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Overview
• JPL AI Group partnering with new space companies to demonstrate rapid 

deployment of data analysis FSW to multiple LEO spacecraft with AI hardware

Satellite: CogniSAT-6
Provider: Ubotica/Open Cosmos
Status: Flown and executed

Satellite: ION SCV-004
Provider: Hyspace/D-Orbit
Status: Flown and executed

Satellite: Kanyini-1
Provider: SmartsatCRC
Status: Planned

Satellite: YAM-6
Provider: Hyspace/Loft Orbital
Status: Delivered to provider

Satellite: Aries SN1
Provider: Ubotica/Apex
Status: Planned

Satellite: SOWA-1
Provider: SatRev/Hyspace
Status: Planned

Satellite: Phi-Sat-2
Provider: ESA/Open Cosmos
Status: Planned

Satellite: Crypto-2
Provider: Aptos Orbital
Status: Planned
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Motivation: Why do data analysis at the edge?

1. Data insights for rapid response
• Volcanoes, floods, wildfires, algal blooms, ….
• Intersatellite-links (ISL) for near-instantaneous alert
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Thermal activity detected

1. Overflight and 
data collection

2. Onboard data 
analysis

3. Anomaly or event 
detected  

4. Issue alert for 
timely next actions

Focus of this work
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Motivation: Leveraging knowledge onboard

2. Optimization of resources and observations
• Reactive:

• Acquire data and reject if bad
• Save storage and downlink

• Proactive (Dynamic targeting):
• Look-ahead data 
• Saves: 

• Storage
• Downlink
• Time/energy (slewing)
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Plume detected

1. Collection of lookahead 
data

2. Onboard data 
analysis 

3. Event detection  4. Collection of precise 
data

1. Overflight and 
data collection

2. Onboard data 
analysis

3. Unusable data 
identified

4. Offload data 
and/or alert

Cloud detected
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What’s been done at JPL before?

• AI FSW in operation:
• EO-1, AVIRIS/EMIT, IPEX, ASTERIA, AEGIS, M2020, CADRE …
• First flight of ML from AIG - ASE 2004
• Extensive development, verification, and operation cost

• Automated ground workflows for rapid response (sensorwebs)
• Download data, analyze, and trigger follow-up actions 
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EO-1 CADRE Sensorweb conceptPerseverance Rover
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AI Hardware in Space

• VPUs for computer vision, image signal processing, CNN execution
• ISL for persistent comms
• Increasingly capable CPUs
• Increase in RAM
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Intel Myriad X NVIDIA Jetson TX2iIntel Myriad 2
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Software Capabilities

• Increasingly friendly FSW environments
• Availability of modern software libraries
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Rapid Development and Deployment

• Challenge: each spacecraft has varied
• Instruments/data products
• Software versions and edge hardware
• RAM, uplink, and other data volume limitations

• Also, different science applications for same spacecraft
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Python 2.7 vs Python 3.11

Myriad X vs Myriad 2

50 MB RAM vs 2 GB RAM

RGB Snapshot Camera @ 50m GSD 
vs 

Hyperspectral Pushbroom @ 5m GSD

Input data Model executionPreprocessing
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Rapid Development and Deployment
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• Solution: highly (re)configurable software

Parameterized Core 
Software Suite

Tailored Software for 
Specific Spacecraft

V&V and Deployment

Spacecraft Specific 
Information
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Core Data Analysis Software Suite
• CNNs and Spectral Algorithms

• Parameterized based on 
• Specific satellite (e.g. available operations, preprocessing, file formats)
• Input data (e.g. dimensions, bit depth, resolution)
• Application (e.g. cloud detection, surface water mapping)

• Memory-safe pre/postprocessing scripts 
• Tilers, scene statistics, band alignment
• Limited dependencies
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Input:
Configuration file
Training data (e.g. labeled scenes, spectral signatures)

Output:
Algorithm ready for onboard integration

Training, compilation, conversion
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Convolutional Neural Networks

• Example: 
• CNNs for semantic segmentation

• Clouds, surface water, thermal activity, algal blooms, + more
• Developed 2 U-Net Architectures: Xception and UAVSAR 

• Fixed model size of ~4 MB

• Huge space of CNNs architectures and applications to deploy onboard
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Spectral Algorithms

• Signature detection and unmixing of high dimensional data
• Algorithms:

• Spectral angle mapper (SAM)
• Matched filters (MF)
• Reed-Xiaoli anomaly detector (RX)

• Engineered to leverage AI hardware onboard
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CogniSAT-6 Completed Demonstrations
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• CNNs for cloud, surface water, thermal activity 
• 2 models for each application, 30+ total executions

11/02/24: 

Observed 21% of 
area near Valencia 
was flooded

01/11/25: 

Classified 
active plumes 
from Palisades 
fire

Includes imagery from CogniSAT-6/HAMMER, 2025, Ubotica. All rights reserved. 
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CogniSAT-6 Current Status
• Spectral Algorithms flight in Spring 2025

• Dynamic targeting demonstration in Spring/Summer 2025
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Vegetation mapping via spectral algorithms. Includes 
imagery from CogniSAT-6/HAMMER, 2025, Open 
Cosmos Limited. All rights reserved. 

Look-ahead cloud-free; 
acquire scene.

Look-ahead cloudy; 
abort acquisition.

Look-ahead cloud-free; 
acquire scene.

CogniSAT-6 will actively avoid taking cloudy 
observations by slewing its sensor forward and 
analyzing a look-ahead image prior to near nadir 
acquisition
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ION SCV-004 and YAM-6 Current Status
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• Software development completed – dozens of flight applications
• CNNs and spectral algorithms for clouds, water, vegetation, urban detection

• As of 2/10/25; execution of 9 models (spectral & CNN) on ION SCV 004
• More flights in spring 2025

ION SCV-004 Xception Cloud Classifier (onboard execution)
ION SCV-004 RX Anomaly (onboard execution)
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Upcoming Demonstrations
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• Deployment to more spacecraft part of NASA/ESTO

• FAME: 
• Largest in-space demonstration of AI
• 50+ spacecraft involved
• Demonstrate multi-asset coordination

+ more….

Satellite: Kanyini-1
Provider: SmartsatCRC

Satellite: Aries SN1
Provider: Ubotica/Apex

Satellite: Phi-Sat-2
Provider: ESA/Open Cosmos

Satellite: Crypto-2
Provider: Aptos Orbital

Satellite: YAM-6
Provider: Hyspace/Loft Orbital
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A Future Vision of FSW for Data Analysis

• Leverage existing languages & libraries for rapid development
• End-users (e.g. scientists, consumers) create workflows for data analysis

• Plug-and-play Jupyter notebooks
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Cross cueing
Sensorweb

Self cueing
Dynamic Targeting

Multi-agent coordination
Federated scheduling

Space
Ground

Onboard data analysis
Machine learning

Workflows

Users
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Conclusion

• Onboard edge processing for image processing improving drastically
• Demonstrating rapid development and deployment of CNN & Spectral 

Algorithm FSW to numerous spacecraft
• Future of data analysis FSW can be agile, efficient, and innovative and 

improve the return of Earth-observing satellites and other spacecraft
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1 Abstract

The Jet Propulsion Laboratory is deploying onboard machine learning and spectral analysis capabilities to numerous
spacecraft. These deployments leverage edge AI hardware for rapid analysis and insight to reduce reaction times.
One such spacecraft is CogniSAT-6/HAMMER (CS-6) (Ubotica/Open Cosmos) which carries a Myriad X Vision
Processing Unit (VPU) [1] for edge computer vision, image signal processing, and neural network execution [6].
Additionally, in collaboration with SkyServe.ai we are deploying to the ION SCV-004 spacecraft (D-Orbit) (Myriad
X VPU) and YAM-6 spacecraft (Loft) (Jetson TX2i [2]) and also ground-comparable regular CPUs. These spacecraft
provide virtual environments for deployment of languages and libraries such as Python, NumPy, and Tensorflow.

By analyzing data onboard, spacecraft are able to rapidly obtain knowledge from data - enabling rapid response
to detected phenomena and reduction in data volume. We perform this onboard inference through spectral signature
detection and image segmentation using CNN and other techniques. Image analysis consists of semantic segmenta-
tion using adaptations of the Xception and UAVSAR models [5] (both U-Net [7] deep CNN architecture). These
models are tailored for deployment on flight hardware by ensuring the feasibility of operations, reducing model size,
and embedding preprossessing operations to reduce CPU computation. We engineer spectral algorithms such as the
Spectral Angle Mapper, matched filters, and the Reed-Xioali anomaly detector to leverage the AI acceleration on-
board, a novel approach to deploying these algorithms. We identify operations feasible of executing on AI accelerated
hardware and wrap these as neural network operations. We target numerous Earth science applications ranging from
the detection of clouds and volcanic activity to flood and surface water mapping as well as land-use classification.

Development begins with the engineering of algorithms within the constraints of flight hardware. We require
software that is memory-safe and e!cient while performing operations on gigabytes of data. The models are amenable
to the specifics of di”erent instruments such as dimensions, bit depth, and wavelengths. Through stretching and
interpolation, we can calibrate data products across instruments to train CNNs on larger datasets. When executing
models, we perform these preprocessing operations onboard as part of the application. These applications are then
validated on ground hardware prior to flight. As of October 2024, the first in-orbit executions of these models
have successfully completed on CS-6 [9]. Flight demonstrations on ION SCV-004 and YAM-6 are expected in the
fall of 2024. We are in earlier stages with an additional four spacecraft: Aries SN1 (Ubotica/APEX), Kanyini-1
(SmartsatCRC), SOWA (SatRev, Hyspace), and Phi-Sat-2 (ESA).

In future demonstrations, the knowledge obtained onboard will be leveraged to perform intelligent observations
using dynamic targeting [3, 8] and multi-asset coordination [10]. In dynamic targeting data from a look-ahead view
is analyzed in real-time to identify targets of interest that drive near-nadir observations. In multi-asset coordination,
knowledge from one spacecraft is communicated to another one to drive observations across the networked spacecraft.
Flight demonstrations of dynamic targeting are in development for CS-6 which has the ability to point forward to
obtain a look-ahead view and communicate via inter-satellite links [4]. Through software advancements, we can
improve the return of Earth-observing satellites.

∗Contact: itai.m.zilberstein@jpl.nasa.gov. ©2025. All rights reserved.
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