Simple Planner on Mars2020

Ground Software

Andrea Connell (she/her)

Kevin Reich, Steve Chien, Nicholas Waldram, Dan Gaines, James Biehl, James Hazelrig, Elyse Moffi, Raymond Francis

> Jet Propulsion Laboratory California Institute of Technology

> > February 25th, 2025

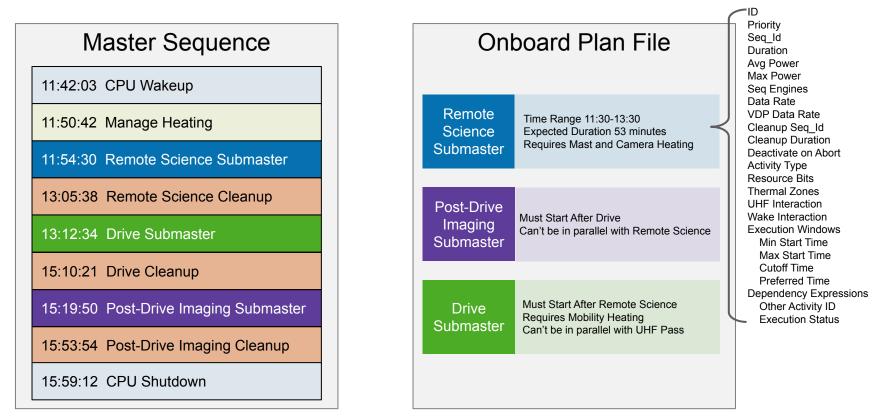
© 2025. California Institute of Technology. Government sponsorship acknowledged.

Simple Planner on Mars2020 Talk Series

	Торіс	Speaker	Date	
	Overview of Simple Planner	Moffi	5 th December 2024	
-	Onboard Planner: Flight Software	Gaines	4 th February 2025	
	Onboard Planner: Trusted AI on Mars	Reich, Chien	18 th February 2025	
	Simple Planner: Ground Software	Connell	25 th February 2025	
	Simple Planner: Systems Engineering Operations with Autonomy	Hazelrig	11 th March 2025	
	Rollout of the Simple Planner	Waldram	19 th March 2025	

Location:	All talks are in Pickering Auditorium, Building 321, JPL Campus.
Time:	All talks are 12 noon - 1 PM PST
Miss it?	Recordings of all talks will be archived on JPLTube
	Slides will be posted at https://ai.jpl.nasa.gov/public/projects/m2020-scheduler/

You are here


Introduction

Simple Planner is flight and ground system that enables the Mars2020 Perseverance Rover to adjust to unexpected state, such as Martian temperature fluctuations or battery performance and activity execution feedback, such as activities failing, ending earlier or later than expected. This is accomplished via scheduling autonomy onboard the rover.

Simple Planner development began in 2016, and its first use was October 5th, 2023

This talk explains the Ground Software changes that were required to allow the mission to operate effectively in the new Simple Planner paradigm.

Previous Paradigm vs Simple Planner

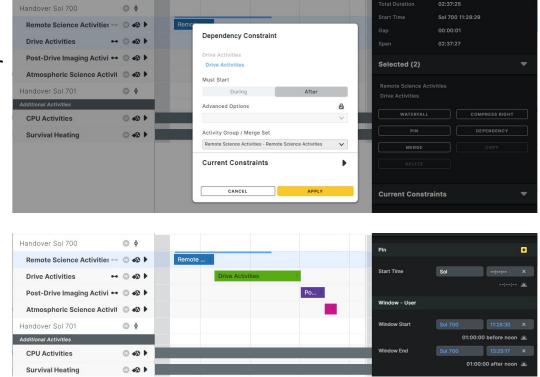
Key Takeaways

- Simple Planner was a paradigm shift requiring tight coordination between Operations, Flight Software, and Ground Software
- Many considerations to earn trust of operations team, maintain effective operability, take advantage of new capabilities, and stay within schedule and budget

- Maintain **consistency** with existing M20 planning process when possible
- Consider usability of powerful capabilities on a short tactical timeline
- Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable **predictability** of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state

- Maintain consistency with existing M20 planning process when possible
 - Consider usability of powerful capabilities on a short tactical timeline
- Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable **predictability** of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state

- Maintain consistency with existing M20 planning process when possible
 - Consider usability of powerful capabilities on a short tactical timeline
 - Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable **predictability** of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state


- Maintain consistency with existing M20 planning process when possible
 - Consider usability of powerful capabilities on a short tactical timeline
- Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable predictability of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state

- Maintain consistency with existing M20 planning process when possible
- Consider usability of powerful capabilities on a short tactical timeline
- Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable predictability of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state

- Maintain consistency with existing M20 planning process when possible
- Consider usability of powerful capabilities on a short tactical timeline
- Provide visibility into translation from planning concepts to flight software concepts
- Supply reasonable predictability of onboard execution when possible
- Enable analysis of what actually happened onboard and propagation of incoming state

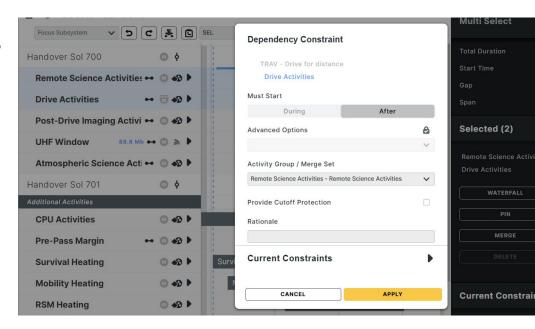
Constraint-Based Planning

- COCPIT planning tool is used to identify scheduling constraints for activities
- Constraint concepts available at landing, and slowly built upon
- Constraint-Based Planning was used in Operations before SP rollout, and can be used with or without spacecraft autonomy

С

U

usable


Constraint-Based Planning - Time Windows

- Time windows control the range when an activity can execute
- In ground tools, these can be exact Mars time or relative to an event
- Windows can be as long or short as desired. Shortest possible window is a "pin" to a specific start time
- Allows teams to encode a valid range rather than evaluating a specific time

Handover Sol 700	© ¢					Pin		•
Remote Science Activities	• 💿 🔊 🕨	Remote	. 2					
Drive Activities	• 🖸 🚯 🕨 •		Drive Activ	ities	1	Start Time	Sol	: ×
Post-Drive Imaging Activi 🔸	• 🖸 🔹 🔍 •				Po 1			;: 🏦
Atmospheric Science Activi	it 💿 🔊 🕨					Window - User		
Handover Sol 701	0 ¢					Window Start		11:28:30 ×
Additional Activities							01:0	0:00 before noon 🚢
CPU Activities	○ 42 ▶					Window End		13:25:17 ×
Survival Heating	0 +9 F						01	:00:00 after noon 🚢

Constraint-Based Planning - Dependencies

- Can set dependency constraints between activities to indicate required ordering or execution status
 - FSW supports more complex constraints than we expose
 - Cutoff Protection option will
 protect schedule time for most
 important activities

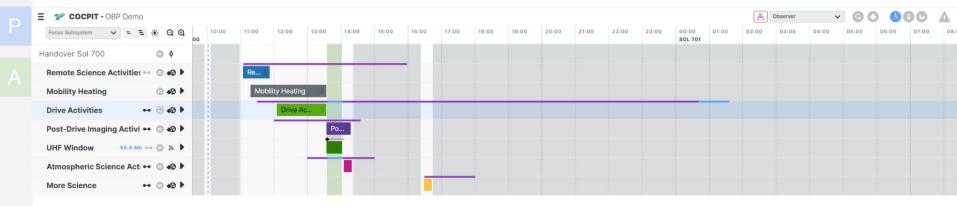
Constraint-Based Planning - Other Restrictions

- Activity requires specific mechanisms to be heated before use
 - Activity claims a resource, precluding parallelism with other activities that need the same resource
 - Multiple levels of parallelism restrictions encoded for onboard schedule
 - Formulas to determine predicted activity duration, energy usage, and volume of data generation
 - Number of sequence engines used by activity

U

Ground Scheduling

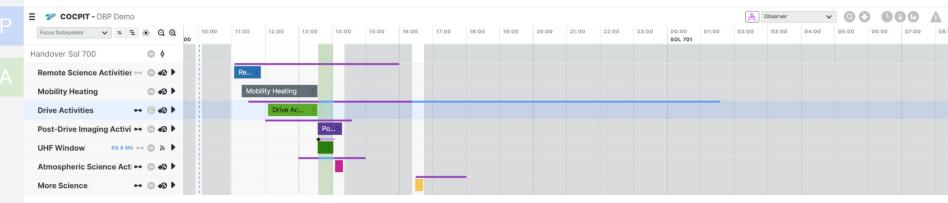
Ρ


- Ground-based scheduling tool Copilot uses same underlying algorithms as FSW
- Computing power allows it to do more pre and post-processing than FSW can
- Used since landing to add CPU Wakeups/Shutdowns and Heating activities
- Now being given more flexibility via constraints

Handover Sol 700	© ¢	
Remote Science Activ		Remote 2
Mobility Heating	0 48 1	Mobility Heating 3
Drive Activities	•• • • • •	Drive Activities 1
Post-Drive Imaging Ac	and the second se	Po1
Atmospheric Science	Activil 💿 🐟 🕨	
Pre-Pass Margin	⊷ © 42 ►	
UHF Window 88	.8 мь 🕶 💿 🔉 🕨	UH1
Post-Pass Margin	•• • • • •	
Handover Sol 701	ο¢	
Additional Activities		
CPU Activities	🖸 🛷 🕨 is	

jpl.nasa.gov

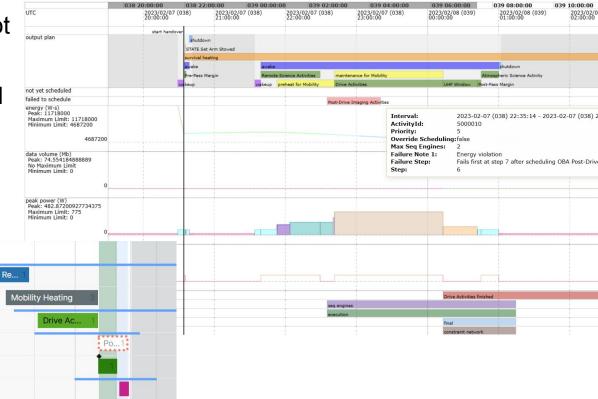
Automated Constraints to Improve Robustness


- Prevent incompatible activities from executing during comm passes
- Prevent activities from running when their mechanisms are too cold
- Provide extra heating when activities are deemed to be brittle
- Protect against nuanced FSW schedule risks

U

Automated Constraints to Ease Transition

- For initial operations, automated constraints were added to all plans
- Dependency constraints to enforce ordering and reduce parallelism
- Timing constraints to limit amount of time activities can shift
- Extra development effort was worth it for trust building and V&V phasing



U

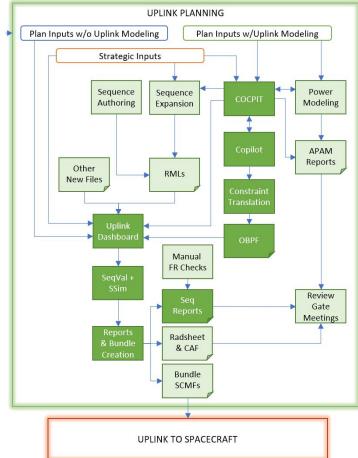
Scheduling Visualization

- Sometimes an activity cannot be scheduled
- Ideally find this in the ground tools rather than onboard
- Crosscheck tool shows ground schedule steps and explanation

Handover Sol 700	• ¢
Remote Science Activitie: •••	•9 •
Mobility Heating	• •
Drive Activities ••	🖶 🚯 🕨
Post-Drive Imaging Activi 🕶	• 🕹 🕨
UHF Window 88.8 Mb •••	ه 🗈
Atmospheric Science Acti 🕶	• 🕸 🕨

C

V


Ρ

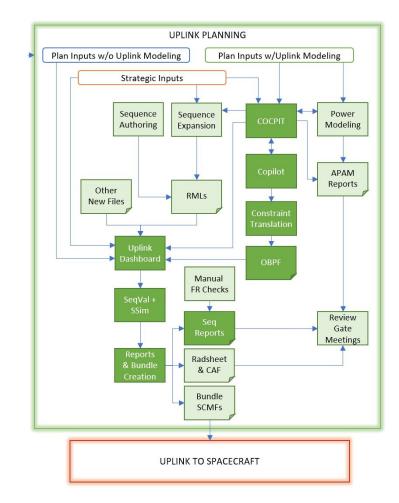
Sequencing

- C
- Sequencing is mostly similar to previous paradigm, except Onboard Plan File replaces the Master Sequence
- Cleanup sequences only happen when an activity is cut off early
- Some sequence logic based on exact timing was adjusted
- Engineering and science teams may need to adjust their sequencing strategy to allow greater flexibility in execution time
- All previous functionality was retained for special cases

Flight Software Simulation

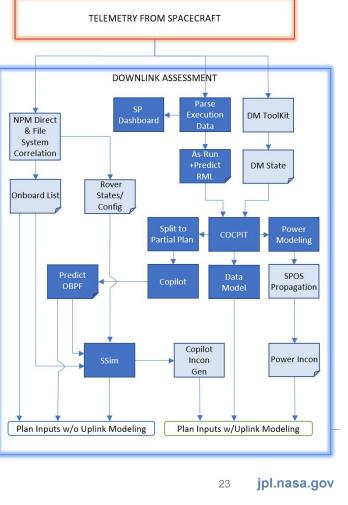
- SSim is based on real flight software modules
- Has been used since landing to simulate both paradigms
- Uses real FSW telemetry for initial state, closing the loop with propagation
- Validates Onboard Plan File
- Generates schedule for plan
 - Simulates execution and rescheduling
- Provides flight-like outputs for review

V


Ρ

predictable

Flight Software Simulation


- C
- V
- P
- A

- Differences required in ground simulation algorithm vs flight
 - Different rescheduling triggers due to duration discrepancies
 - Energy model relies on predicted state of charge
 - Thermal interface based entirely on predictions

Telemetry Processing

- Downlink data provides visibility into onboard scheduling and execution
- Includes as-run info as well as prediction of the rest of the schedule
- New utilities needed to parse telemetry, reconstruct schedules, and correlate with uplink products for downlink assessment automation:
 - Health and safety
 - Diagnostics
 - Performance metrics
 - Activity scheduling/execution
 - Schedule visualization

SP Dashboard

- Visualization tool for flight and SSim telemetry
- Displays schedule states as they evolve through the day, down to the activity level
- Includes detailed diagnostics telemetry and commanded attributes

0 0 1	0 2 0707020545 00555 0	o 3 alat Oaka dulium Otaat	0 4 4	5 Demonstriane Time	0 6	0 0 7 la
Now Plotting: PlanSummary	_0787939515-02556-2	dat Scheduling Start	: Sol-1363M12:20:29.245	Reporting Tim	e: Sol-1363M12:20:29.2	282 Show All Schedu
	10.00	11.00	12.00	13:00	OBA ID: 5630090	E
VAKEUP					1000 Torrest 1 DO	
5620170					1363 Targeted RS GENERIC	
ngineering Keepout						
NG REU Scrubber	ENG REU Scrubb				Seq ID	sub_01363
CONE_MASTCAMZ Heating	ZONE_MASTCAMZ He	ating			Thermal Zone	N/A
363 Standalone VCE Image Ret					Runtime Info:	
ONE_MASTCAMZ Heating	ZONE_MASTCAMZ H	leating			Scheduled	SCHEDULED
ONE_RSM Heating	ZONE_RSM Hea	ting			Committed Status	END COMPLETED_SUCCESS
363 Targeted RS					Abort Reason	NONE
ONE_MOB Heating		ZONE M	OB Heating		Boot Count	7556
CONE_MOB Heating			OB Heating		# Invariant Time Ranges Considered	0
CONE_MOB Heating			ZONE_MOB Heati			
					Scheduled Time:	
CONE_NAVCAM Heating			ZONE_NAVCAM H		Start:	Sol-1363M10:19:59.928 787932087.0
363 Mobility (RP confirm - VO			1363 Mobility (R	P confirm	End:	Sol-1363M12:13:36.586 787939091.0
atekeeper_5630001 for OBA 1					Duration:	0T01:56:44.056
HUTDOWN				A		0M01:53:36.657
VAKEUP					Actual Time:	
MRO_M20_2024_355_01					Start:	Sol-1363M10:19:59.928
ONE_F_HAZCAM Heating					End:	787932087.0 Sol-1363M12:13:36.586
ONE_MASTCAMZ Heating					Lind.	787939091.0
ONE_NAVCAM Heating					Duration:	0T01:56:44.056 0M01:53:36.657
ONE_R_HAZCAM Heating						
363 PDI					XML Info:	
gatekeeper_5630011 for OBA 1					priority	2
	11				duration	7248 (02:00:48.000)

Ρ

AutoRML

- Previous paradigm: Tactical plan considered sufficient for understanding plan content and activity timing
- New paradigm: Onboard schedule content and timing can vary greatly from the ground schedule
- AutoRML creates a new copy of the tactical plan with timing modified to reflect schedule based on latest downlink data
- "As-run" COCPIT plan reflects the actual schedule on the spacecraft
 - Visual aid for downlink teams to understand the actual content of the plan
 - Used to generate expected load profiles for power modeling
 - Used to bootstrap SSim with the last known schedule state

Α

Simple Planner in Operations

- First Time Activities occurred in Spring 2023
- Primary operations mode since October 2023
- Incremental changes and improvements have continued, following normal software development cycle

Lessons Learned

- Getting consensus on the new process and earning trust in the system was often harder than the actual development work.
- More capabilities doesn't always make for better software. Mental load of operators and ease of use also need to be considered. UX/designers and system engineers were a key part of the team.
- Operations, Flight Software, and Ground Software teams working directly together was crucial to this success. This required people with diversity of perspective and experience, who know when to challenge and when to compromise.

jpl.nasa.gov