Utilizing Schedule Constraints to Improve Automated Scheduling in
NASA’s Deep Space Network

Evan Davis, Nihal Dhamani, Martina Troesch, Mark D. Johnston
Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr., Pasadena CA 91109
evan.w.davis, nihal.n.dhamani, mark.d.johnston @ jpl.nasa.gov

Abstract

NASA'’s Deep Space Network (DSN) is a mission crit-
ical facility that supports many different space mis-
sions, from near earth to deep space exploration. In re-
cent years, as the network has suffered from increasing
oversubscription, more restrictions have been added to
reduce the amount of manual scheduling labor neces-
sary to come to consensus. In this paper, we describe
a new automated scheduling tool to be used by sched-
ulers to further reduce the amount of manual schedul-
ing labor. This new scheduler takes advantage of these
new restrictions to bring the scheduling problem closer
to feasibility. In addition, we describe an algorithm for
constraint relaxation given a partially-solved problem,
thereby bringing the problem even closer to feasibility.

Introduction

NASA’s Deep Space Network (DSN) is a primary resource
for communications and navigation for a wide range of
space missions (Imbriale 2003). As the number of active
missions rises (from around 35 users to over 60), and band-
width requirements increase with larger data sets, oversub-
scription is a constant battle. In the current scheduling pro-
cess, a human named the Builder of Proposal (BOP) must
first edit the schedule in order to remove the majority of
“conflicts” (places where the proposed tracks would violate
resource availability or other hard scheduling rules). Then,
the schedule is further edited by users over a span of several
days of negotiation with proposals and counter-proposals
until consensus is reached, at which point many require-
ments might have “violations” (where stated constraints are
unsatisfied), or have been dropped from the schedule en-
tirely.

In order to reduce the workload for the BOP, several
changes are being introduced to limit the amount of over-
subscription in the schedule. First, mission requests are be-
ing separated into priority tiers, such that higher priority re-
quests are more likely to be satisfied, while lower priority re-
quests might be dropped (Shouraboura, Johnston, and Tran
2016). Secondly, the DSN is adding limits on the amount of
time that missions can submit for scheduling in the higher-
priority requests, based on a forecast loading calculation of

Copyright ©2021, California Institute of Technology. Government
sponsorship acknowledged.

what can actually be supported (Werntz, Loyola, and Zende-
jas 1993) (Johnston and Lad 2018).

The intended effect of these changes is to make the
scheduling problem given to the BOP easier. The focus of
this paper is the new scheduler we are developing to assist
with this. Since this scheduler is going to be used only by
the BOP, the end goal is to generate a conflict-free sched-
ule, even if this requires introducing violations. In addition,
this new scheduler can take advantage of the new limits
on schedule time per-mission. This allows separating the
scheduling problem into two parts, taken one at a time. To-
gether, this allows a different scheduling approach that gets
much closer to solving the problem than prior work.

Formal Statement

The scheduling problem for the DSN is a specialization of
the job shop scheduling problem. For each problem we are
given the following:

» A Workspace W = (¢, t.) with start time ¢, and end time
te.

* A set of Requests {R;}. Each request R; =
(ts,te, M,{r;}) consists of a start time ¢, and end time
te, owning mission M, and a set of requirements {rj}.
Note that each request must fall within the workspace.

* Each requirement r; = (A, {C}}) consists of an “alias”
A, which determines parameters about acceptable use of
the antenna, as well as a set of constraints {C} }.

The goal is to produce a schedule S = {G;} =
{(r,Y,{T;}} which contains a set of sets of tracks. Each
track set specifies which requirement the tracks belong to
r, as well as the type of the set Y. Each track T; =
(M, a,{EL},ts, te, setup, teardown) has a mission M, an
antenna a, a set of equipment to be used {E}}, a start and
end time, and some amount of setup and teardown that hap-
pen before and after the track, respectively. The choices of
antenna and equipment have to be valid choices according
to the requirement’s alias A.

There are several simple constraints that apply to the
whole schedule. Generally tracks are not allowed to overlap
time ranges on a single antenna. Each track has to respect the
viewperiods of its associated mission. Additionally, tracks
which overlap at the same complex must respect limits on

equipment. Each complex only has a certain amount of each
equipment type (known ahead of time), and using more than
is available is a conflict.

In addition to these general constraints, there are the more
complicated constraints attached to individual requirements
({C;}). The complete list is too verbose to describe here in
full, but further details are described in the 2014 Al Maga-
zine article (Johnston et al. 2014). Some example additional
constraints are:

* Total track duration (minimum, maximum, preference).

* Whether the tracks for this requirement can be split. If
they can be split, minimum and maximum separation, as
well as minimum and maximum duration of the individual
tracks.

* More restrictive visibility constraints, e.g. due to signal
strength requirements.

* Timing relationships to other requirements.

Approach

Given the complexity of the formal problem statement, we
are relying on pre-existing schedulers for this new sched-
uler. In order to take advantage of the new high-priority/low-
priority split, we first verify that all missions are abiding by
their agreed-upon weekly limits, after which we remove all
low-priority requirements from the schedule. Next, we try to
find the best solution possible to the now-reduced problem,
utilizing Squeaky Wheel Optimization (Joslin and Clements
1999) and a pre-existing scheduler, as well as some con-
straint relaxation. Finally, we opportunistically re-insert the
low-priority requirements while avoiding conflicts. Overall,
the majority of work on this effort has been on improving
the solution to the reduced problem, rather than improving
the filling of low-priority requirements, as creating sched-
ules with fewer conflicts in the reduced problem pays divi-
dends while inserting low-priority requirements.

Algorithm

The core of the scheduler is a standard Squeaky Wheel
Optimization (SWO) setup, where we first schedule all re-
quirements according to some ordering, and then iteratively
permute the ordering based off of the results of the prior
scheduling pass. The algorithm is described in Algorithm 1.
To improve these results further, we leverage the fact that
the most tolerated requirement violation is the total track
duration. Whenever SWO stops providing meaningful im-
provements, we relax total track time constraints by reduc-
ing requirements located in the areas of highest contention
(places in the schedule where many requirements are vying
for tracking time). Finally, to keep track of our best sched-
ule we utilize a scoring function, saving the order of require-
ments as well as the resulting schedule whenever we find a
new best score.

Many aspects of the algorithm can be configured to ex-
plore different approaches:

e Metric

* Baseline scheduling algorithm

Algorithm 1 Pseudocode for SWO Scheduler

1: bestScore <— SCHEDULE(ordering)
2: save the schedule
3: for r < 0 to NUM_REDUCTIONS do

4: REDUCE(requirements)
5: newReductionScore < SCHEDULE (ordering)
6: best ReducedScore < newReductionScore
7: if newReductionScore > bestScore then
8: bestScore <+ newReductionScore
9: save the schedule
10: end if
11: newOrdering + GETINITIALORDERING()
12: newOrderScore < SCHEDULE(newOrdering)
13: if newOrderScore > newReductionScore then
14: best ReducedScore < newOrderScore
15: ordering < newOrdering
16: end if
17: if newOrderScore > bestScore then
18: bestScore <+ newOrderScore
19: save the schedule
20: end if
21: loop
22: REORDER (ordering)
23: newScore < SCHEDULE(ordering)
24: if newScore > bestScore then
25: bestScore < score
26: save the schedule
27: end if
28: if newScore > best ReducedScore then
29: stalelterations < 0
30: else
31: stalelterations < stalelterations + 1
32: end if
33: if stalelterations >= STALE_ITER then
34: break
35: end if
36: end loop
37: end for

* Size and choice of reduction

¢ Number of reduction iterations

¢ Number of SWO iterations

* Conditions for breaking out of SWO (STALE_ITER)
* Algorithm for reordering based on previous schedule

Our goal with this work is to reduce the amount of work
necessary to produce a schedule with minimal conflicts. Be-
cause we cannot know for sure what will help the BOP with
their job, we instead used a simple quantitative metric as an
approximation. We decided that a “good” schedule is one
that minimizes the number of conflicts, while also maximiz-
ing the total scheduled tracking time. Finally we would like
our algorithm to have some sense of fairness, such that we
aim for roughly the same satisfaction percentage (ratio of
scheduled time to minimum time constraint) across all mis-
sions. The selection of the metrics and baseline scheduling
algorithms were chosen keeping this goal in mind.

Metrics

We tried out two different metrics to score schedules. Both
metrics focused on track times, with some adjustments to en-
sure that schedules prioritized distributing track time evenly
between missions.

The first metric that we tried was the average requirement
satisfaction per mission. For each mission, find the set of re-
quirements associated with that mission, total up the sched-
uled tracking time and minimum tracking time, and divide.
Average these numbers over all missions to get the score.
This metric prioritizes more tracking time, but it prefers
adding tracking time to missions which request less track-
ing time. Although this helps with fairness, it does still have
a bias towards small missions.

The second metric we tried was an application of Jain
Fairness (Jain, Chiu, and Hawe 1998) to the mission sat-
isfaction values from the previous metric. Jain Fairness is a
fairness measure originally developed to help with network-
ing algorithms. In our case, we are computing it using each
missions satisfaction ratio r;

)2
(Xizy i)
n 2
21Ty
Using this instead of just averaging out the satisfaction
ratios helps slightly with the bias towards small missions.

jain =

Baseline Schedulers

The two schedulers that we used to schedule individual re-
quirements were both created in prior work (Johnston et al.
2014). We are using the basic Systematic Scheduler that
underlies most DSN Scheduling Engine (DSE) schedulers,
with no extra configuration, as a “strict” scheduler. This
scheduler will only schedule tracks if it can find a conflict-
and violation-free location, see Algorithm 2. This is nice be-
cause it prevents our resulting schedule from being swamped
in conflicts and violations, but it does mean that we will have
fewer tracks scheduled when all requirements have been at-
tempted.

Algorithm 2 Pseudocode for Systematic Scheduler

for each valid start time do
for each valid end time (starting at the end) do
if this is a valid track then
if there is leftover time then
Recurse
end if
if the minimum time is satisfied then
Return the current solution
end if
end if
end for
end for

Algorithm 3 Pseudocode for the Shuffle Scheduler

for each track in this requirement do
for each valid asset choice (shuffled) do
Get all legal intervals for this track/asset pairing
Shuffle the list of legal intervals
for each legal interval (shuffled) do
if this is a valid track then
Continue to the next track in the require-

ment
end if
end for
end for
end for

The other scheduler we are using is the “Relayout”
or ’Shuffle” scheduler. This scheduler utilizes information
about where and how the track was previously scheduled,
and tries to find a new location for the same track, as shown
in Algorithm 3. This scheduler also avoids placing tracks
where they would introduce conflicts or violations, and thus
has similar tradeoffs as the previous scheduler.

There was one other scheduler that we tried using, but
found inadequate. The Initial Layout” scheduler is a refine-
ment of the ”Systematic” scheduler. In addition to perform-
ing a strict scheduling pass, the initial layout scheduler also
attempts to schedule requirements with a series of succes-
sive relaxations, in order to produce tracks that at least meet
a subset of the most important constraints. These relaxations
means tracks which cannot be scheduled easily will end up
with either violations or conflicts. This has the downsides of
both causing later tracks to have more issues scheduling, as
well as causing the resulting schedule to have more conflicts.
These issues meant that initial layout failed to perform at the
same level as the other two schedulers.

Reduction

Initial testing was done with a flat 20% reduction of total
track duration across all requirements. While this produced
good results, it unnecessarily penalized requirements that
were not be contributing to crowding just because parts of
the schedule had high contention. To alleviate this, an algo-
rithm was developed that attempts to find areas of the sched-

ule with high contention, and reduce all requirements that
contribute to it.
25 ‘ ‘ Given the high-level goal of the reduction algorithm, there
"""" were two specific aims. First is to avoid penalizing require-
""""""" ments that are in low-contention parts of the schedule for the
‘ ‘ existence of high-contention parts of the schedule. The sec-
ond is that wherever possible the reduction should be spread
equally. Together, this would hopefully lead to reductions
that make the schedule feasible, without either reducing sin-
gle requirements by extreme amounts, or reducing every re-
(a) Three requirements, each with their reservation ratio writ- quirement by the same amount.
ten out. The first two requirements scheduled successfully, The main tool that we used to achieve this is a notion
and the third requirement failed to schedule. of the space that a requirement could use when schedul-
ing, what we call a “reservation”. This is a more specific
object than just the time bounds on the requirement, incor-
porating information like spacecraft visibilities as well as

3/6

‘ ‘ 8/10

(b) unusedRange antenna downtime. Here we define a reservation res(a,t)
to be a function that maps antenna a and time ¢ to a value.
0 8/10 8/10 This leads to a trivial definition of addition, as well as the

following definitions:
(c) total BadRes

n te
8/10 Integral(res) = Z/ res(a;,t) dt (D)
i=1"1ts
(d) excessRes n t .
. ¢ (1 ifres(a;t)#0
Durat = ’ dt
- uration(res) ; /t {O otherwise
(2)
(e) badRes/excessRes tio if ; 0
SetValue(res, ratio)(a,t) = {ra ol res(q,)7
(8-6)/(10-6) e 0 otherwise
3)
(f) Updated bad Range FindUnused(res) = {(a,t) | res(a,t) =0} (4)
11 23 213 10 res(a,t) if (a,t) € range
Int t t) =

ntersect(res, range)(a, t) {0 otherwise
(g) tmpact (5)
o 6 12 Using these functions, we can write out the full descrip-
,,,,,,,,,,,,, tion of our algorithm for reduction in Algorithm 4. The algo-
215 215 rithm first looks at the unscheduled requirements, and stores

info about their reservations. Using these reservations, we
——— then try and calculate some way of fitting both the missing
3/6 26 26 amount, as well as the currently existing amount, and re-
""""""""""""""""""""""""""""""""" duce any requirements whose reservations touch the affected
space. A brief worked example is shown in Fig. 1.

8/15 8/15 8/10

Empirical Evaluation
(h) Original reservations multiplied by impact In order to evaluate our algorithms, we need to obtain
- workspaces (inputs for a single week’s schedule) that re-
0 6 12 . .
flect real-world usage. A pilot study was done in the past
‘ ——————— that gathered the relevant inputs, including limits and pref-

erences, for a single week. This workspace is a good starting
point for evaluation, but more workspaces are necessary to
fully test our algorithms. Currently the DSN is not gather-
ing the requisite inputs as part of the scheduling process, but
changes are being made to gather this input in the future.

6.933/10 In future work, in addition to the schedules being input
""" by current DSN users, we would like to investigate creat-
ing synthetic DSN schedules for testing purposes. One way

‘ 2.33/6 ‘ ‘

Figure 1: Visual Illustration of the steps of Reduce
This is with three requirements and a single antenna over 12
hours

Al

gorithm 4 Pseudocode for Reduction step

1
2

15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:

26:
27:
28:

29:
30:
31:
32:
33:
34
35:
36:

3
4.
5:
6.
7
8

9:
10:
11:
12:
13:
14:

. goodResList < empty list
. badResList < empty list

: for requirement € requirements do

reservation < RESERVATIONS (requirement)
allowableTime < DURATION(reservation)
currentT'ime < DURATION(requirement)
minTime < MINTIME(requirement)
if currentTime > 0 then
ratio < currentTime/allowableTime
goodRes + SETVALUE(reservation, ratio)
PUSH(goodResList, goodRes)
end if
if currentTime < minT'ime then
ratio < (minTime — currentTime)/
allowableTime
badRes < SETVALUE(reservation, ratio)
PUSH(badResList, badRes)
end if
end for

totalGoodRes <— SUM(good ResList)
unusedRange <— FINDUNUSED(totalGood Res)
excessRes < INTERSECT(total Bad Res, unused Range)
total BadRes <— SUM(badResList)
for badRes € badResList do

HANDLEEXCESS(badRes, excessRes)
end for

total BadRes < SUM(badResList)
total BadRes < total BadRes + 1
impact < 1/total BadRes

for requirement € requirements do
reservation < RESERVATIONS(requirement)
newT otal + INTEGRAL(reservation * impact)
currentTotal < MINDURATION(requirement)
reduction < newTotal [currentTotal
REDUCE(requirement, reduction)
REDUCE(reservation, reduction)

end for

Algorithm 5 Pseudocode for HandleExcess

total Excess <— INTEGRAL(badRes/excessRes)
currentBadT otal <~ INTEGRAL(badRes)
newBadT otal < currentBadTotal — total Excess
unusedRange <— FINDUNUSED(excessRes)
usedRange < unusedRange®

badRes < INTERSECT(badRes, used Range)
newDuration <— DURATION(bad Res)

newRatio < newBadT otal /newDuration
badRange <— SETVALUE(badRes, new Ratio)

to do this is to take historical schedules and add the rele-
vant bits of information that will be in future schedules. This
means setting weekly limits for each mission in the histori-
cal schedule, as well as assigning preference values to each
requirement.

The other potential method for creating synthetic DSN
schedules would be to create de novo schedules that still
maintain key features of real-world schedules.

Results

Some preliminary results were computed with a single in-
put schedule, showing significant promise for this method.
A collection of statistics about the resulting schedules can
be found in Figure 2. The statistics show a factor of 10 re-
duction in antenna and equipment conflicts, the two types
of conflicts that are hardest to resolve manually. The best
scheduling runs manage to remove these conflicts while still
maintaining most of the tracking time originally present in
the schedule. At present this single schedule is the extent
of available input data, and more work is being done to ac-
quire more varied workspaces. Even with this single sched-
ule, much of the data in the chart suggests future work that
could be done in targeting specific issues like MSPA con-
flicts or trackQuantize violations.

Conclusion

This work is still early. We have presented a scheduling
problem as well as a relaxation problem. We have presented
an approach to the relaxation problem designed to avoid re-
laxing wherever possible, and an approach to the scheduling
problem utilising this relaxation method. In future work we
hope to gather more workspaces to test with, and to perform
user testing with the DSN schedulers who will be utilizing
the tool (BOPs).

Acknowledgements: This research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References

Imbriale, W. A. 2003. Large Antennas of the Deep Space
Network. Wiley.

Jain, R.; Chiu, D.; and Hawe, W. 1998. A quantitative mea-
sure of fairness and discrimination for resource allocation in
shared computer systems. CoRR ¢s.N1/9809099.

Johnston, M. D., and Lad, J. 2018. Integrated Planning
and Scheduling for NASA’s Deep Space Network — from
Forecasting to Real-time. In SpaceOps.

Johnston, M.; Tran, D.; Arroyo, B.; Sorensen, S.; Tay, P.;
Carruth, J.; Coffman, A.; and Wallace, M. 2014. Automated
Scheduling for NASA’s Deep Space Network. Al Magazine
35:7-25.

Joslin, D. E., and Clements, D. P. 1999. Squeaky Wheel
Optimization. Journal of AI Research 10:353-373.

Shouraboura, C.; Johnston, M. D.; and Tran, D. 2016. Prior-
itization and Oversubscribed Scheduling for NASA’s Deep
Space Network. In ICAPS SPARK Workshop.

Werntz, D.; Loyola, S.; and Zendejas, S. 1993. FASTER - A
tool for DSN forecasting and scheduling. In AIAA Comput-
ing in Aerospace Conference, 9th. San Diego, CA: AIAA.

Conflicts by type (log 10) Violations by type (log 10)

35 2
3
1.5
25
2
15
| H/mn T
o M N M
0 II I = J."’\ q,&' ’-‘L\ @\ 'o({é" &QOQ . os}?‘
- <53 A & N S P 0 & S & & & s&’o
0.5 F ({& \Q@ & & b° é\&- 2‘&) \«@ <&@ <& e i
2 &0 ‘,s\q;!‘ & < .@,@ <
mInitial minitiallLayout mjain maverageRatio mtotalScheduledTime m Initial minitialLayout mjain waverageRatio mtotalScheduledTime
Ratio of Track Time Scheduled to Track Time Requested
16
14
12
1
0.8
0.6
0.4
0.2 |
. |
& : & 3 & ’b& »@%@N@‘gx é‘\'& \“o\’ \‘\‘ow \“oa, \‘\‘oh& o "’e’\’ \’@“j' @"‘“ o 'L\i\ H,@\\iﬁ“\:&a&ék & \’o‘*‘ ’ Q&:o‘@:o“o’b = f—i“} & «" 4@ 4(% A(? \‘5\\‘ 4;\\\

minitial Data minitiallLayout mjain maverageRatio m totalScheduledTime

Figure 2: Summary of the different algorithms performance. “Initial” is the initial state of the schedule before scheduling. ini-
tialLayout” is running the initialLayout scheduler on all requirements once. The remaining three bars are all variations of the
new preference-based scheduler, using the strict subscheduler. jain” uses jain fairness as a metric, averageRatio” uses require-
ment satisfaction averaged over missions, and “’totalScheduledTime” uses the total scheduled time across all requirements.

