outputs Reset
cycle. phase: 0, start round flag 0, recv queue: 0, leader id: 4 cycle. phase: 0, start round flag 0, recv queue: 0, leader id: 4

EVENT: (26880) (2024-04-29T19:08:50.032490) ACTIVITY LO: () GenericEvent Connected agen|EVENT: (26880) (2024-04-29T19:08:50.032604) ACTIVITY LO: () GenericEvent Connected agen

ts ildists A 24 ts List: 2 3

EVENT: (26887) (2024-04-29T19:08:51.037271) ACTIVITY LO: () Outputs Started |EVENT: (26887) (2024-04-29T719:08:51.037360) ACTIVITY LO: () Outputs Started
new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4 new cycle after quiescent period. phase: 0, start round flag 1, recv queue: 0, leader id: 4

Message complexity

Messages Processed

— Bl Before Dropout

4 Bl [oss of ny
I_.US\‘ Uf ns

Loss of ns

6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Messages

0 1 2 3 4 5

