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Coordination Architectures : Elected Leader
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Coordination Architectures: figures of merit
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1. Bandwidth 2. Interpretability 3. Expressivity
How many messages are exchanged 
among agents? Monarch: O(n); 
flooding: O(n2)

How easy is it to understand a given 
system behavior?
Is it emerging, or can it be attributed 
to a specific line of code on an 
agent?

How hard is it to encode our problem 
in the distributed system?
Do we need to carefully design local 
behaviors, or can we just solve a 
centralized optimization problem?

4. Scalability 5. Consistency 6. Resilience
Will this work for 10, 100, 1000 
agents?

Can agents make inconsistent 
decisions (e.g., two agents assigned 
to the same task)?

What happens when an agent is lost?



j p l . n a s a . g o v

Coordination Architectures 
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Coordination Architectures 
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O(n log(n) + E) for leader election, 
O(n) for subsequent decisions

Decisions are not emerging but 
attributable to the leader

Can solve any centralized 
decision-making problem 
transparently 

Hundreds of 
nodes in <1s

Decisions are consistent so long 
as agents agree on the leader

Recovery from leader loss 
requires re-election
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Assumptions and Requirements
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Assumptions
• Agents have unique IDs
• Each agent has a list of neighbors
• Communication is asynchronous 

but reliable (messages are not lost)

Requirements
• All agents agree on one leader
• If leader is lost, a new leader is 

selected within specified timeframe 
(nominally, 10 [s])
• Leader is selected based on health 

metrics



j p l . n a s a . g o v

Concept of Operations

10

1. Leader election runs continuously in 
background

2. A unique agent is selected as “Appointer”
3. Appointer queries all other agents for health 

metrics (convergecast)
4. Appointer appoints leader and informs all 

agents (broadcast)
5. Process repeats periodically as a failsafe 

(e.g., leader has died)

Rationale: decouple (i) finding a unique agent 
from (ii) finding the best leader, making leader 
selection a centralized problem
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Selecting the Appointer: GHS
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• Each rover and the base station is a 
GHS agent that only interacts with the 
world through messages from/to 
neighbors
• Messages are delivered in order but 

can have arbitrary delays
• Each agent only knows its neighbors’ 

IDs
• Somehow, an algorithm needs to allow 

these uncoordinated agents to all 
agree on a unique “Appointer”
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Selecting the Appointer: GHS
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Distributed Minimum Spanning Tree using Gallager, 
Humblet, and Spira;s algorithm
Intuition: recursively merge trees log(n) times.

0. Everyone is root (◼) of its own one-
node subtree
1. Ping neighbors to find edge cost, send 
to root along own subtree’s MST
2. Nearest* neighbor subtrees merge
    *defined by edge cost
3. Repeat 
    up to log(n) times

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight spanning trees,” ACM Trans. Program. 
Lang. Syst., vol. 5, no. 1, pp. 66–77, Jan. 1983, doi: 10.1145/357195.357200.

https://doi.org/10.1145/357195.357200
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• Start with a forest of single GHS agents; initialize each to a level; set 
leader of this component

Selecting the Appointer: GHS
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• Build up using repeated merge and absorb operations
• Very important: operations can be asynchronous

Selecting the Appointer: GHS
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• Continue until no new components to probe

Selecting the Appointer: GHS
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• GHS output: a rooted MST, which can be used for leader election using a 
unique “Appointer” node

Selecting the Appointer: GHS
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• Appointer requests health information from all agents
• Broadcast request on MST
• Wait for convergecast via MST

• Appointer decides best leader
• Appointer informs all agents of new leader via MST broadcast

Selecting the best leader
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End-to-end leader election
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Leader re-election
• Idea: re-run leader election periodically
• Concern 1: how do we ensure that messages from multiple leader election epochs 

do not overlap?
• Append epoch ID to messages
• Reject messages with old epoch IDs
• Quiescent period at start of new epoch
• Leader election duration << leader election period
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Leader re-election
• Idea: re-run leader election periodically
• Concern 2: what if agents’ clocks are not perfectly synchronized?

• Buffer messages near the beginning of a re-election period
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Leader Election
• <video>
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Message complexity
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Leader Election
• <video>


