
Cooperative Autonomous Distributed
Robotic Exploration (CADRE)

Lunar Leader:
Persistent, Optimal
Leader Election for

Multi-Agent Exploration
Teams

Keenan Albee, Sriramya Bhamidipati, Federico Rossi,
Joshua Vander Hook, Jean-Pierre de la Croix

Jet Propulsion Laboratory, California Institute of Technology

Presented at the

International Workshop on Autonomous Agents and Multi-
Agent Systems for Space Applications (MASSpace ’24)

Auckland, New Zealand

May 7, 2024

© 2024 California Institute of Technology.
Government sponsorship acknowledged.

j p l . n a s a . g o v3

Coordination Architectures : Elected Leader

Strategic plannerWorld Model Sync Distribute plan

Receive plan

Receive plan

World Model
Sync

World Model Sync

Leader Election

Leader Election

Leader Election

j p l . n a s a . g o v

Coordination Architectures: figures of merit

4

1. Bandwidth 2. Interpretability 3. Expressivity
How many messages are exchanged
among agents? Monarch: O(n);
flooding: O(n2)

How easy is it to understand a given
system behavior?
Is it emerging, or can it be attributed
to a specific line of code on an
agent?

How hard is it to encode our problem
in the distributed system?
Do we need to carefully design local
behaviors, or can we just solve a
centralized optimization problem?

4. Scalability 5. Consistency 6. Resilience
Will this work for 10, 100, 1000
agents?

Can agents make inconsistent
decisions (e.g., two agents assigned
to the same task)?

What happens when an agent is lost?

j p l . n a s a . g o v

Coordination Architectures

5

j p l . n a s a . g o v

Coordination Architectures

6

j p l . n a s a . g o v

Coordination Architectures

7

O(n log(n) + E) for leader election,
O(n) for subsequent decisions

Decisions are not emerging but
attributable to the leader

Can solve any centralized
decision-making problem
transparently

Hundreds of
nodes in <1s

Decisions are consistent so long
as agents agree on the leader

Recovery from leader loss
requires re-election

j p l . n a s a . g o v

Assumptions and Requirements

9

Assumptions
• Agents have unique IDs
• Each agent has a list of neighbors
• Communication is asynchronous

but reliable (messages are not lost)

Requirements
• All agents agree on one leader
• If leader is lost, a new leader is

selected within specified timeframe
(nominally, 10 [s])
• Leader is selected based on health

metrics

j p l . n a s a . g o v

Concept of Operations

10

1. Leader election runs continuously in
background

2. A unique agent is selected as “Appointer”
3. Appointer queries all other agents for health

metrics (convergecast)
4. Appointer appoints leader and informs all

agents (broadcast)
5. Process repeats periodically as a failsafe

(e.g., leader has died)

Rationale: decouple (i) finding a unique agent
from (ii) finding the best leader, making leader
selection a centralized problem

j p l . n a s a . g o v

Selecting the Appointer: GHS

11

• Each rover and the base station is a
GHS agent that only interacts with the
world through messages from/to
neighbors
• Messages are delivered in order but

can have arbitrary delays
• Each agent only knows its neighbors’

IDs
• Somehow, an algorithm needs to allow

these uncoordinated agents to all
agree on a unique “Appointer”

j p l . n a s a . g o v

Selecting the Appointer: GHS

12

Distributed Minimum Spanning Tree using Gallager,
Humblet, and Spira;s algorithm
Intuition: recursively merge trees log(n) times.

0. Everyone is root (◼) of its own one-
node subtree
1. Ping neighbors to find edge cost, send
to root along own subtree’s MST
2. Nearest* neighbor subtrees merge
 *defined by edge cost
3. Repeat
 up to log(n) times

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight spanning trees,” ACM Trans. Program.
Lang. Syst., vol. 5, no. 1, pp. 66–77, Jan. 1983, doi: 10.1145/357195.357200.

https://doi.org/10.1145/357195.357200

j p l . n a s a . g o v

• Start with a forest of single GHS agents; initialize each to a level; set
leader of this component

Selecting the Appointer: GHS

j p l . n a s a . g o v

• Build up using repeated merge and absorb operations
• Very important: operations can be asynchronous

Selecting the Appointer: GHS

j p l . n a s a . g o v

• Continue until no new components to probe

Selecting the Appointer: GHS

j p l . n a s a . g o v

• GHS output: a rooted MST, which can be used for leader election using a
unique “Appointer” node

Selecting the Appointer: GHS

j p l . n a s a . g o v

• Appointer requests health information from all agents
• Broadcast request on MST
• Wait for convergecast via MST

• Appointer decides best leader
• Appointer informs all agents of new leader via MST broadcast

Selecting the best leader

j p l . n a s a . g o v

End-to-end leader election

j p l . n a s a . g o v

Leader re-election
• Idea: re-run leader election periodically
• Concern 1: how do we ensure that messages from multiple leader election epochs

do not overlap?
• Append epoch ID to messages
• Reject messages with old epoch IDs
• Quiescent period at start of new epoch
• Leader election duration << leader election period

j p l . n a s a . g o v

Leader re-election
• Idea: re-run leader election periodically
• Concern 2: what if agents’ clocks are not perfectly synchronized?

• Buffer messages near the beginning of a re-election period

j p l . n a s a . g o v

Leader Election
• <video>

j p l . n a s a . g o v

Message complexity

j p l . n a s a . g o v

Leader Election
• <video>

