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Talks on the Mars 2020 Simple Planner

Topic Speaker Date

Overview of Simple Planner Moffi 5th December 2024

Onboard Planner Flight Software Gaines 4th February 2025

Onboard Planner: Trusted AI on Mars Reich, Chien 18th February 2025

Simple Planner: Ground Tools for 
Operations

Connell 25th February 2025

Simple Planner: Systems Engineering 
Operations with Autonomy

Hazelrig 11th March 2025

Rollout of the Simple Planner Waldram 18th March 2025

You 
are 
here

Location: All talks are in Pickering Auditorium, Building 321
Time:  All talks are 12n-1p PST
If you miss it?  Recordings of all talks will be archived on JPLTube and 

 slides at https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/
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Example Sol in the Life of Mars 2020 Rover
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Productivity Challenge: Predicting Rover Resource Usage

• Difficult to estimate activity resource 
consumption

• Largely due to difficulty in predicting 
activity duration and actual temperatures

• Resources: time, energy
• Operations takes conservative approach

• Typically overestimate and add margin
• Can unnecessarily limit activity
• Can result in unused vehicle resources
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OnBoard Planner: Move Decision Making On-Board

• Take advantage of knowledge available onboard
• Resource management

– Time, power, energy (battery state-of-charge), atomic 
resources, sequence engines, data volume

• Operator provided constraints: handover battery SOC, 
minimum / maximum battery SOC, delta data volume

• Activity types
– Communication
– Mandatory
– Optional

• Activity dependencies
– Not Started, In Progress, Completed with Success / 

Failure, Aborted, …
• Heating

– Pre-heating, maintenance heating, merging of heating 
activities, support for heating while rover sleeps

• Awake / asleep management
– Scheduling awake / asleep periods

• Activity execution
– Starting, aborting (if needed), cleaning-up (if needed)
– Pausing activities across communication windows
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Challenges for OnBoard Planner Flight Software

• OnBoard Planner represents 
significant increase in scope of 
autonomy
– Deciding what actions to perform, when to 

perform them
– Scheduling shutdowns and wakeups to 

manage battery state-of-charge
– Managing heating for device safety

• OnBoard Planner expected to 
respond correctly and safely to a 
highly diverse set of dynamic 
conditions
– Responding to deviations in execution

• Activities running long, ending early; thermal 
conditions warmer / colder than predicted; 
battery SOC greater or less than predicted
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Challenges for OnBoard Planner Flight Software

• Balancing performance with computational constraints
– OBP has a lot of work to do

• Generate plans, execute plans, monitor plans, re-generate plans
– Limited rover computational resources:

• RAD 750 running at 133 MHz 
• CPU shared with many (~90) FSW tasks (of varying criticality)

• Balancing scope of control with restrictions for system protection
– Limit control to only what is required and help protect from errors (ground or flight software)



Jet Propulsion Laboratory
California Institute of Technology

Mars 2020 ProjectFlight System

8

Time (seconds)

Po
w

er
 (W

at
ts

)

param: max_power_consumption

OBA A

Preheat Maintenance

Plan

Peak Power
Timeline

Shutdown

Rover State Awake Asleep

OBA BWakeup

Awake

Impact

Result

Now

Time (seconds)

N
um

 S
eq

 E
ng

in
es

param: max_seq_engines

Seq Engines
Timeline

Now

• Timelines project resource 
or state over the schedule

• Used in scheduling to 
identify valid start times for 
activities

• Valid intervals begin with 
activity’s execution range(s) 
and are successively 
pruned by considering 
timelines
– Note: intervals also pruned by 

activity dependencies

• OnBoard Planner and 
MEXEC share the Timeline 
library

Timelines and Valid Intervals
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Example Valid Activity Start Interval Calculation
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Overview of Scheduling Algorithm

• Greedy algorithm
• No lookahead
• No backtracking
• Find good spot for an activity, 

move on to next
• Reduces completeness of 

planner but significantly 
reduces computation cost

• Discretize thermal intervals
• Duration and energy needed for 

heating depends on temps 
when heating starts

• Reduce search space by 
discretizing to intervals (e.g. 
15min) where temps assumed 
to stay constant
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Example Schedule
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OBP Thermal Management

• Objective: improve efficiency over 
traditional thermal management
– Bonus: improve robustness to incorrect thermal 

predictions
• Strategy: reduce conservativism of 

thermal predictions
– Heating prescriptions based on temperature 

predictions that are closer to actual expected 
conditions

– Requires onboard behavior to adjust 
prescriptions based on actual temperatures

• Increase heating if temperatures colder than 
predicted

• Decrease heating (saving resources) if 
temperatures warmer than predicted
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Generating Schedules vs. Executing Schedules

Plan Plan Controller

Thermal SequencerData ManagerBattery SOC 
Estimator

plans

activity updatesquery
state

query state / 
start heating

start
activities

• Generating schedules takes times
– Can take 10s of seconds

• Plan execution must be responsive to meet user 
expectations
– Start / stop activities within a couple seconds of 

scheduled times
• Necessitates separate tasks in a Real-Time 

Operating System
– Plan execution requires relative high priority to be 

responsive
– Generating plans at such a high priority would be 

disruptive
• Starve CPU from other high priority tasks

• Plan Task: generates schedules
– Based on operator input and current vehicle resources

• Plan Controller Task: executes schedules
– Starts / stops activities based on current vehicle / 

resource state
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Flexible Execution & Event-Based Re-Planning

• Flexible Execution: Plan Controller has authority to alter 
start time of activities
– Pull: if rover is idle, determine if future activity is eligible to start 

now
– Push: if activity is not eligible to start at scheduled start time, 

delay activity
• Activity vetoed if delayed too long

– Thermal monitoring: monitors actual temperatures to 
determine when heating needs to start

• Event-Based Re-Planning: reserve re-planning for 
significant deviations, e.g.
– Activity ending significantly early/late
– Activity vetoed
– Activity fails or is aborted

• Benefits:
– Increases utilization of vehicle resources by increasing 

responsiveness to actual conditions
• Don't have to wait for full re-scheduling cycle

– Reduces planning overhead allowing more CPU availability 
for other flight software tasks
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OBP Flight Software Stats

• Lines of code
– 45K non-comment source lines of code

• 12K of this is auto-generated
– 5% of Mars 2020 flight software

• RAM usage
– 4 MB
– Less than 1% of available RAM
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Integration with Flight Software

PLAN Generate schedules

PLANC Execute schedules

TIMELINE State projection library

FSM Shutdown control

CBM Comm window queries 

THERMAL Preheat / maintenance heating

FBMPWR Battery SOC estimation

FBM Safing

SEQ Sequence activation / deactivation 
using Activity IDs
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System Design: Layering and Restricting

• OnBoard Planner exists on top of layers of flight 
software protection
– Same protections used to guard against human 

command errors
– Activity constraint checking and resource arbitration
– Vast array of fault monitors (power draw, state of 

charge, temperatures, …)
– Flight software Health monitoring
– Additional fault monitors for Battery SOC and Plan 

errors
• Restrictions on how OnBoard Planner 

interacts with the system
– OnBoard Planner does not control communication 

windows
• Checks verify OnBoard Planner input and execution are 

consistent with comm windows
– OnBoard Planner does not directly perform activities

• Instead, invokes sequences; same as in traditional rover 
operations

– Shutdown/wakeup requests go to same task as 
ground-commanded

• Same checks verify sleep will not interfere with comm 
windows
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FSW Task Priorities

• Plan Controller: runs at ~ 1Hz
• Plan: Low priority to avoid interfering with other tasks during scheduling

– Higher priority than Navigator to enable rescheduling during drives (support expanded drive OBAs)
– Expect planning to be sufficiently infrequent to not significantly impact drive performance
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Plan Task Prioritization

• Considered two main strategies for schedule generation task
– Low priority: less disruptive to other tasks but significantly reduces responsiveness to execution 

deviations
– Medium priority: more responsive, but disruptive to some activity

• Motivating consideration was impact on Autonomous Navigation
– Want to avoid frequent delays to Navigator

• Flexible execution and event-based scheduling enabled Medium priority approach
– Reduces frequency of re-scheduling
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OnBoard Planner Results from 1st year in Flight

• OnBoard Planner became part of 
standard Mars 2020 operations in 
October 2023, during that time:
– OBP has executed more than 200 plans 

spanning 350+ sols
• Comprising more than 7,000 user requested 

activities, more than 22,000 total activities

• OnBoard Planner computation 
performance has been excellent
– Executed 6,500+ scheduling cycles

• Average 6 seconds (wall clock) per scheduling 
cycle

• Average 8 seconds for initial schedules
• Longer durations due to scheduling during higher 

pirority CPU activity
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OnBoard Planner Results from 1st year in Flight

• OnBoard Planner has improved vehicle 
resource utilization
– Improved energy efficiency (importance 

increases as rover ages)
– Enables operators to include more activities 

into plans
• OnBoard Planner has increased drive 

distance
– Added nearly 800 meters of drive distance
– Tens of meters of additional distance per drive, as 

far as 75m for an individual drive

• OnBoard Planner has led to improved 
science quality
– Sherloc spectroscopy quality improved 

through OBP’s more efficient heating strategy
– Opportunistic atmospheric observations have 

occurred at more favorable times
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OnBoard Planner Flight Anomalies from 1st Year

• To date, have encountered only a small number of OBP FSW 
anomalies
– 5 ISAs involving flaws in OBP FSW
– Two ISAs resulting in loss of activity

• One case in which an activity failed to schedule (flight software contributed but was not 
the only cause)

• One in which an off-nominal plan activation (via UHF forward link) uncovered a flaw 
resulting in plan file rejection

– Some cases in which activity failed to schedule at expected time but still able to be 
scheduled

– Anomalies have not prevented operations from using OBP on subsequent 
planning cycles
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Conclusion

• OnBoard Planner has become part of standard Mars 2020 operations for over a 
year and has increased mission productivity and science quality during this 
time

• OnBoard Planner represents a significant increase in the scope of space 
autonomy

• The flight software and V&V teams overcame many challenges in the 
successful development and testing of OnBoard Planner:
– Enabling OnBoard Planner to operate robustly and effectively within tight computational 

constraints
– Ensuring OnBoard Planner would respond correctly and safely to highly diverse and 

dynamic conditions
• Future for onboard planning for spacecraft

– MEXEC: CADRE, Endurance, Federated Autonomous MEasurement (FAME)
– OnBoard Planner: Potential applications for SRL
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OBP Thermal Management

• Thermal management is by far the most complicated part of OBP
– Heating duration and energy varies with start time, complicating activity scheduling
– Determine when to ”merge” heating across activities versus starting a new preheat
– Support re-scheduling when some, but not all, preheats for activities have started
– Respond to differences between predicted vs. actual temperatures
– Support heating that is Dream Mode eligible (rover can be asleep) vs. Non-Dream Mode 

eligible (rover must be awake)
– Support for "no-heat" windows, warm enough to not require heating (needed to avoid peak 

power violations)
– Support for "can't-heat" windows, too cold to sufficiently heat
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• Time required to generate schedules depends on number of activities to be scheduled
• More activities allows rover to accomplish more but increases scheduling cost
• Hopper increases set of activities that are included in a sol without increasing scheduling 

cost
• Considered Set of activities

• Set of activities eligible for scheduling
• Restricted in number to limit scheduling duration
• Activities removed when they are executed

• Hopper
• Additional activities added to considered set as space becomes available
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Peak Power Timeline: Non-Depletable
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Battery State Of Charge Timeline: Rate Change
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